1 /* 2 * fs/mpage.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to preparing and submitting BIOs which contain 7 * multiple pagecache pages. 8 * 9 * 15May2002 akpm@zip.com.au 10 * Initial version 11 * 27Jun2002 axboe@suse.de 12 * use bio_add_page() to build bio's just the right size 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/mm.h> 18 #include <linux/kdev_t.h> 19 #include <linux/bio.h> 20 #include <linux/fs.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/highmem.h> 24 #include <linux/prefetch.h> 25 #include <linux/mpage.h> 26 #include <linux/writeback.h> 27 #include <linux/backing-dev.h> 28 #include <linux/pagevec.h> 29 30 /* 31 * I/O completion handler for multipage BIOs. 32 * 33 * The mpage code never puts partial pages into a BIO (except for end-of-file). 34 * If a page does not map to a contiguous run of blocks then it simply falls 35 * back to block_read_full_page(). 36 * 37 * Why is this? If a page's completion depends on a number of different BIOs 38 * which can complete in any order (or at the same time) then determining the 39 * status of that page is hard. See end_buffer_async_read() for the details. 40 * There is no point in duplicating all that complexity. 41 */ 42 static int mpage_end_io_read(struct bio *bio, unsigned int bytes_done, int err) 43 { 44 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 45 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 46 47 if (bio->bi_size) 48 return 1; 49 50 do { 51 struct page *page = bvec->bv_page; 52 53 if (--bvec >= bio->bi_io_vec) 54 prefetchw(&bvec->bv_page->flags); 55 56 if (uptodate) { 57 SetPageUptodate(page); 58 } else { 59 ClearPageUptodate(page); 60 SetPageError(page); 61 } 62 unlock_page(page); 63 } while (bvec >= bio->bi_io_vec); 64 bio_put(bio); 65 return 0; 66 } 67 68 static int mpage_end_io_write(struct bio *bio, unsigned int bytes_done, int err) 69 { 70 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 71 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 72 73 if (bio->bi_size) 74 return 1; 75 76 do { 77 struct page *page = bvec->bv_page; 78 79 if (--bvec >= bio->bi_io_vec) 80 prefetchw(&bvec->bv_page->flags); 81 82 if (!uptodate){ 83 SetPageError(page); 84 if (page->mapping) 85 set_bit(AS_EIO, &page->mapping->flags); 86 } 87 end_page_writeback(page); 88 } while (bvec >= bio->bi_io_vec); 89 bio_put(bio); 90 return 0; 91 } 92 93 static struct bio *mpage_bio_submit(int rw, struct bio *bio) 94 { 95 bio->bi_end_io = mpage_end_io_read; 96 if (rw == WRITE) 97 bio->bi_end_io = mpage_end_io_write; 98 submit_bio(rw, bio); 99 return NULL; 100 } 101 102 static struct bio * 103 mpage_alloc(struct block_device *bdev, 104 sector_t first_sector, int nr_vecs, 105 gfp_t gfp_flags) 106 { 107 struct bio *bio; 108 109 bio = bio_alloc(gfp_flags, nr_vecs); 110 111 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 112 while (!bio && (nr_vecs /= 2)) 113 bio = bio_alloc(gfp_flags, nr_vecs); 114 } 115 116 if (bio) { 117 bio->bi_bdev = bdev; 118 bio->bi_sector = first_sector; 119 } 120 return bio; 121 } 122 123 /* 124 * support function for mpage_readpages. The fs supplied get_block might 125 * return an up to date buffer. This is used to map that buffer into 126 * the page, which allows readpage to avoid triggering a duplicate call 127 * to get_block. 128 * 129 * The idea is to avoid adding buffers to pages that don't already have 130 * them. So when the buffer is up to date and the page size == block size, 131 * this marks the page up to date instead of adding new buffers. 