xref: /openbmc/linux/fs/mpage.c (revision 6ab3d562)
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	akpm@zip.com.au
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/bio.h>
20 #include <linux/fs.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/highmem.h>
24 #include <linux/prefetch.h>
25 #include <linux/mpage.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 
30 /*
31  * I/O completion handler for multipage BIOs.
32  *
33  * The mpage code never puts partial pages into a BIO (except for end-of-file).
34  * If a page does not map to a contiguous run of blocks then it simply falls
35  * back to block_read_full_page().
36  *
37  * Why is this?  If a page's completion depends on a number of different BIOs
38  * which can complete in any order (or at the same time) then determining the
39  * status of that page is hard.  See end_buffer_async_read() for the details.
40  * There is no point in duplicating all that complexity.
41  */
42 static int mpage_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
43 {
44 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
45 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
46 
47 	if (bio->bi_size)
48 		return 1;
49 
50 	do {
51 		struct page *page = bvec->bv_page;
52 
53 		if (--bvec >= bio->bi_io_vec)
54 			prefetchw(&bvec->bv_page->flags);
55 
56 		if (uptodate) {
57 			SetPageUptodate(page);
58 		} else {
59 			ClearPageUptodate(page);
60 			SetPageError(page);
61 		}
62 		unlock_page(page);
63 	} while (bvec >= bio->bi_io_vec);
64 	bio_put(bio);
65 	return 0;
66 }
67 
68 static int mpage_end_io_write(struct bio *bio, unsigned int bytes_done, int err)
69 {
70 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
71 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
72 
73 	if (bio->bi_size)
74 		return 1;
75 
76 	do {
77 		struct page *page = bvec->bv_page;
78 
79 		if (--bvec >= bio->bi_io_vec)
80 			prefetchw(&bvec->bv_page->flags);
81 
82 		if (!uptodate){
83 			SetPageError(page);
84 			if (page->mapping)
85 				set_bit(AS_EIO, &page->mapping->flags);
86 		}
87 		end_page_writeback(page);
88 	} while (bvec >= bio->bi_io_vec);
89 	bio_put(bio);
90 	return 0;
91 }
92 
93 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
94 {
95 	bio->bi_end_io = mpage_end_io_read;
96 	if (rw == WRITE)
97 		bio->bi_end_io = mpage_end_io_write;
98 	submit_bio(rw, bio);
99 	return NULL;
100 }
101 
102 static struct bio *
103 mpage_alloc(struct block_device *bdev,
104 		sector_t first_sector, int nr_vecs,
105 		gfp_t gfp_flags)
106 {
107 	struct bio *bio;
108 
109 	bio = bio_alloc(gfp_flags, nr_vecs);
110 
111 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
112 		while (!bio && (nr_vecs /= 2))
113 			bio = bio_alloc(gfp_flags, nr_vecs);
114 	}
115 
116 	if (bio) {
117 		bio->bi_bdev = bdev;
118 		bio->bi_sector = first_sector;
119 	}
120 	return bio;
121 }
122 
123 /*
124  * support function for mpage_readpages.  The fs supplied get_block might
125  * return an up to date buffer.  This is used to map that buffer into
126  * the page, which allows readpage to avoid triggering a duplicate call
127  * to get_block.
128  *
129  * The idea is to avoid adding buffers to pages that don't already have
130  * them.  So when the buffer is up to date and the page size == block size,
131  * this marks the page up to date instead of adding new buffers.
