1 /* 2 * fs/mpage.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to preparing and submitting BIOs which contain 7 * multiple pagecache pages. 8 * 9 * 15May2002 Andrew Morton 10 * Initial version 11 * 27Jun2002 axboe@suse.de 12 * use bio_add_page() to build bio's just the right size 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/mm.h> 18 #include <linux/kdev_t.h> 19 #include <linux/gfp.h> 20 #include <linux/bio.h> 21 #include <linux/fs.h> 22 #include <linux/buffer_head.h> 23 #include <linux/blkdev.h> 24 #include <linux/highmem.h> 25 #include <linux/prefetch.h> 26 #include <linux/mpage.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/cleancache.h> 31 #include "internal.h" 32 33 /* 34 * I/O completion handler for multipage BIOs. 35 * 36 * The mpage code never puts partial pages into a BIO (except for end-of-file). 37 * If a page does not map to a contiguous run of blocks then it simply falls 38 * back to block_read_full_page(). 39 * 40 * Why is this? If a page's completion depends on a number of different BIOs 41 * which can complete in any order (or at the same time) then determining the 42 * status of that page is hard. See end_buffer_async_read() for the details. 43 * There is no point in duplicating all that complexity. 44 */ 45 static void mpage_end_io(struct bio *bio, int err) 46 { 47 struct bio_vec *bv; 48 int i; 49 50 bio_for_each_segment_all(bv, bio, i) { 51 struct page *page = bv->bv_page; 52 page_endio(page, bio_data_dir(bio), err); 53 } 54 55 bio_put(bio); 56 } 57 58 static struct bio *mpage_bio_submit(int rw, struct bio *bio) 59 { 60 bio->bi_end_io = mpage_end_io; 61 guard_bio_eod(rw, bio); 62 submit_bio(rw, bio); 63 return NULL; 64 } 65 66 static struct bio * 67 mpage_alloc(struct block_device *bdev, 68 sector_t first_sector, int nr_vecs, 69 gfp_t gfp_flags) 70 { 71 struct bio *bio; 72 73 bio = bio_alloc(gfp_flags, nr_vecs); 74 75 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 76 while (!bio && (nr_vecs /= 2)) 77 bio = bio_alloc(gfp_flags, nr_vecs); 78 } 79 80 if (bio) { 81 bio->bi_bdev = bdev; 82 bio->bi_iter.bi_sector = first_sector; 83 } 84 return bio; 85 } 86 87 /* 88 * support function for mpage_readpages. The fs supplied get_block might 89 * return an up to date buffer. This is used to map that buffer into 90 * the page, which allows readpage to avoid triggering a duplicate call 91 * to get_block. 92 * 93 * The idea is to avoid adding buffers to pages that don't already have 94 * them. So when the buffer is up to date and the page size == block size, 95 * this marks the page up to date instead of adding new buffers. 96 */ 97 static void 98 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 99 { 100 struct inode *inode = page->mapping->host; 101 struct buffer_head *page_bh, *head; 102 int block = 0; 103 104 if (!page_has_buffers(page)) { 105 /* 106 * don't make any buffers if there is only one buffer on 107 * the page and the page just needs to be set up to date 108 */ 109 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 110 buffer_uptodate(bh)) { 111 SetPageUptodate(page); 112 return; 113 } 114 create_empty_buffers(page, 1 << inode->i_blkbits, 0); 115 } 116 head = page_buffers(page); 117 page_bh = head; 118 do { 119 if (block == page_block) { 120 page_bh->b_state = bh->b_state; 121 page_bh->b_bdev = bh->b_bdev; 122 page_bh->b_blocknr = bh->b_blocknr; 123 break; 124 } 125 page_bh = page_bh->b_this_page; 126 block++; 127 } while (page_bh != head); 128 } 129 130 /* 131 * This is the worker routine which does all the work of mapping the disk 132 * blocks and constructs largest possible bios, submits them for IO if the 133 * blocks are not contiguous on the disk. 134 * 135 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 136 * represent the validity of its disk mapping and to decide when to do the next 137 * get_block() call. 138 */ 139 static struct bio * 140 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 141 sector_t *last_block_in_bio, struct buffer_head *map_bh, 142 unsigned long *first_logical_block, get_block_t get_block) 143 { 144 struct inode *inode = page->mapping->host; 145 const unsigned blkbits = inode->i_blkbits; 146 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 147 const unsigned blocksize = 1 << blkbits; 148 sector_t block_in_file; 149 sector_t last_block; 