132 */ 133 static void 134 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 135 { 136 struct inode *inode = page->mapping->host; 137 struct buffer_head *page_bh, *head; 138 int block = 0; 139 140 if (!page_has_buffers(page)) { 141 /* 142 * don't make any buffers if there is only one buffer on 143 * the page and the page just needs to be set up to date 144 */ 145 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 146 buffer_uptodate(bh)) { 147 SetPageUptodate(page); 148 return; 149 } 150 create_empty_buffers(page, 1 << inode->i_blkbits, 0); 151 } 152 head = page_buffers(page); 153 page_bh = head; 154 do { 155 if (block == page_block) { 156 page_bh->b_state = bh->b_state; 157 page_bh->b_bdev = bh->b_bdev; 158 page_bh->b_blocknr = bh->b_blocknr; 159 break; 160 } 161 page_bh = page_bh->b_this_page; 162 block++; 163 } while (page_bh != head); 164 } 165 166 /* 167 * This is the worker routine which does all the work of mapping the disk 168 * blocks and constructs largest possible bios, submits them for IO if the 169 * blocks are not contiguous on the disk. 170 * 171 * We pass a buffer_head back and forth and use its buffer_mapped() flag to 172 * represent the validity of its disk mapping and to decide when to do the next 173 * get_block() call. 174 */ 175 static struct bio * 176 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages, 177 sector_t *last_block_in_bio, struct buffer_head *map_bh, 178 unsigned long *first_logical_block, get_block_t get_block) 179 { 180 struct inode *inode = page->mapping->host; 181 const unsigned blkbits = inode->i_blkbits; 182 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 183 const unsigned blocksize = 1 << blkbits; 184 sector_t block_in_file; 185 sector_t last_block; 186 sector_t last_block_in_file; 187 sector_t blocks[MAX_BUF_PER_PAGE]; 188 unsigned page_block; 189 unsigned first_hole = blocks_per_page; 190 struct block_device *bdev = NULL; 191 int length; 192 int fully_mapped = 1; 193 unsigned nblocks; 194 unsigned relative_block; 195 196 if (page_has_buffers(page)) 197 goto confused; 198 199 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 200 last_block = block_in_file + nr_pages * blocks_per_page; 201 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits; 202 if (last_block > last_block_in_file) 203 last_block = last_block_in_file; 204 page_block = 0; 205 206 /* 207 * Map blocks using the result from the previous get_blocks call first. 208 */ 209 nblocks = map_bh->b_size >> blkbits; 210 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block && 211 block_in_file < (*first_logical_block + nblocks)) { 212 unsigned map_offset = block_in_file - *first_logical_block; 213 unsigned last = nblocks - map_offset; 214 215 for (relative_block = 0; ; relative_block++) { 216 if (relative_block == last) { 217 clear_buffer_mapped(map_bh); 218 break; 219 } 220 if (page_block == blocks_per_page) 221 break; 222 blocks[page_block] = map_bh->b_blocknr + map_offset + 223 relative_block; 224 page_block++; 225 block_in_file++; 226 } 227 bdev = map_bh->b_bdev; 228 } 229 230 /* 231 * Then do more get_blocks calls until we are done with this page. 232 */ 233 map_bh->b_page = page; 234 while (page_block < blocks_per_page) { 235 map_bh->b_state = 0; 236 map_bh->b_size = 0; 237 238 if (block_in_file < last_block) { 239 map_bh->b_size = (last_block-block_in_file) << blkbits; 240 if (get_block(inode, block_in_file, map_bh, 0)) 241 goto confused; 242 *first_logical_block = block_in_file; 243 } 244 245 if (!buffer_mapped(map_bh)) { 246 fully_mapped = 0; 247 if (first_hole == blocks_per_page) 248 first_hole = page_block; 249 page_block++; 250 block_in_file++; 251 clear_buffer_mapped(map_bh); 252 continue; 253 } 254 255 /* some filesystems will copy data into the page during 256 * the get_block call, in which case we don't want to 257 * read it again. map_buffer_to_page copies the data 258 * we just collected from get_block into the page's buffers 259 * so readpage doesn't have to repeat the get_block call 260 */ 261 if (buffer_uptodate(map_bh)) { 262 map_buffer_to_page(page, map_bh, page_block); 263 goto confused; 264 } 265 266 if (first_hole != blocks_per_page) 267 goto confused; /* hole -> non-hole */ 268 269 /* Contiguous blocks? */ 270 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1) 271 goto confused; 272 nblocks = map_bh->b_size >> blkbits; 273 for (relative_block = 0; ; relative_block++) { 274 if (relative_block == nblocks) { 275 clear_buffer_mapped(map_bh); 276 break; 277 } else if (page_block == blocks_per_page) 278 break; 279 blocks[page_block] = map_bh->b_blocknr+relative_block; 280 page_block++; 281 block_in_file++; 282 } 283 bdev = map_bh->b_bdev; 284 } 285 286 if (first_hole != blocks_per_page) { 287 char *kaddr = kmap_atomic(page, KM_USER0); 288 memset(kaddr + (first_hole << blkbits), 0, 289 PAGE_CACHE_SIZE - (first_hole << blkbits)); 290 flush_dcache_page(page); 291 kunmap_atomic(kaddr, KM_USER0); 292 if (first_hole == 0) { 293 SetPageUptodate(page); 294 unlock_page(page); 295 goto out; 296 } 297 } else if (fully_mapped) { 298 SetPageMappedToDisk(page); 299 } 300 301 /* 302 * This page will go to BIO. Do we need to send this BIO off first? 303 */ 304 if (bio && (*last_block_in_bio != blocks[0] - 1)) 305 bio = mpage_bio_submit(READ, bio); 306 307 alloc_new: 308 if (bio == NULL) { 309 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 310 min_t(int, nr_pages, bio_get_nr_vecs(bdev)), 311 GFP_KERNEL); 312 if (bio == NULL) 313 goto confused; 314 } 315 316 length = first_hole << blkbits; 317 if (bio_add_page(bio, page, length, 0) < length) { 318 bio = mpage_bio_submit(READ, bio); 319 goto alloc_new; 320 } 321 322 if (buffer_boundary(map_bh) || (first_hole != blocks_per_page)) 323 bio = mpage_bio_submit(READ, bio); 324 else 325 *last_block_in_bio = blocks[blocks_per_page - 1]; 326 out: 327 return bio; 328 329 confused: 330 if (bio) 331 bio = mpage_bio_submit(READ, bio); 332 if (!PageUptodate(page)) 333 block_read_full_page(page, get_block); 334 else 335 unlock_page(page); 336 goto out; 337 } 338 339 /** 340 * mpage_readpages - populate an address space with some pages, and 341 * start reads against them. 342 * 343 * @mapping: the address_space 344 * @pages: The address of a list_head which contains the target pages. These 345 * pages have their ->index populated and are otherwise uninitialised. 346 * 347 * The page at @pages->prev has the lowest file offset, and reads should be 348 * issued in @pages->prev to @pages->next order. 349 * 350 * @nr_pages: The number of pages at *@pages 351 * @get_block: The filesystem's block mapper function. 352 * 353 * This function walks the pages and the blocks within each page, building and 354 * emitting large BIOs. 355 * 356 * If anything unusual happens, such as: 357 * 358 * - encountering a page which has buffers 359 * - encountering a page which has a non-hole after a hole 360 * - encountering a page with non-contiguous blocks 361 * 362 * then this code just gives up and calls the buffer_head-based read function. 