132  */
133 static void
134 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
135 {
136 	struct inode *inode = page->mapping->host;
137 	struct buffer_head *page_bh, *head;
138 	int block = 0;
139 
140 	if (!page_has_buffers(page)) {
141 		/*
142 		 * don't make any buffers if there is only one buffer on
143 		 * the page and the page just needs to be set up to date
144 		 */
145 		if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
146 		    buffer_uptodate(bh)) {
147 			SetPageUptodate(page);
148 			return;
149 		}
150 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
151 	}
152 	head = page_buffers(page);
153 	page_bh = head;
154 	do {
155 		if (block == page_block) {
156 			page_bh->b_state = bh->b_state;
157 			page_bh->b_bdev = bh->b_bdev;
158 			page_bh->b_blocknr = bh->b_blocknr;
159 			break;
160 		}
161 		page_bh = page_bh->b_this_page;
162 		block++;
163 	} while (page_bh != head);
164 }
165 
166 /*
167  * This is the worker routine which does all the work of mapping the disk
168  * blocks and constructs largest possible bios, submits them for IO if the
169  * blocks are not contiguous on the disk.
170  *
171  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
172  * represent the validity of its disk mapping and to decide when to do the next
173  * get_block() call.
174  */
175 static struct bio *
176 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
177 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
178 		unsigned long *first_logical_block, get_block_t get_block)
179 {
180 	struct inode *inode = page->mapping->host;
181 	const unsigned blkbits = inode->i_blkbits;
182 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
183 	const unsigned blocksize = 1 << blkbits;
184 	sector_t block_in_file;
185 	sector_t last_block;
186 	sector_t last_block_in_file;
187 	sector_t blocks[MAX_BUF_PER_PAGE];
188 	unsigned page_block;
189 	unsigned first_hole = blocks_per_page;
190 	struct block_device *bdev = NULL;
191 	int length;
192 	int fully_mapped = 1;
193 	unsigned nblocks;
194 	unsigned relative_block;
195 
196 	if (page_has_buffers(page))
197 		goto confused;
198 
199 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
200 	last_block = block_in_file + nr_pages * blocks_per_page;
201 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
202 	if (last_block > last_block_in_file)
203 		last_block = last_block_in_file;
204 	page_block = 0;
205 
206 	/*
207 	 * Map blocks using the result from the previous get_blocks call first.
208 	 */
209 	nblocks = map_bh->b_size >> blkbits;
210 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
211 			block_in_file < (*first_logical_block + nblocks)) {
212 		unsigned map_offset = block_in_file - *first_logical_block;
213 		unsigned last = nblocks - map_offset;
214 
215 		for (relative_block = 0; ; relative_block++) {
216 			if (relative_block == last) {
217 				clear_buffer_mapped(map_bh);
218 				break;
219 			}
220 			if (page_block == blocks_per_page)
221 				break;
222 			blocks[page_block] = map_bh->b_blocknr + map_offset +
223 						relative_block;
224 			page_block++;
225 			block_in_file++;
226 		}
227 		bdev = map_bh->b_bdev;
228 	}
229 
230 	/*
231 	 * Then do more get_blocks calls until we are done with this page.
232 	 */
233 	map_bh->b_page = page;
234 	while (page_block < blocks_per_page) {
235 		map_bh->b_state = 0;
236 		map_bh->b_size = 0;
237 
238 		if (block_in_file < last_block) {
239 			map_bh->b_size = (last_block-block_in_file) << blkbits;
240 			if (get_block(inode, block_in_file, map_bh, 0))
241 				goto confused;
242 			*first_logical_block = block_in_file;
243 		}
244 
245 		if (!buffer_mapped(map_bh)) {
246 			fully_mapped = 0;
247 			if (first_hole == blocks_per_page)
248 				first_hole = page_block;
249 			page_block++;
250 			block_in_file++;
251 			clear_buffer_mapped(map_bh);
252 			continue;
253 		}
254 
255 		/* some filesystems will copy data into the page during
256 		 * the get_block call, in which case we don't want to
257 		 * read it again.  map_buffer_to_page copies the data