150 sector_t last_block_in_file; 151 sector_t blocks[MAX_BUF_PER_PAGE]; 152 unsigned page_block; 153 unsigned first_hole = blocks_per_page; 154 struct block_device *bdev = NULL; 155 int length; 156 int fully_mapped = 1; 157 unsigned nblocks; 158 unsigned relative_block; 159 160 if (page_has_buffers(page)) 161 goto confused; 162 163 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 164 last_block = block_in_file + nr_pages * blocks_per_page; 165 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 166 if (last_block > last_block_in_file) 167 last_block = last_block_in_file; 168 page_block = 0; 169 170 /* 171 * Map blocks using the result from the previous get_blocks call first. 172 */ 173 nblocks = map_bh->b_size >> blkbits; 174 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && 175 block_in_file < (*first_logical_block + nblocks)) { 176 unsigned map_offset = block_in_file - *first_logical_block; 177 unsigned last = nblocks - map_offset; 178 179 for (relative_block = 0; ; relative_block++) { 180 if (relative_block == last) { 181 clear_buffer_mapped(map_bh); 182 break; 183 } 184 if (page_block == blocks_per_page) 185 break; 186 blocks[page_block] = map_bh->b_blocknr + map_offset + 187 relative_block; 188 page_block++; 189 block_in_file++; 190 } 191 bdev = map_bh->b_bdev; 192 } 193 194 /* 195 * Then do more get_blocks calls until we are done with this page. 196 */ 197 map_bh->b_page = page; 198 while (page_block < blocks_per_page) { 199 map_bh->b_state = 0; 200 map_bh->b_size = 0; 201 202 if (block_in_file < last_block) { 203 map_bh->b_size = (last_block-block_in_file) << blkbits; 204 if (get_block(inode, block_in_file, map_bh, 0)) 205 goto confused; 206 *first_logical_block = block_in_file; 207 } 208 209 if (!buffer_mapped(map_bh)) { 210 fully_mapped = 0; 211 if (first_hole == blocks_per_page) 212 first_hole = page_block; 213 page_block++; 214 block_in_file++; 215 continue; 216 } 217 218 /* some filesystems will copy data into the page during 219 * the get_block call, in which case we don't want to 220 * read it again. map_buffer_to_page copies the data 221 * we just collected from get_block into the page's buffers 222 * so readpage doesn't have to repeat the get_block call 223 */ 224 if (buffer_uptodate(map_bh)) { 225 map_buffer_to_page(page, map_bh, page_block); 226 goto confused; 227 } 228 229 if (first_hole != blocks_per_page) 230 goto confused; /* hole -> non-hole */ 231 232 /* Contiguous blocks? */ 233 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 234 goto confused; 235 nblocks = map_bh->b_size >> blkbits; 236 for (relative_block = 0; ; relative_block++) { 237 if (relative_block == nblocks) { 238 clear_buffer_mapped(map_bh); 239 break; 240 } else if (page_block == blocks_per_page) 241 break; 242 blocks[page_block] = map_bh->b_blocknr+relative_block; 243 page_block++; 244 block_in_file++; 245 } 246 bdev = map_bh->b_bdev; 247 } 248 249 if (first_hole != blocks_per_page) { 250 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE); 251 if (first_hole == 0) { 252 SetPageUptodate(page); 253 unlock_page(page); 254 goto out; 255 } 256 } else if (fully_mapped) { 257 SetPageMappedToDisk(page); 258 } 259 260 if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) && 261 cleancache_get_page(page) == 0) { 262 SetPageUptodate(page); 263 goto confused; 264 } 265 266 /* 267 * This page will go to BIO. Do we need to send this BIO off first? 268 */ 269 if (bio && (*last_block_in_bio != blocks[0] - 1)) 270 bio = mpage_bio_submit(READ, bio); 271 272 alloc_new: 273 if (bio == NULL) { 274 if (first_hole == blocks_per_page) { 275 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 276 page)) 277 goto out; 278 } 279 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 280 min_t(int, nr_pages, bio_get_nr_vecs(bdev)), 281 GFP_KERNEL); 282 if (bio == NULL) 283 goto confused; 284 } 285 286 length = first_hole << blkbits; 287 if (bio_add_page(bio, page, length, 0) < length) { 288 bio = mpage_bio_submit(READ, bio); 289 goto alloc_new; 290 } 291 292 relative_block = block_in_file - *first_logical_block; 293 nblocks = map_bh->b_size >> blkbits; 294 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 295 (first_hole != blocks_per_page)) 296 bio = mpage_bio_submit(READ, bio); 297 else 298 *last_block_in_bio = blocks[blocks_per_page - 1]; 299 out: 300 return bio; 301 302 confused: 303 if (bio) 304 bio = mpage_bio_submit(READ, bio); 305 if (!PageUptodate(page)) 306 block_read_full_page(page, get_block); 307 else 308 unlock_page(page); 309 goto out; 310 } 311 312 /** 313 * mpage_readpages - populate an address space with some pages & start reads against them 314 * @mapping: the address_space 315 * @pages: The address of a list_head which contains the target pages. These 316 * pages have their ->index populated and are otherwise uninitialised. 