363 * It does handle a page which has holes at the end - that is a common case: 364 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups. 365 * 366 * BH_Boundary explanation: 367 * 368 * There is a problem. The mpage read code assembles several pages, gets all 369 * their disk mappings, and then submits them all. That's fine, but obtaining 370 * the disk mappings may require I/O. Reads of indirect blocks, for example. 371 * 372 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be 373 * submitted in the following order: 374 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16 375 * because the indirect block has to be read to get the mappings of blocks 376 * 13,14,15,16. Obviously, this impacts performance. 377 * 378 * So what we do it to allow the filesystem's get_block() function to set 379 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block 380 * after this one will require I/O against a block which is probably close to 381 * this one. So you should push what I/O you have currently accumulated. 382 * 383 * This all causes the disk requests to be issued in the correct order. 384 */ 385 int 386 mpage_readpages(struct address_space *mapping, struct list_head *pages, 387 unsigned nr_pages, get_block_t get_block) 388 { 389 struct bio *bio = NULL; 390 unsigned page_idx; 391 sector_t last_block_in_bio = 0; 392 struct pagevec lru_pvec; 393 struct buffer_head map_bh; 394 unsigned long first_logical_block = 0; 395 396 clear_buffer_mapped(&map_bh); 397 pagevec_init(&lru_pvec, 0); 398 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 399 struct page *page = list_entry(pages->prev, struct page, lru); 400 401 prefetchw(&page->flags); 402 list_del(&page->lru); 403 if (!add_to_page_cache(page, mapping, 404 page->index, GFP_KERNEL)) { 405 bio = do_mpage_readpage(bio, page, 406 nr_pages - page_idx, 407 &last_block_in_bio, &map_bh, 408 &first_logical_block, 409 get_block); 410 if (!pagevec_add(&lru_pvec, page)) 411 __pagevec_lru_add(&lru_pvec); 412 } else { 413 page_cache_release(page); 414 } 415 } 416 pagevec_lru_add(&lru_pvec); 417 BUG_ON(!list_empty(pages)); 418 if (bio) 419 mpage_bio_submit(READ, bio); 420 return 0; 421 } 422 EXPORT_SYMBOL(mpage_readpages); 423 424 /* 425 * This isn't called much at all 426 */ 427 int mpage_readpage(struct page *page, get_block_t get_block) 428 { 429 struct bio *bio = NULL; 430 sector_t last_block_in_bio = 0; 431 struct buffer_head map_bh; 432 unsigned long first_logical_block = 0; 433 434 clear_buffer_mapped(&map_bh); 435 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio, 436 &map_bh, &first_logical_block, get_block); 437 if (bio) 438 mpage_bio_submit(READ, bio); 439 return 0; 440 } 441 EXPORT_SYMBOL(mpage_readpage); 442 443 /* 444 * Writing is not so simple. 445 * 446 * If the page has buffers then they will be used for obtaining the disk 447 * mapping. We only support pages which are fully mapped-and-dirty, with a 448 * special case for pages which are unmapped at the end: end-of-file. 449 * 450 * If the page has no buffers (preferred) then the page is mapped here. 451 * 452 * If all blocks are found to be contiguous then the page can go into the 453 * BIO. Otherwise fall back to the mapping's writepage(). 