258 		 * we just collected from get_block into the page's buffers
259 		 * so readpage doesn't have to repeat the get_block call
260 		 */
261 		if (buffer_uptodate(map_bh)) {
262 			map_buffer_to_page(page, map_bh, page_block);
263 			goto confused;
264 		}
265 
266 		if (first_hole != blocks_per_page)
267 			goto confused;		/* hole -> non-hole */
268 
269 		/* Contiguous blocks? */
270 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
271 			goto confused;
272 		nblocks = map_bh->b_size >> blkbits;
273 		for (relative_block = 0; ; relative_block++) {
274 			if (relative_block == nblocks) {
275 				clear_buffer_mapped(map_bh);
276 				break;
277 			} else if (page_block == blocks_per_page)
278 				break;
279 			blocks[page_block] = map_bh->b_blocknr+relative_block;
280 			page_block++;
281 			block_in_file++;
282 		}
283 		bdev = map_bh->b_bdev;
284 	}
285 
286 	if (first_hole != blocks_per_page) {
287 		char *kaddr = kmap_atomic(page, KM_USER0);
288 		memset(kaddr + (first_hole << blkbits), 0,
289 				PAGE_CACHE_SIZE - (first_hole << blkbits));
290 		flush_dcache_page(page);
291 		kunmap_atomic(kaddr, KM_USER0);
292 		if (first_hole == 0) {
293 			SetPageUptodate(page);
294 			unlock_page(page);
295 			goto out;
296 		}
297 	} else if (fully_mapped) {
298 		SetPageMappedToDisk(page);
299 	}
300 
301 	/*
302 	 * This page will go to BIO.  Do we need to send this BIO off first?
303 	 */
304 	if (bio && (*last_block_in_bio != blocks[0] - 1))
305 		bio = mpage_bio_submit(READ, bio);
306 
307 alloc_new:
308 	if (bio == NULL) {
309 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
310 			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
311 				GFP_KERNEL);
312 		if (bio == NULL)
313 			goto confused;
314 	}
315 
316 	length = first_hole << blkbits;
317 	if (bio_add_page(bio, page, length, 0) < length) {
318 		bio = mpage_bio_submit(READ, bio);
319 		goto alloc_new;
320 	}
321 
322 	if (buffer_boundary(map_bh) || (first_hole != blocks_per_page))
323 		bio = mpage_bio_submit(READ, bio);
324 	else
325 		*last_block_in_bio = blocks[blocks_per_page - 1];
326 out:
327 	return bio;
328 
329 confused:
330 	if (bio)
331 		bio = mpage_bio_submit(READ, bio);
332 	if (!PageUptodate(page))
333 	        block_read_full_page(page, get_block);
334 	else
335 		unlock_page(page);
336 	goto out;
337 }
338 
339 /**
340  * mpage_readpages - populate an address space with some pages, and
341  *                       start reads against them.
342  *
343  * @mapping: the address_space
344  * @pages: The address of a list_head which contains the target pages.  These
345  *   pages have their ->index populated and are otherwise uninitialised.
346  *
347  *   The page at @pages->prev has the lowest file offset, and reads should be
348  *   issued in @pages->prev to @pages->next order.
349  *
350  * @nr_pages: The number of pages at *@pages
351  * @get_block: The filesystem's block mapper function.
352  *
353  * This function walks the pages and the blocks within each page, building and
354  * emitting large BIOs.
355  *
356  * If anything unusual happens, such as:
357  *
358  * - encountering a page which has buffers
359  * - encountering a page which has a non-hole after a hole
360  * - encountering a page with non-contiguous blocks
361  *
362  * then this code just gives up and calls the buffer_head-based read function.
363  * It does handle a page which has holes at the end - that is a common case:
364  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
365  *
366  * BH_Boundary explanation:
367  *
368  * There is a problem.  The mpage read code assembles several pages, gets all
369  * their disk mappings, and then submits them all.  That's fine, but obtaining
370  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
371  *
372  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
373  * submitted in the following order:
374  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
375  * because the indirect block has to be read to get the mappings of blocks
376  * 13,14,15,16.  Obviously, this impacts performance.
