1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/mpage.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains functions related to preparing and submitting BIOs which contain 8 * multiple pagecache pages. 9 * 10 * 15May2002 Andrew Morton 11 * Initial version 12 * 27Jun2002 axboe@suse.de 13 * use bio_add_page() to build bio's just the right size 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/mm.h> 19 #include <linux/kdev_t.h> 20 #include <linux/gfp.h> 21 #include <linux/bio.h> 22 #include <linux/fs.h> 23 #include <linux/buffer_head.h> 24 #include <linux/blkdev.h> 25 #include <linux/highmem.h> 26 #include <linux/prefetch.h> 27 #include <linux/mpage.h> 28 #include <linux/mm_inline.h> 29 #include <linux/writeback.h> 30 #include <linux/backing-dev.h> 31 #include <linux/pagevec.h> 32 #include "internal.h" 33 34 /* 35 * I/O completion handler for multipage BIOs. 36 * 37 * The mpage code never puts partial pages into a BIO (except for end-of-file). 38 * If a page does not map to a contiguous run of blocks then it simply falls 39 * back to block_read_full_page(). 40 * 41 * Why is this? If a page's completion depends on a number of different BIOs 42 * which can complete in any order (or at the same time) then determining the 43 * status of that page is hard. See end_buffer_async_read() for the details. 44 * There is no point in duplicating all that complexity. 45 */ 46 static void mpage_end_io(struct bio *bio) 47 { 48 struct bio_vec *bv; 49 struct bvec_iter_all iter_all; 50 51 bio_for_each_segment_all(bv, bio, iter_all) { 52 struct page *page = bv->bv_page; 53 page_endio(page, bio_op(bio), 54 blk_status_to_errno(bio->bi_status)); 55 } 56 57 bio_put(bio); 58 } 59 60 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio) 61 { 62 bio->bi_end_io = mpage_end_io; 63 bio_set_op_attrs(bio, op, op_flags); 64 guard_bio_eod(bio); 65 submit_bio(bio); 66 return NULL; 67 } 68 69 static struct bio * 70 mpage_alloc(struct block_device *bdev, 71 sector_t first_sector, int nr_vecs, 72 gfp_t gfp_flags) 73 { 74 struct bio *bio; 75 76 /* Restrict the given (page cache) mask for slab allocations */ 77 gfp_flags &= GFP_KERNEL; 78 bio = bio_alloc(gfp_flags, nr_vecs); 79 80 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 81 while (!bio && (nr_vecs /= 2)) 82 bio = bio_alloc(gfp_flags, nr_vecs); 83 } 84 85 if (bio) { 86 bio_set_dev(bio, bdev); 87 bio->bi_iter.bi_sector = first_sector; 88 } 89 return bio; 90 } 91 92 /* 93 * support function for mpage_readahead. The fs supplied get_block might 94 * return an up to date buffer. This is used to map that buffer into 95 * the page, which allows readpage to avoid triggering a duplicate call 96 * to get_block. 97 * 98 * The idea is to avoid adding buffers to pages that don't already have 99 * them. So when the buffer is up to date and the page size == block size, 100 * this marks the page up to date instead of adding new buffers. 101 */ 102 static void 103 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 104 { 105 struct inode *inode = page->mapping->host; 106 struct buffer_head *page_bh, *head; 107 int block = 0; 108 109 if (!page_has_buffers(page)) { 110 /* 111 * don't make any buffers if there is only one buffer on 112 * the page and the page just needs to be set up to date 113 */ 114 if (inode->i_blkbits == PAGE_SHIFT && 115 buffer_uptodate(bh)) { 116 SetPageUptodate(page); 117 return; 118 } 119 create_empty_buffers(page, i_blocksize(inode), 0); 120 } 121 head = page_buffers(page); 122 page_bh = head; 123 do { 124 if (block == page_block) { 125 page_bh->b_state = bh->b_state; 126 page_bh->b_bdev = bh->b_bdev; 127 page_bh->b_blocknr = bh->b_blocknr; 128 break; 129 } 130 page_bh = page_bh->b_this_page; 131 block++; 132 } while (page_bh != head); 133 } 134 135 struct mpage_readpage_args { 136 struct bio *bio; 137 struct page *page; 138 unsigned int nr_pages; 139 bool is_readahead; 140 sector_t last_block_in_bio; 141 struct buffer_head map_bh; 142 unsigned long first_logical_block; 143 get_block_t *get_block; 144 }; 145 146 /* 147 * This is the worker routine which does all the work of mapping the disk 148 * blocks and constructs largest possible bios, submits them for IO if the 149 * blocks are not contiguous on the disk. 150 * 151 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 152 * represent the validity of its disk mapping and to decide when to do the next 153 * get_block() call. 154 */ 155 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args) 156 { 157 struct page *page = args->page; 158 struct inode *inode = page->mapping->host; 159 const unsigned blkbits = inode->i_blkbits; 160 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 161 const unsigned blocksize = 1 << blkbits; 162 struct buffer_head *map_bh = &args->map_bh; 163 sector_t block_in_file; 164 sector_t last_block; 165 sector_t last_block_in_file; 166 sector_t blocks[MAX_BUF_PER_PAGE]; 167 unsigned page_block; 168 unsigned first_hole = blocks_per_page; 169 struct block_device *bdev = NULL; 170 int length; 171 int fully_mapped = 1; 172 int op_flags; 173 unsigned nblocks; 174 unsigned relative_block; 175 gfp_t gfp; 176 177 if (args->is_readahead) { 178 op_flags = REQ_RAHEAD; 179 gfp = readahead_gfp_mask(page->mapping); 180 } else { 181 op_flags = 0; 182 gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); 183 } 184 185 if (page_has_buffers(page)) 186 goto confused; 187 188 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 189 last_block = block_in_file + args->nr_pages * blocks_per_page; 190 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 191 if (last_block > last_block_in_file) 192 last_block = last_block_in_file; 193 page_block = 0; 194 195 /* 196 * Map blocks using the result from the previous get_blocks call first. 197 */ 198 nblocks = map_bh->b_size >> blkbits; 199 if (buffer_mapped(map_bh) && 200 block_in_file > args->first_logical_block && 201 block_in_file < (args->first_logical_block + nblocks)) { 202 unsigned map_offset = block_in_file - args->first_logical_block; 203 unsigned last = nblocks - map_offset; 204 205 for (relative_block = 0; ; relative_block++) { 206 if (relative_block == last) { 207 clear_buffer_mapped(map_bh); 208 break; 209 } 210 if (page_block == blocks_per_page) 211 break; 212 blocks[page_block] = map_bh->b_blocknr + map_offset + 213 relative_block; 214 page_block++; 215 block_in_file++; 216 } 217 bdev = map_bh->b_bdev; 218 } 219 220 /* 221 * Then do more get_blocks calls until we are done with this page. 222 */ 223 map_bh->b_page = page; 224 while (page_block < blocks_per_page) { 225 map_bh->b_state = 0; 226 map_bh->b_size = 0; 227 228 if (block_in_file < last_block) { 229 map_bh->b_size = (last_block-block_in_file) << blkbits; 230 if (args->get_block(inode, block_in_file, map_bh, 0)) 231 goto confused; 232 args->first_logical_block = block_in_file; 233 } 234 235 if (!buffer_mapped(map_bh)) { 236 fully_mapped = 0; 237 if (first_hole == blocks_per_page) 238 first_hole = page_block; 239 page_block++; 240 block_in_file++; 241 continue; 242 } 243 244 /* some filesystems will copy data into the page during 245 * the get_block call, in which case we don't want to 246 * read it again. map_buffer_to_page copies the data 247 * we just collected from get_block into the page's buffers 248 * so readpage doesn't have to repeat the get_block call 249 */ 250 if (buffer_uptodate(map_bh)) { 251 