454 * 455 * FIXME: This code wants an estimate of how many pages are still to be 456 * written, so it can intelligently allocate a suitably-sized BIO. For now, 457 * just allocate full-size (16-page) BIOs. 458 */ 459 static struct bio * 460 __mpage_writepage(struct bio *bio, struct page *page, get_block_t get_block, 461 sector_t *last_block_in_bio, int *ret, struct writeback_control *wbc, 462 writepage_t writepage_fn) 463 { 464 struct address_space *mapping = page->mapping; 465 struct inode *inode = page->mapping->host; 466 const unsigned blkbits = inode->i_blkbits; 467 unsigned long end_index; 468 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits; 469 sector_t last_block; 470 sector_t block_in_file; 471 sector_t blocks[MAX_BUF_PER_PAGE]; 472 unsigned page_block; 473 unsigned first_unmapped = blocks_per_page; 474 struct block_device *bdev = NULL; 475 int boundary = 0; 476 sector_t boundary_block = 0; 477 struct block_device *boundary_bdev = NULL; 478 int length; 479 struct buffer_head map_bh; 480 loff_t i_size = i_size_read(inode); 481 482 if (page_has_buffers(page)) { 483 struct buffer_head *head = page_buffers(page); 484 struct buffer_head *bh = head; 485 486 /* If they're all mapped and dirty, do it */ 487 page_block = 0; 488 do { 489 BUG_ON(buffer_locked(bh)); 490 if (!buffer_mapped(bh)) { 491 /* 492 * unmapped dirty buffers are created by 493 * __set_page_dirty_buffers -> mmapped data 494 */ 495 if (buffer_dirty(bh)) 496 goto confused; 497 if (first_unmapped == blocks_per_page) 498 first_unmapped = page_block; 499 continue; 500 } 501 502 if (first_unmapped != blocks_per_page) 503 goto confused; /* hole -> non-hole */ 504 505 if (!buffer_dirty(bh) || !buffer_uptodate(bh)) 506 goto confused; 507 if (page_block) { 508 if (bh->b_blocknr != blocks[page_block-1] + 1) 509 goto confused; 510 } 511 blocks[page_block++] = bh->b_blocknr; 512 boundary = buffer_boundary(bh); 513 if (boundary) { 514 boundary_block = bh->b_blocknr; 515 boundary_bdev = bh->b_bdev; 516 } 517 bdev = bh->b_bdev; 518 } while ((bh = bh->b_this_page) != head); 519 520 if (first_unmapped) 521 goto page_is_mapped; 522 523 /* 524 * Page has buffers, but they are all unmapped. The page was 525 * created by pagein or read over a hole which was handled by 526 * block_read_full_page(). If this address_space is also 527 * using mpage_readpages then this can rarely happen. 528 */ 529 goto confused; 530 } 531 532 /* 533 * The page has no buffers: map it to disk 534 */ 535 BUG_ON(!PageUptodate(page)); 536 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 537 last_block = (i_size - 1) >> blkbits; 538 map_bh.b_page = page; 539 for (page_block = 0; page_block < blocks_per_page; ) { 540 541 map_bh.b_state = 0; 542 map_bh.b_size = 1 << blkbits; 543 if (get_block(inode, block_in_file, &map_bh, 1)) 544 goto confused; 545 if (buffer_new(&map_bh)) 546 unmap_underlying_metadata(map_bh.b_bdev, 547 map_bh.b_blocknr); 548 if (buffer_boundary(&map_bh)) { 549 boundary_block = map_bh.b_blocknr; 550 boundary_bdev = map_bh.b_bdev; 551 } 552 if (page_block) { 553 if (map_bh.b_blocknr != blocks[page_block-1] + 1) 554 goto confused; 555 } 556 blocks[page_block++] = map_bh.b_blocknr; 557 boundary = buffer_boundary(&map_bh); 558 bdev = map_bh.b_bdev; 559 if (block_in_file == last_block) 560 break; 561 block_in_file++; 562 } 563 BUG_ON(page_block == 0); 564 565 first_unmapped = page_block; 566 567 page_is_mapped: 568 end_index = i_size >> PAGE_CACHE_SHIFT; 569 if (page->index >= end_index) { 570 /* 571 * The page straddles i_size. It must be zeroed out on each 572 * and every writepage invokation because it may be mmapped. 