377  *
378  * So what we do it to allow the filesystem's get_block() function to set
379  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
380  * after this one will require I/O against a block which is probably close to
381  * this one.  So you should push what I/O you have currently accumulated.
382  *
383  * This all causes the disk requests to be issued in the correct order.
384  */
385 int
386 mpage_readpages(struct address_space *mapping, struct list_head *pages,
387 				unsigned nr_pages, get_block_t get_block)
388 {
389 	struct bio *bio = NULL;
390 	unsigned page_idx;
391 	sector_t last_block_in_bio = 0;
392 	struct pagevec lru_pvec;
393 	struct buffer_head map_bh;
394 	unsigned long first_logical_block = 0;
395 
396 	clear_buffer_mapped(&map_bh);
397 	pagevec_init(&lru_pvec, 0);
398 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
399 		struct page *page = list_entry(pages->prev, struct page, lru);
400 
401 		prefetchw(&page->flags);
402 		list_del(&page->lru);
403 		if (!add_to_page_cache(page, mapping,
404 					page->index, GFP_KERNEL)) {
405 			bio = do_mpage_readpage(bio, page,
406 					nr_pages - page_idx,
407 					&last_block_in_bio, &map_bh,
408 					&first_logical_block,
409 					get_block);
410 			if (!pagevec_add(&lru_pvec, page))
411 				__pagevec_lru_add(&lru_pvec);
412 		} else {
413 			page_cache_release(page);
414 		}
415 	}
416 	pagevec_lru_add(&lru_pvec);
417 	BUG_ON(!list_empty(pages));
418 	if (bio)
419 		mpage_bio_submit(READ, bio);
420 	return 0;
421 }
422 EXPORT_SYMBOL(mpage_readpages);
423 
424 /*
425  * This isn't called much at all
426  */
427 int mpage_readpage(struct page *page, get_block_t get_block)
428 {
429 	struct bio *bio = NULL;
430 	sector_t last_block_in_bio = 0;
431 	struct buffer_head map_bh;
432 	unsigned long first_logical_block = 0;
433 
434 	clear_buffer_mapped(&map_bh);
435 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
436 			&map_bh, &first_logical_block, get_block);
437 	if (bio)
438 		mpage_bio_submit(READ, bio);
439 	return 0;
440 }
441 EXPORT_SYMBOL(mpage_readpage);
442 
443 /*
444  * Writing is not so simple.
445  *
446  * If the page has buffers then they will be used for obtaining the disk
447  * mapping.  We only support pages which are fully mapped-and-dirty, with a
448  * special case for pages which are unmapped at the end: end-of-file.
449  *
450  * If the page has no buffers (preferred) then the page is mapped here.
451  *
452  * If all blocks are found to be contiguous then the page can go into the
453  * BIO.  Otherwise fall back to the mapping's writepage().
454  *
455  * FIXME: This code wants an estimate of how many pages are still to be
456  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
457  * just allocate full-size (16-page) BIOs.