map_buffer_to_page(page, map_bh, page_block); 252 goto confused; 253 } 254 255 if (first_hole != blocks_per_page) 256 goto confused; /* hole -> non-hole */ 257 258 /* Contiguous blocks? */ 259 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 260 goto confused; 261 nblocks = map_bh->b_size >> blkbits; 262 for (relative_block = 0; ; relative_block++) { 263 if (relative_block == nblocks) { 264 clear_buffer_mapped(map_bh); 265 break; 266 } else if (page_block == blocks_per_page) 267 break; 268 blocks[page_block] = map_bh->b_blocknr+relative_block; 269 page_block++; 270 block_in_file++; 271 } 272 bdev = map_bh->b_bdev; 273 } 274 275 if (first_hole != blocks_per_page) { 276 zero_user_segment(page, first_hole << blkbits, PAGE_SIZE); 277 if (first_hole == 0) { 278 SetPageUptodate(page); 279 unlock_page(page); 280 goto out; 281 } 282 } else if (fully_mapped) { 283 SetPageMappedToDisk(page); 284 } 285 286 /* 287 * This page will go to BIO. Do we need to send this BIO off first? 288 */ 289 if (args->bio && (args->last_block_in_bio != blocks[0] - 1)) 290 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 291 292 alloc_new: 293 if (args->bio == NULL) { 294 if (first_hole == blocks_per_page) { 295 if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9), 296 page)) 297 goto out; 298 } 299 args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 300 bio_max_segs(args->nr_pages), gfp); 301 if (args->bio == NULL) 302 goto confused; 303 } 304 305 length = first_hole << blkbits; 306 if (bio_add_page(args->bio, page, length, 0) < length) { 307 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 308 goto alloc_new; 309 } 310 311 relative_block = block_in_file - args->first_logical_block; 312 nblocks = map_bh->b_size >> blkbits; 313 if ((buffer_boundary(map_bh) && relative_block == nblocks) || 314 (first_hole != blocks_per_page)) 315 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 316 else 317 args->last_block_in_bio = blocks[blocks_per_page - 1]; 318 out: 319 return args->bio; 320 321 confused: 322 if (args->bio) 323 args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio); 324 if (!PageUptodate(page)) 325 block_read_full_page(page, args->get_block); 326 else 327 unlock_page(page); 328 goto out; 329 } 330 331 /** 332 * mpage_readahead - start reads against pages 333 * @rac: Describes which pages to read. 334 * @get_block: The filesystem's block mapper function. 335 * 336 * This function walks the pages and the blocks within each page, building and 337 * emitting large BIOs. 338 * 339 * If anything unusual happens, such as: 340 * 341 * - encountering a page which has buffers 342 * - encountering a page which has a non-hole after a hole 343 * - encountering a page with non-contiguous blocks 344 * 345 * then this code just gives up and calls the buffer_head-based read function. 346 * It does handle a page which has holes at the end - that is a common case: 347 * the end-of-file on blocksize < PAGE_SIZE setups. 348 * 349 * BH_Boundary explanation: 350 * 351 * There is a problem. The mpage read code assembles several pages, gets all 352 * their disk mappings, and then submits them all. That's fine, but obtaining 353 * the disk mappings may require I/O. Reads of indirect blocks, for example. 354 * 355 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 356 * submitted in the following order: 357 * 358 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 359 * 360 * because the indirect block has to be read to get the mappings of blocks 361 * 13,14,15,16. Obviously, this impacts performance. 362 * 363 * So what we do it to allow the filesystem's get_block() function to set 364 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 365 * after this one will require I/O against a block which is probably close to 366 * this one. So you should push what I/O you have currently accumulated. 