573 * "A file is mapped in multiples of the page size. For a file 574 * that is not a multiple of the page size, the remaining memory 575 * is zeroed when mapped, and writes to that region are not 576 * written out to the file." 577 */ 578 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1); 579 char *kaddr; 580 581 if (page->index > end_index || !offset) 582 goto confused; 583 kaddr = kmap_atomic(page, KM_USER0); 584 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset); 585 flush_dcache_page(page); 586 kunmap_atomic(kaddr, KM_USER0); 587 } 588 589 /* 590 * This page will go to BIO. Do we need to send this BIO off first? 591 */ 592 if (bio && *last_block_in_bio != blocks[0] - 1) 593 bio = mpage_bio_submit(WRITE, bio); 594 595 alloc_new: 596 if (bio == NULL) { 597 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9), 598 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH); 599 if (bio == NULL) 600 goto confused; 601 } 602 603 /* 604 * Must try to add the page before marking the buffer clean or 605 * the confused fail path above (OOM) will be very confused when 606 * it finds all bh marked clean (i.e. it will not write anything) 607 */ 608 length = first_unmapped << blkbits; 609 if (bio_add_page(bio, page, length, 0) < length) { 610 bio = mpage_bio_submit(WRITE, bio); 611 goto alloc_new; 612 } 613 614 /* 615 * OK, we have our BIO, so we can now mark the buffers clean. Make 616 * sure to only clean buffers which we know we'll be writing. 617 */ 618 if (page_has_buffers(page)) { 619 struct buffer_head *head = page_buffers(page); 620 struct buffer_head *bh = head; 621 unsigned buffer_counter = 0; 622 623 do { 624 if (buffer_counter++ == first_unmapped) 625 break; 626 clear_buffer_dirty(bh); 627 bh = bh->b_this_page; 628 } while (bh != head); 629 630 /* 631 * we cannot drop the bh if the page is not uptodate 632 * or a concurrent readpage would fail to serialize with the bh 633 * and it would read from disk before we reach the platter. 634 */ 635 if (buffer_heads_over_limit && PageUptodate(page)) 636 try_to_free_buffers(page); 637 } 638 639 BUG_ON(PageWriteback(page)); 640 set_page_writeback(page); 641 unlock_page(page); 642 if (boundary || (first_unmapped != blocks_per_page)) { 643 bio = mpage_bio_submit(WRITE, bio); 644 if (boundary_block) { 645 write_boundary_block(boundary_bdev, 646 boundary_block, 1 << blkbits); 647 } 648 } else { 649 *last_block_in_bio = blocks[blocks_per_page - 1]; 650 } 651 goto out; 652 653 confused: 654 if (bio) 655 bio = mpage_bio_submit(WRITE, bio); 656 657 if (writepage_fn) { 658 *ret = (*writepage_fn)(page, wbc); 659 } else { 660 *ret = -EAGAIN; 661 goto out; 662 } 663 /* 664 * The caller has a ref on the inode, so *mapping is stable 665 */ 666 if (*ret) { 667 if (*ret == -ENOSPC) 668 set_bit(AS_ENOSPC, &mapping->flags); 669 else 670 set_bit(AS_EIO, &mapping->flags); 671 } 672 out: 673 return bio; 674 } 675 676 /** 677 * mpage_writepages - walk the list of dirty pages of the given 678 * address space and writepage() all of them. 679 * 680 * @mapping: address space structure to write 681 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 682 * @get_block: the filesystem's block mapper function. 683 * If this is NULL then use a_ops->writepage. Otherwise, go 684 * direct-to-BIO. 685 * 686 * This is a library function, which implements the writepages() 687 * address_space_operation. 688 * 689 * If a page is already under I/O, generic_writepages() skips it, even 690 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 691 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 692 * and msync() need to guarantee that all the data which was dirty at the time 693 * the call was made get new I/O started against them. If wbc->sync_mode is 694 * WB_SYNC_ALL then we were called for data integrity and we must wait for 695 * existing IO to complete. 