317 * The page at @pages->prev has the lowest file offset, and reads should be 318 * issued in @pages->prev to @pages->next order. 319 * @nr_pages: The number of pages at *@pages 320 * @get_block: The filesystem's block mapper function. 321 * 322 * This function walks the pages and the blocks within each page, building and 323 * emitting large BIOs. 324 * 325 * If anything unusual happens, such as: 326 * 327 * - encountering a page which has buffers 328 * - encountering a page which has a non-hole after a hole 329 * - encountering a page with non-contiguous blocks 330 * 331 * then this code just gives up and calls the buffer_head-based read function. 332 * It does handle a page which has holes at the end - that is a common case: 333 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. 334 * 335 * BH_Boundary explanation: 336 * 337 * There is a problem. The mpage read code assembles several pages, gets all 338 * their disk mappings, and then submits them all. That's fine, but obtaining 339 * the disk mappings may require I/O. Reads of indirect blocks, for example. 340 * 341 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 342 * submitted in the following order: 343 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 344 * 345 * because the indirect block has to be read to get the mappings of blocks 346 * 13,14,15,16. Obviously, this impacts performance. 347 * 348 * So what we do it to allow the filesystem's get_block() function to set 349 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 350 * after this one will require I/O against a block which is probably close to 351 * this one. So you should push what I/O you have currently accumulated. 352 * 353 * This all causes the disk requests to be issued in the correct order. 354 */ 355 int 356 mpage_readpages(struct address_space *mapping, struct list_head *pages, 357 unsigned nr_pages, get_block_t get_block) 358 { 359 struct bio *bio = NULL; 360 unsigned page_idx; 361 sector_t last_block_in_bio = 0; 362 struct buffer_head map_bh; 363 unsigned long first_logical_block = 0; 364 365 map_bh.b_state = 0; 366 map_bh.b_size = 0; 367 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 368 struct page *page = list_entry(pages->prev, struct page, lru); 369 370 prefetchw(&page->flags); 371 list_del(&page->lru); 372 if (!add_to_page_cache_lru(page, mapping, 373 page->index, GFP_KERNEL)) { 374 bio = do_mpage_readpage(bio, page, 375 nr_pages - page_idx, 376 &last_block_in_bio, &map_bh, 377 &first_logical_block, 378 get_block); 379 } 380 page_cache_release(page); 381 } 382 BUG_ON(!list_empty(pages)); 383 if (bio) 384 mpage_bio_submit(READ, bio); 385 return 0; 386 } 387 EXPORT_SYMBOL(mpage_readpages); 388 389 /* 390 * This isn't called much at all 391 */ 392 int mpage_readpage(struct page *page, get_block_t get_block) 393 { 394 struct bio *bio = NULL; 395 sector_t last_block_in_bio = 0; 396 struct buffer_head map_bh; 397 unsigned long first_logical_block = 0; 398 399 map_bh.b_state = 0; 400 map_bh.b_size = 0; 401 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, 402 &map_bh, &first_logical_block, get_block); 403 if (bio) 404 mpage_bio_submit(READ, bio); 405 return 0; 406 } 407 EXPORT_SYMBOL(mpage_readpage); 408 409 /* 410 * Writing is not so simple. 411 * 412 * If the page has buffers then they will be used for obtaining the disk 413 * mapping. We only support pages which are fully mapped-and-dirty, with a 414 * special case for pages which are unmapped at the end: end-of-file. 415 * 416 * If the page has no buffers (preferred) then the page is mapped here. 417 * 418 * If all blocks are found to be contiguous then the page can go into the 419 * BIO. Otherwise fall back to the mapping's writepage(). 