367 * 368 * This all causes the disk requests to be issued in the correct order. 369 */ 370 void mpage_readahead(struct readahead_control *rac, get_block_t get_block) 371 { 372 struct page *page; 373 struct mpage_readpage_args args = { 374 .get_block = get_block, 375 .is_readahead = true, 376 }; 377 378 while ((page = readahead_page(rac))) { 379 prefetchw(&page->flags); 380 args.page = page; 381 args.nr_pages = readahead_count(rac); 382 args.bio = do_mpage_readpage(&args); 383 put_page(page); 384 } 385 if (args.bio) 386 mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio); 387 } 388 EXPORT_SYMBOL(mpage_readahead); 389 390 /* 391 * This isn't called much at all 392 */ 393 int mpage_readpage(struct page *page, get_block_t get_block) 394 { 395 struct mpage_readpage_args args = { 396 .page = page, 397 .nr_pages = 1, 398 .get_block = get_block, 399 }; 400 401 args.bio = do_mpage_readpage(&args); 402 if (args.bio) 403 mpage_bio_submit(REQ_OP_READ, 0, args.bio); 404 return 0; 405 } 406 EXPORT_SYMBOL(mpage_readpage); 407 408 /* 409 * Writing is not so simple. 410 * 411 * If the page has buffers then they will be used for obtaining the disk 412 * mapping. We only support pages which are fully mapped-and-dirty, with a 413 * special case for pages which are unmapped at the end: end-of-file. 414 * 415 * If the page has no buffers (preferred) then the page is mapped here. 416 * 417 * If all blocks are found to be contiguous then the page can go into the 418 * BIO. Otherwise fall back to the mapping's writepage(). 419 * 420 * FIXME: This code wants an estimate of how many pages are still to be 421 * written, so it can intelligently allocate a suitably-sized BIO. For now, 422 * just allocate full-size (16-page) BIOs. 423 */ 424 425 struct mpage_data { 426 struct bio *bio; 427 sector_t last_block_in_bio; 428 get_block_t *get_block; 429 unsigned use_writepage; 430 }; 431 432 /* 433 * We have our BIO, so we can now mark the buffers clean. Make 434 * sure to only clean buffers which we know we'll be writing. 435 */ 436 static void clean_buffers(struct page *page, unsigned first_unmapped) 437 { 438 unsigned buffer_counter = 0; 439 struct buffer_head *bh, *head; 440 if (!page_has_buffers(page)) 441 return; 442 head = page_buffers(page); 443 bh = head; 444 445 do { 446 if (buffer_counter++ == first_unmapped) 447 break; 448 clear_buffer_dirty(bh); 449 bh = bh->b_this_page; 450 } while (bh != head); 451 452 /* 453 * we cannot drop the bh if the page is not uptodate or a concurrent 454 * readpage would fail to serialize with the bh and it would read from 455 * disk before we reach the platter. 456 */ 457 if (buffer_heads_over_limit && PageUptodate(page)) 458 try_to_free_buffers(page); 459 } 460 461 /* 462 * For situations where we want to clean all buffers attached to a page. 463 * We don't need to calculate how many buffers are attached to the page, 464 * we just need to specify a number larger than the maximum number of buffers. 465 */ 466 void clean_page_buffers(struct page *page) 467 { 468 clean_buffers(page, ~0U); 469 } 470 471 static int __mpage_writepage(struct page *page, struct writeback_control *wbc, 472 void *data) 473 { 474 struct mpage_data *mpd = data; 475 struct bio *bio = mpd->bio; 476 struct address_space *mapping = page->mapping; 477 struct inode *inode = page->mapping->host; 478 const unsigned blkbits = inode->i_blkbits; 479 unsigned long end_index; 480 const unsigned blocks_per_page = PAGE_SIZE >> blkbits; 481 sector_t last_block; 482 sector_t block_in_file; 483 sector_t blocks[MAX_BUF_PER_PAGE]; 