458  */
459 static struct bio *
460 __mpage_writepage(struct bio *bio, struct page *page, get_block_t get_block,
461 	sector_t *last_block_in_bio, int *ret, struct writeback_control *wbc,
462 	writepage_t writepage_fn)
463 {
464 	struct address_space *mapping = page->mapping;
465 	struct inode *inode = page->mapping->host;
466 	const unsigned blkbits = inode->i_blkbits;
467 	unsigned long end_index;
468 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
469 	sector_t last_block;
470 	sector_t block_in_file;
471 	sector_t blocks[MAX_BUF_PER_PAGE];
472 	unsigned page_block;
473 	unsigned first_unmapped = blocks_per_page;
474 	struct block_device *bdev = NULL;
475 	int boundary = 0;
476 	sector_t boundary_block = 0;
477 	struct block_device *boundary_bdev = NULL;
478 	int length;
479 	struct buffer_head map_bh;
480 	loff_t i_size = i_size_read(inode);
481 
482 	if (page_has_buffers(page)) {
483 		struct buffer_head *head = page_buffers(page);
484 		struct buffer_head *bh = head;
485 
486 		/* If they're all mapped and dirty, do it */
487 		page_block = 0;
488 		do {
489 			BUG_ON(buffer_locked(bh));
490 			if (!buffer_mapped(bh)) {
491 				/*
492 				 * unmapped dirty buffers are created by
493 				 * __set_page_dirty_buffers -> mmapped data
494 				 */
495 				if (buffer_dirty(bh))
496 					goto confused;
497 				if (first_unmapped == blocks_per_page)
498 					first_unmapped = page_block;
499 				continue;
500 			}
501 
502 			if (first_unmapped != blocks_per_page)
503 				goto confused;	/* hole -> non-hole */
504 
505 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
506 				goto confused;
507 			if (page_block) {
508 				if (bh->b_blocknr != blocks[page_block-1] + 1)
509 					goto confused;
510 			}
511 			blocks[page_block++] = bh->b_blocknr;
512 			boundary = buffer_boundary(bh);
513 			if (boundary) {
514 				boundary_block = bh->b_blocknr;
515 				boundary_bdev = bh->b_bdev;
516 			}
517 			bdev = bh->b_bdev;
518 		} while ((bh = bh->b_this_page) != head);
519 
520 		if (first_unmapped)
521 			goto page_is_mapped;
522 
523 		/*
524 		 * Page has buffers, but they are all unmapped. The page was
525 		 * created by pagein or read over a hole which was handled by
526 		 * block_read_full_page().  If this address_space is also
527 		 * using mpage_readpages then this can rarely happen.
528 		 */
529 		goto confused;
530 	}
531 
532 	/*
533 	 * The page has no buffers: map it to disk
534 	 */
535 	BUG_ON(!PageUptodate(page));
536 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
537 	last_block = (i_size - 1) >> blkbits;
538 	map_bh.b_page = page;
539 	for (page_block = 0; page_block < blocks_per_page; ) {
540 
541 		map_bh.b_state = 0;
542 		map_bh.b_size = 1 << blkbits;
543 		if (get_block(inode, block_in_file, &map_bh, 1))
544 			goto confused;
545 		if (buffer_new(&map_bh))
546 			unmap_underlying_metadata(map_bh.b_bdev,
547 						map_bh.b_blocknr);
548 		if (buffer_boundary(&map_bh)) {
549 			boundary_block = map_bh.b_blocknr;
550 			boundary_bdev = map_bh.b_bdev;
551 		}
552 		if (page_block) {
553 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
554 				goto confused;
555 		}
556 		blocks[page_block++] = map_bh.b_blocknr;
557 		boundary = buffer_boundary(&map_bh);
558 		bdev = map_bh.b_bdev;
559 		if (block_in_file == last_block)
560 			break;
561 		block_in_file++;
562 	}
563 	BUG_ON(page_block == 0);
564 
565 	first_unmapped = page_block;
566 
567 page_is_mapped:
568 	end_index = i_size >> PAGE_CACHE_SHIFT;
569 	if (page->index >= end_index) {
570 		/*
571 		 * The page straddles i_size.  It must be zeroed out on each
572 		 * and every writepage invokation because it may be mmapped.
573 		 * "A file is mapped in multiples of the page size.  For a file
574 		 * that is not a multiple of the page size, the remaining memory
575 		 * is zeroed when mapped, and writes to that region are not
576 		 * written out to the file."
577 		 */
578 		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
579 		char *kaddr;
580 
581 		if (page->index > end_index || !offset)
582 			goto confused;
583 		kaddr = kmap_atomic(page, KM_USER0);
584 		memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
585 		flush_dcache_page(page);
586 		kunmap_atomic(kaddr, KM_USER0);
587 	}
588 
589 	/*
590 	 * This page will go to BIO.  Do we need to send this BIO off first?