420 * 421 * FIXME: This code wants an estimate of how many pages are still to be 422 * written, so it can intelligently allocate a suitably-sized BIO. For now, 423 * just allocate full-size (16-page) BIOs. 424 */ 425 426 struct mpage_data { 427 struct bio *bio; 428 sector_t last_block_in_bio; 429 get_block_t *get_block; 430 unsigned use_writepage; 431 }; 432 433 /* 434 * We have our BIO, so we can now mark the buffers clean. Make 435 * sure to only clean buffers which we know we'll be writing. 436 */ 437 static void clean_buffers(struct page *page, unsigned first_unmapped) 438 { 439 unsigned buffer_counter = 0; 440 struct buffer_head *bh, *head; 441 if (!page_has_buffers(page)) 442 return; 443 head = page_buffers(page); 444 bh = head; 445 446 do { 447 if (buffer_counter++ == first_unmapped) 448 break; 449 clear_buffer_dirty(bh); 450 bh = bh->b_this_page; 451 } while (bh != head); 452 453 /* 454 * we cannot drop the bh if the page is not uptodate or a concurrent 455 * readpage would fail to serialize with the bh and it would read from 456 * disk before we reach the platter. 457 */ 458 if (buffer_heads_over_limit && PageUptodate(page)) 459 try_to_free_buffers(page); 460 } 461 462 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 463 void *data) 464 { 465 struct mpage_data *mpd = data; 466 struct bio *bio = mpd->bio; 467 struct address_space *mapping = page->mapping; 468 struct inode *inode = page->mapping->host; 469 const unsigned blkbits = inode->i_blkbits; 470 unsigned long end_index; 471 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 472 sector_t last_block; 473 sector_t block_in_file; 474 sector_t blocks[MAX_BUF_PER_PAGE]; 475 unsigned page_block; 476 unsigned first_unmapped = blocks_per_page; 477 struct block_device *bdev = NULL; 478 int boundary = 0; 479 sector_t boundary_block = 0; 480 struct block_device *boundary_bdev = NULL; 481 int length; 482 struct buffer_head map_bh; 483 loff_t i_size = i_size_read(inode); 484 int ret = 0; 485 486 if (page_has_buffers(page)) { 487 struct buffer_head *head = page_buffers(page); 488 struct buffer_head *bh = head; 489 490 /* If they're all mapped and dirty, do it */ 491 page_block = 0; 492 do { 493 BUG_ON(buffer_locked(bh)); 494 if (!buffer_mapped(bh)) { 495 /* 496 * unmapped dirty buffers are created by 497 * __set_page_dirty_buffers -> mmapped data 498 */ 499 if (buffer_dirty(bh)) 500 goto confused; 501 if (first_unmapped == blocks_per_page) 502 first_unmapped = page_block; 503 continue; 504 } 505 506 if (first_unmapped != blocks_per_page) 507 goto confused; /* hole -> non-hole */ 508 509 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 510 goto confused; 511 if (page_block) { 512 if (bh->b_blocknr != blocks[page_block-1] + 1) 513 goto confused; 514 } 515 blocks[page_block++] = bh->b_blocknr; 516 boundary = buffer_boundary(bh); 517 if (boundary) { 518 boundary_block = bh->b_blocknr; 519 boundary_bdev = bh->b_bdev; 520 } 521 bdev = bh->b_bdev; 522 } while ((bh = bh->b_this_page) != head); 523 524 if (first_unmapped) 525 goto page_is_mapped; 526 527 /* 528 * Page has buffers, but they are all unmapped. The page was 529 * created by pagein or read over a hole which was handled by 530 * block_read_full_page(). If this address_space is also 531 * using mpage_readpages then this can rarely happen. 532 */ 533 goto confused; 534 } 535 536 /* 537 * The page has no buffers: map it to disk 538 */ 539 BUG_ON(!PageUptodate(page)); 540 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 541 last_block = (i_size - 1) >> blkbits; 542 map_bh.b_page = page; 543 for (page_block = 0; page_block < blocks_per_page; ) { 544 545 map_bh.b_state = 0; 546 map_bh.b_size = 1 << blkbits; 547 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 548 goto confused; 549 if (buffer_new(&map_bh)) 550 unmap_underlying_metadata(map_bh.b_bdev, 551 map_bh.b_blocknr); 552 if (buffer_boundary(&map_bh)) { 553 boundary_block = map_bh.b_blocknr; 554 boundary_bdev = map_bh.b_bdev; 555 } 556 if (page_block) { 557 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 558 goto confused; 559 } 560 blocks[page_block++] = map_bh.b_blocknr; 561 boundary = buffer_boundary(&map_bh); 562 bdev = map_bh.b_bdev; 563 if (block_in_file == last_block) 564 break; 565 block_in_file++; 566 } 567 BUG_ON(page_block == 0); 568 569 first_unmapped = page_block; 570 571 page_is_mapped: 572 end_index = i_size >> PAGE_CACHE_SHIFT; 573 if (page->index >= end_index) { 574 /* 575 * The page straddles i_size. It must be zeroed out on each 576 * and every writepage invocation because it may be mmapped. 