484 unsigned page_block; 485 unsigned first_unmapped = blocks_per_page; 486 struct block_device *bdev = NULL; 487 int boundary = 0; 488 sector_t boundary_block = 0; 489 struct block_device *boundary_bdev = NULL; 490 int length; 491 struct buffer_head map_bh; 492 loff_t i_size = i_size_read(inode); 493 int ret = 0; 494 int op_flags = wbc_to_write_flags(wbc); 495 496 if (page_has_buffers(page)) { 497 struct buffer_head *head = page_buffers(page); 498 struct buffer_head *bh = head; 499 500 /* If they're all mapped and dirty, do it */ 501 page_block = 0; 502 do { 503 BUG_ON(buffer_locked(bh)); 504 if (!buffer_mapped(bh)) { 505 /* 506 * unmapped dirty buffers are created by 507 * __set_page_dirty_buffers -> mmapped data 508 */ 509 if (buffer_dirty(bh)) 510 goto confused; 511 if (first_unmapped == blocks_per_page) 512 first_unmapped = page_block; 513 continue; 514 } 515 516 if (first_unmapped != blocks_per_page) 517 goto confused; /* hole -> non-hole */ 518 519 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 520 goto confused; 521 if (page_block) { 522 if (bh->b_blocknr != blocks[page_block-1] + 1) 523 goto confused; 524 } 525 blocks[page_block++] = bh->b_blocknr; 526 boundary = buffer_boundary(bh); 527 if (boundary) { 528 boundary_block = bh->b_blocknr; 529 boundary_bdev = bh->b_bdev; 530 } 531 bdev = bh->b_bdev; 532 } while ((bh = bh->b_this_page) != head); 533 534 if (first_unmapped) 535 goto page_is_mapped; 536 537 /* 538 * Page has buffers, but they are all unmapped. The page was 539 * created by pagein or read over a hole which was handled by 540 * block_read_full_page(). If this address_space is also 541 * using mpage_readahead then this can rarely happen. 542 */ 543 goto confused; 544 } 545 546 /* 547 * The page has no buffers: map it to disk 548 */ 549 BUG_ON(!PageUptodate(page)); 550 block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits); 551 last_block = (i_size - 1) >> blkbits; 552 map_bh.b_page = page; 553 for (page_block = 0; page_block < blocks_per_page; ) { 554 555 map_bh.b_state = 0; 556 map_bh.b_size = 1 << blkbits; 557 if (mpd->get_block(inode, block_in_file, &map_bh, 1)) 558 goto confused; 559 if (buffer_new(&map_bh)) 560 clean_bdev_bh_alias(&map_bh); 561 if (buffer_boundary(&map_bh)) { 562 boundary_block = map_bh.b_blocknr; 563 boundary_bdev = map_bh.b_bdev; 564 } 565 if (page_block) { 566 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 567 goto confused; 568 } 569 blocks[page_block++] = map_bh.b_blocknr; 570 boundary = buffer_boundary(&map_bh); 571 bdev = map_bh.b_bdev; 572 if (block_in_file == last_block) 573 break; 574 block_in_file++; 575 } 576 BUG_ON(page_block == 0); 577 578 first_unmapped = page_block; 579 580 page_is_mapped: 581 end_index = i_size >> PAGE_SHIFT; 582 if (page->index >= end_index) { 583 /* 584 * The page straddles i_size. It must be zeroed out on each 585 * and every writepage invocation because it may be mmapped. 586 * "A file is mapped in multiples of the page size. For a file 587 * that is not a multiple of the page size, the remaining memory 588 * is zeroed when mapped, and writes to that region are not 589 * written out to the file." 590 */ 591 unsigned offset = i_size & (PAGE_SIZE - 1); 592 593 if (page->index > end_index || !offset) 594 goto confused; 595 zero_user_segment(page, offset, PAGE_SIZE); 596 } 597 598 /* 599 * This page will go to BIO. Do we need to send this BIO off first? 