591 	 */
592 	if (bio && *last_block_in_bio != blocks[0] - 1)
593 		bio = mpage_bio_submit(WRITE, bio);
594 
595 alloc_new:
596 	if (bio == NULL) {
597 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
598 				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
599 		if (bio == NULL)
600 			goto confused;
601 	}
602 
603 	/*
604 	 * Must try to add the page before marking the buffer clean or
605 	 * the confused fail path above (OOM) will be very confused when
606 	 * it finds all bh marked clean (i.e. it will not write anything)
607 	 */
608 	length = first_unmapped << blkbits;
609 	if (bio_add_page(bio, page, length, 0) < length) {
610 		bio = mpage_bio_submit(WRITE, bio);
611 		goto alloc_new;
612 	}
613 
614 	/*
615 	 * OK, we have our BIO, so we can now mark the buffers clean.  Make
616 	 * sure to only clean buffers which we know we'll be writing.
617 	 */
618 	if (page_has_buffers(page)) {
619 		struct buffer_head *head = page_buffers(page);
620 		struct buffer_head *bh = head;
621 		unsigned buffer_counter = 0;
622 
623 		do {
624 			if (buffer_counter++ == first_unmapped)
625 				break;
626 			clear_buffer_dirty(bh);
627 			bh = bh->b_this_page;
628 		} while (bh != head);
629 
630 		/*
631 		 * we cannot drop the bh if the page is not uptodate
632 		 * or a concurrent readpage would fail to serialize with the bh
633 		 * and it would read from disk before we reach the platter.
634 		 */
635 		if (buffer_heads_over_limit && PageUptodate(page))
636 			try_to_free_buffers(page);
637 	}
638 
639 	BUG_ON(PageWriteback(page));
640 	set_page_writeback(page);
641 	unlock_page(page);
642 	if (boundary || (first_unmapped != blocks_per_page)) {
643 		bio = mpage_bio_submit(WRITE, bio);
644 		if (boundary_block) {
645 			write_boundary_block(boundary_bdev,
646 					boundary_block, 1 << blkbits);
647 		}
648 	} else {
649 		*last_block_in_bio = blocks[blocks_per_page - 1];
650 	}
651 	goto out;
652 
653 confused:
654 	if (bio)
655 		bio = mpage_bio_submit(WRITE, bio);
656 
657 	if (writepage_fn) {
658 		*ret = (*writepage_fn)(page, wbc);
659 	} else {
660 		*ret = -EAGAIN;
661 		goto out;
662 	}
663 	/*
664 	 * The caller has a ref on the inode, so *mapping is stable
665 	 */
666 	if (*ret) {
667 		if (*ret == -ENOSPC)
668 			set_bit(AS_ENOSPC, &mapping->flags);
669 		else
670 			set_bit(AS_EIO, &mapping->flags);
671 	}
672 out:
673 	return bio;
674 }
675 
676 /**
677  * mpage_writepages - walk the list of dirty pages of the given
678  * address space and writepage() all of them.
679  *
680  * @mapping: address space structure to write
681  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
682  * @get_block: the filesystem's block mapper function.
683  *             If this is NULL then use a_ops->writepage.  Otherwise, go
684  *             direct-to-BIO.
685  *
686  * This is a library function, which implements the writepages()
687  * address_space_operation.
688  *
689  * If a page is already under I/O, generic_writepages() skips it, even
690  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
691  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
692  * and msync() need to guarantee that all the data which was dirty at the time
693  * the call was made get new I/O started against them.  If wbc->sync_mode is
694  * WB_SYNC_ALL then we were called for data integrity and we must wait for
695  * existing IO to complete.