696 */ 697 int 698 mpage_writepages(struct address_space *mapping, 699 struct writeback_control *wbc, get_block_t get_block) 700 { 701 struct backing_dev_info *bdi = mapping->backing_dev_info; 702 struct bio *bio = NULL; 703 sector_t last_block_in_bio = 0; 704 int ret = 0; 705 int done = 0; 706 int (*writepage)(struct page *page, struct writeback_control *wbc); 707 struct pagevec pvec; 708 int nr_pages; 709 pgoff_t index; 710 pgoff_t end; /* Inclusive */ 711 int scanned = 0; 712 int range_whole = 0; 713 714 if (wbc->nonblocking && bdi_write_congested(bdi)) { 715 wbc->encountered_congestion = 1; 716 return 0; 717 } 718 719 writepage = NULL; 720 if (get_block == NULL) 721 writepage = mapping->a_ops->writepage; 722 723 pagevec_init(&pvec, 0); 724 if (wbc->range_cyclic) { 725 index = mapping->writeback_index; /* Start from prev offset */ 726 end = -1; 727 } else { 728 index = wbc->range_start >> PAGE_CACHE_SHIFT; 729 end = wbc->range_end >> PAGE_CACHE_SHIFT; 730 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 731 range_whole = 1; 732 scanned = 1; 733 } 734 retry: 735 while (!done && (index <= end) && 736 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 737 PAGECACHE_TAG_DIRTY, 738 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 739 unsigned i; 740 741 scanned = 1; 742 for (i = 0; i < nr_pages; i++) { 743 struct page *page = pvec.pages[i]; 744 745 /* 746 * At this point we hold neither mapping->tree_lock nor 747 * lock on the page itself: the page may be truncated or 748 * invalidated (changing page->mapping to NULL), or even 749 * swizzled back from swapper_space to tmpfs file 750 * mapping 751 */ 752 753 lock_page(page); 754 755 if (unlikely(page->mapping != mapping)) { 756 unlock_page(page); 757 continue; 758 } 759 760 if (!wbc->range_cyclic && page->index > end) { 761 done = 1; 762 unlock_page(page); 763 continue; 764 } 765 766 if (wbc->sync_mode != WB_SYNC_NONE) 767 wait_on_page_writeback(page); 768 769 if (PageWriteback(page) || 770 !clear_page_dirty_for_io(page)) { 771 unlock_page(page); 772 continue; 773 } 774 775 if (writepage) { 776 ret = (*writepage)(page, wbc); 777 if (ret) { 778 if (ret == -ENOSPC) 779 set_bit(AS_ENOSPC, 780 &mapping->flags); 781 else 782 set_bit(AS_EIO, 783 &mapping->flags); 784 } 785 } else { 786 bio = __mpage_writepage(bio, page, get_block, 787 &last_block_in_bio, &ret, wbc, 788 page->mapping->a_ops->writepage); 789 } 790 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) 791 unlock_page(page); 792 if (ret || (--(wbc->nr_to_write) <= 0)) 793 done = 1; 794 if (wbc->nonblocking && bdi_write_congested(bdi)) { 795 wbc->encountered_congestion = 1; 796 done = 1; 797 } 798 } 799 pagevec_release(&pvec); 800 cond_resched(); 801 } 802 if (!scanned && !done) { 803 /* 804 * We hit the last page and there is more work to be done: wrap 805 * back to the start of the file 806 */ 807 scanned = 1; 808 index = 0; 809 goto retry; 810 } 811 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 812 mapping->writeback_index = index; 813 if (bio) 814 mpage_bio_submit(WRITE, bio); 815 return ret; 816 } 817 EXPORT_SYMBOL(mpage_writepages); 818 819 int mpage_writepage(struct page *page, get_block_t get_block, 820 struct writeback_control *wbc) 821 { 822 int ret = 0; 823 struct bio *bio; 824 sector_t last_block_in_bio = 0; 825 826 bio = __mpage_writepage(NULL, page, get_block, 827 &last_block_in_bio, &ret, wbc, NULL); 828 if (bio) 829 mpage_bio_submit(WRITE, bio); 830 831 return ret; 832 } 833 EXPORT_SYMBOL(mpage_writepage); 834