600 */ 601 if (bio && mpd->last_block_in_bio != blocks[0] - 1) 602 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 603 604 alloc_new: 605 if (bio == NULL) { 606 if (first_unmapped == blocks_per_page) { 607 if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9), 608 page, wbc)) 609 goto out; 610 } 611 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 612 BIO_MAX_VECS, GFP_NOFS|__GFP_HIGH); 613 if (bio == NULL) 614 goto confused; 615 616 wbc_init_bio(wbc, bio); 617 bio->bi_write_hint = inode->i_write_hint; 618 } 619 620 /* 621 * Must try to add the page before marking the buffer clean or 622 * the confused fail path above (OOM) will be very confused when 623 * it finds all bh marked clean (i.e. it will not write anything) 624 */ 625 wbc_account_cgroup_owner(wbc, page, PAGE_SIZE); 626 length = first_unmapped << blkbits; 627 if (bio_add_page(bio, page, length, 0) < length) { 628 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 629 goto alloc_new; 630 } 631 632 clean_buffers(page, first_unmapped); 633 634 BUG_ON(PageWriteback(page)); 635 set_page_writeback(page); 636 unlock_page(page); 637 if (boundary || (first_unmapped != blocks_per_page)) { 638 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 639 if (boundary_block) { 640 write_boundary_block(boundary_bdev, 641 boundary_block, 1 << blkbits); 642 } 643 } else { 644 mpd->last_block_in_bio = blocks[blocks_per_page - 1]; 645 } 646 goto out; 647 648 confused: 649 if (bio) 650 bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio); 651 652 if (mpd->use_writepage) { 653 ret = mapping->a_ops->writepage(page, wbc); 654 } else { 655 ret = -EAGAIN; 656 goto out; 657 } 658 /* 659 * The caller has a ref on the inode, so *mapping is stable 660 */ 661 mapping_set_error(mapping, ret); 662 out: 663 mpd->bio = bio; 664 return ret; 665 } 666 667 /** 668 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them 669 * @mapping: address space structure to write 670 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 671 * @get_block: the filesystem's block mapper function. 672 * If this is NULL then use a_ops->writepage. Otherwise, go 673 * direct-to-BIO. 674 * 675 * This is a library function, which implements the writepages() 676 * address_space_operation. 677 * 678 * If a page is already under I/O, generic_writepages() skips it, even 679 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 680 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 681 * and msync() need to guarantee that all the data which was dirty at the time 682 * the call was made get new I/O started against them. If wbc->sync_mode is 683 * WB_SYNC_ALL then we were called for data integrity and we must wait for 684 * existing IO to complete. 685 */ 686 int 687 mpage_writepages(struct address_space *mapping, 688 struct writeback_control *wbc, get_block_t get_block) 689 { 690 struct blk_plug plug; 691 int ret; 692 693 blk_start_plug(&plug); 694 695 if (!get_block) 696 ret = generic_writepages(mapping, wbc); 697 else { 698 struct mpage_data mpd = { 699 .bio = NULL, 700 .last_block_in_bio = 0, 701 .get_block = get_block, 702 .use_writepage = 1, 703 }; 704 705 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd); 706 if (mpd.bio) { 707 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 708 REQ_SYNC : 0); 709 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 710 } 711 } 712 blk_finish_plug(&plug); 713 return ret; 714 } 715 EXPORT_SYMBOL(mpage_writepages); 716 717 int mpage_writepage(struct page *page, get_block_t get_block, 718 struct writeback_control *wbc) 719 { 720 struct mpage_data mpd = { 721 .bio = NULL, 722 .last_block_in_bio = 0, 723 .get_block = get_block, 724 .use_writepage = 0, 725 }; 726 int ret = __mpage_writepage(page, wbc, &mpd); 727 if (mpd.bio) { 728 int op_flags = (wbc->sync_mode == WB_SYNC_ALL ? 729 REQ_SYNC : 0); 730 mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio); 731 } 732 return ret; 733 } 734 EXPORT_SYMBOL(mpage_writepage); 735