577 * "A file is mapped in multiples of the page size. For a file 578 * that is not a multiple of the page size, the remaining memory 579 * is zeroed when mapped, and writes to that region are not 580 * written out to the file." 581 */ 582 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); 583 584 if (page->index > end_index || !offset) 585 goto confused; 586 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 587 } 588 589 /* 590 * This page will go to BIO. Do we need to send this BIO off first? 591 */ 592 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 593 bio = mpage_bio_submit(WRITE, bio); 594 595 alloc_new: 596 if (bio == NULL) { 597 if (first_unmapped == blocks_per_page) { 598 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 599 page, wbc)) { 600 clean_buffers(page, first_unmapped); 601 goto out; 602 } 603 } 604 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 605 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); 606 if (bio == NULL) 607 goto confused; 608 } 609 610 /* 611 * Must try to add the page before marking the buffer clean or 612 * the confused fail path above (OOM) will be very confused when 613 * it finds all bh marked clean (i.e. it will not write anything) 614 */ 615 length = first_unmapped << blkbits; 616 if (bio_add_page(bio, page, length, 0) < length) { 617 bio = mpage_bio_submit(WRITE, bio); 618 goto alloc_new; 619 } 620 621 clean_buffers(page, first_unmapped); 622 623 BUG_ON(PageWriteback(page)); 624 set_page_writeback(page); 625 unlock_page(page); 626 if (boundary || (first_unmapped != blocks_per_page)) { 627 bio = mpage_bio_submit(WRITE, bio); 628 if (boundary_block) { 629 write_boundary_block(boundary_bdev, 630 boundary_block, 1 << blkbits); 631 } 632 } else { 633 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 634 } 635 goto out; 636 637 confused: 638 if (bio) 639 bio = mpage_bio_submit(WRITE, bio); 640 641 if (mpd->use_writepage) { 642 ret = mapping->a_ops->writepage(page, wbc); 643 } else { 644 ret = -EAGAIN; 645 goto out; 646 } 647 /* 648 * The caller has a ref on the inode, so *mapping is stable 649 */ 650 mapping_set_error(mapping, ret); 651 out: 652 mpd->bio = bio; 653 return ret; 654 } 655 656 /** 657 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 658 * @mapping: address space structure to write 659 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 660 * @get_block: the filesystem's block mapper function. 661 * If this is NULL then use a_ops->writepage. Otherwise, go 662 * direct-to-BIO. 663 * 664 * This is a library function, which implements the writepages() 665 * address_space_operation. 666 * 667 * If a page is already under I/O, generic_writepages() skips it, even 668 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 669 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 670 * and msync() need to guarantee that all the data which was dirty at the time 671 * the call was made get new I/O started against them. If wbc->sync_mode is 672 * WB_SYNC_ALL then we were called for data integrity and we must wait for 673 * existing IO to complete. 674 */ 675 int 676 mpage_writepages(struct address_space *mapping, 677 struct writeback_control *wbc, get_block_t get_block) 678 { 679 struct blk_plug plug; 680 int ret; 681 682 blk_start_plug(&plug); 683 684 if (!get_block) 685 ret = generic_writepages(mapping, wbc); 686 else { 687 struct mpage_data mpd = { 688 .bio = NULL, 689 .last_block_in_bio = 0, 690 .get_block = get_block, 691 .use_writepage = 1, 692 }; 693 694 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 695 if (mpd.bio) 696 mpage_bio_submit(WRITE, mpd.bio); 697 } 698 blk_finish_plug(&plug); 699 return ret; 700 } 701 EXPORT_SYMBOL(mpage_writepages); 702 703 int mpage_writepage(struct page *page, get_block_t get_block, 704 struct writeback_control *wbc) 705 { 706 struct mpage_data mpd = { 707 .bio = NULL, 708 .last_block_in_bio = 0, 709 .get_block = get_block, 710 .use_writepage = 0, 711 }; 712 int ret = __mpage_writepage(page, wbc, &mpd); 713 if (mpd.bio) 714 mpage_bio_submit(WRITE, mpd.bio); 715 return ret; 716 } 717 EXPORT_SYMBOL(mpage_writepage); 718