696  */
697 int
698 mpage_writepages(struct address_space *mapping,
699 		struct writeback_control *wbc, get_block_t get_block)
700 {
701 	struct backing_dev_info *bdi = mapping->backing_dev_info;
702 	struct bio *bio = NULL;
703 	sector_t last_block_in_bio = 0;
704 	int ret = 0;
705 	int done = 0;
706 	int (*writepage)(struct page *page, struct writeback_control *wbc);
707 	struct pagevec pvec;
708 	int nr_pages;
709 	pgoff_t index;
710 	pgoff_t end;		/* Inclusive */
711 	int scanned = 0;
712 	int range_whole = 0;
713 
714 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
715 		wbc->encountered_congestion = 1;
716 		return 0;
717 	}
718 
719 	writepage = NULL;
720 	if (get_block == NULL)
721 		writepage = mapping->a_ops->writepage;
722 
723 	pagevec_init(&pvec, 0);
724 	if (wbc->range_cyclic) {
725 		index = mapping->writeback_index; /* Start from prev offset */
726 		end = -1;
727 	} else {
728 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
729 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
730 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
731 			range_whole = 1;
732 		scanned = 1;
733 	}
734 retry:
735 	while (!done && (index <= end) &&
736 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
737 			PAGECACHE_TAG_DIRTY,
738 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
739 		unsigned i;
740 
741 		scanned = 1;
742 		for (i = 0; i < nr_pages; i++) {
743 			struct page *page = pvec.pages[i];
744 
745 			/*
746 			 * At this point we hold neither mapping->tree_lock nor
747 			 * lock on the page itself: the page may be truncated or
748 			 * invalidated (changing page->mapping to NULL), or even
749 			 * swizzled back from swapper_space to tmpfs file
750 			 * mapping
751 			 */
752 
753 			lock_page(page);
754 
755 			if (unlikely(page->mapping != mapping)) {
756 				unlock_page(page);
757 				continue;
758 			}
759 
760 			if (!wbc->range_cyclic && page->index > end) {
761 				done = 1;
762 				unlock_page(page);
763 				continue;
764 			}
765 
766 			if (wbc->sync_mode != WB_SYNC_NONE)
767 				wait_on_page_writeback(page);
768 
769 			if (PageWriteback(page) ||
770 					!clear_page_dirty_for_io(page)) {
771 				unlock_page(page);
772 				continue;
773 			}
774 
775 			if (writepage) {
776 				ret = (*writepage)(page, wbc);
777 				if (ret) {
778 					if (ret == -ENOSPC)
779 						set_bit(AS_ENOSPC,
780 							&mapping->flags);
781 					else
782 						set_bit(AS_EIO,
783 							&mapping->flags);
784 				}
785 			} else {
786 				bio = __mpage_writepage(bio, page, get_block,
787 						&last_block_in_bio, &ret, wbc,
788 						page->mapping->a_ops->writepage);
789 			}
790 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE))
791 				unlock_page(page);
792 			if (ret || (--(wbc->nr_to_write) <= 0))
793 				done = 1;
794 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
795 				wbc->encountered_congestion = 1;
796 				done = 1;
797 			}
798 		}
799 		pagevec_release(&pvec);
800 		cond_resched();
801 	}
802 	if (!scanned && !done) {
803 		/*
804 		 * We hit the last page and there is more work to be done: wrap
805 		 * back to the start of the file
806 		 */
807 		scanned = 1;
808 		index = 0;
809 		goto retry;
810 	}
811 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
812 		mapping->writeback_index = index;
813 	if (bio)
814 		mpage_bio_submit(WRITE, bio);
815 	return ret;
816 }
817 EXPORT_SYMBOL(mpage_writepages);
818 
819 int mpage_writepage(struct page *page, get_block_t get_block,
820 	struct writeback_control *wbc)
821 {
822 	int ret = 0;
823 	struct bio *bio;
824 	sector_t last_block_in_bio = 0;
825 
826 	bio = __mpage_writepage(NULL, page, get_block,
827 			&last_block_in_bio, &ret, wbc, NULL);
828 	if (bio)
829 		mpage_bio_submit(WRITE, bio);
830 
831 	return ret;
832 }
833 EXPORT_SYMBOL(mpage_writepage);
834