xref: /openbmc/linux/fs/mpage.c (revision 36de991e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/mpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains functions related to preparing and submitting BIOs which contain
8  * multiple pagecache pages.
9  *
10  * 15May2002	Andrew Morton
11  *		Initial version
12  * 27Jun2002	axboe@suse.de
13  *		use bio_add_page() to build bio's just the right size
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include <linux/cleancache.h>
33 #include "internal.h"
34 
35 /*
36  * I/O completion handler for multipage BIOs.
37  *
38  * The mpage code never puts partial pages into a BIO (except for end-of-file).
39  * If a page does not map to a contiguous run of blocks then it simply falls
40  * back to block_read_full_page().
41  *
42  * Why is this?  If a page's completion depends on a number of different BIOs
43  * which can complete in any order (or at the same time) then determining the
44  * status of that page is hard.  See end_buffer_async_read() for the details.
45  * There is no point in duplicating all that complexity.
46  */
47 static void mpage_end_io(struct bio *bio)
48 {
49 	struct bio_vec *bv;
50 	struct bvec_iter_all iter_all;
51 
52 	bio_for_each_segment_all(bv, bio, iter_all) {
53 		struct page *page = bv->bv_page;
54 		page_endio(page, bio_op(bio),
55 			   blk_status_to_errno(bio->bi_status));
56 	}
57 
58 	bio_put(bio);
59 }
60 
61 static struct bio *mpage_bio_submit(int op, int op_flags, struct bio *bio)
62 {
63 	bio->bi_end_io = mpage_end_io;
64 	bio_set_op_attrs(bio, op, op_flags);
65 	guard_bio_eod(bio);
66 	submit_bio(bio);
67 	return NULL;
68 }
69 
70 static struct bio *
71 mpage_alloc(struct block_device *bdev,
72 		sector_t first_sector, int nr_vecs,
73 		gfp_t gfp_flags)
74 {
75 	struct bio *bio;
76 
77 	/* Restrict the given (page cache) mask for slab allocations */
78 	gfp_flags &= GFP_KERNEL;
79 	bio = bio_alloc(gfp_flags, nr_vecs);
80 
81 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
82 		while (!bio && (nr_vecs /= 2))
83 			bio = bio_alloc(gfp_flags, nr_vecs);
84 	}
85 
86 	if (bio) {
87 		bio_set_dev(bio, bdev);
88 		bio->bi_iter.bi_sector = first_sector;
89 	}
90 	return bio;
91 }
92 
93 /*
94  * support function for mpage_readahead.  The fs supplied get_block might
95  * return an up to date buffer.  This is used to map that buffer into
96  * the page, which allows readpage to avoid triggering a duplicate call
97  * to get_block.
98  *
99  * The idea is to avoid adding buffers to pages that don't already have
100  * them.  So when the buffer is up to date and the page size == block size,
101  * this marks the page up to date instead of adding new buffers.
102  */
103 static void
104 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
105 {
106 	struct inode *inode = page->mapping->host;
107 	struct buffer_head *page_bh, *head;
108 	int block = 0;
109 
110 	if (!page_has_buffers(page)) {
111 		/*
112 		 * don't make any buffers if there is only one buffer on
113 		 * the page and the page just needs to be set up to date
114 		 */
115 		if (inode->i_blkbits == PAGE_SHIFT &&
116 		    buffer_uptodate(bh)) {
117 			SetPageUptodate(page);
118 			return;
119 		}
120 		create_empty_buffers(page, i_blocksize(inode), 0);
121 	}
122 	head = page_buffers(page);
123 	page_bh = head;
124 	do {
125 		if (block == page_block) {
126 			page_bh->b_state = bh->b_state;
127 			page_bh->b_bdev = bh->b_bdev;
128 			page_bh->b_blocknr = bh->b_blocknr;
129 			break;
130 		}
131 		page_bh = page_bh->b_this_page;
132 		block++;
133 	} while (page_bh != head);
134 }
135 
136 struct mpage_readpage_args {
137 	struct bio *bio;
138 	struct page *page;
139 	unsigned int nr_pages;
140 	bool is_readahead;
141 	sector_t last_block_in_bio;
142 	struct buffer_head map_bh;
143 	unsigned long first_logical_block;
144 	get_block_t *get_block;
145 };
146 
147 /*
148  * This is the worker routine which does all the work of mapping the disk
149  * blocks and constructs largest possible bios, submits them for IO if the
150  * blocks are not contiguous on the disk.
151  *
152  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
153  * represent the validity of its disk mapping and to decide when to do the next
154  * get_block() call.
155  */
156 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
157 {
158 	struct page *page = args->page;
159 	struct inode *inode = page->mapping->host;
160 	const unsigned blkbits = inode->i_blkbits;
161 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
162 	const unsigned blocksize = 1 << blkbits;
163 	struct buffer_head *map_bh = &args->map_bh;
164 	sector_t block_in_file;
165 	sector_t last_block;
166 	sector_t last_block_in_file;
167 	sector_t blocks[MAX_BUF_PER_PAGE];
168 	unsigned page_block;
169 	unsigned first_hole = blocks_per_page;
170 	struct block_device *bdev = NULL;
171 	int length;
172 	int fully_mapped = 1;
173 	int op_flags;
174 	unsigned nblocks;
175 	unsigned relative_block;
176 	gfp_t gfp;
177 
178 	if (args->is_readahead) {
179 		op_flags = REQ_RAHEAD;
180 		gfp = readahead_gfp_mask(page->mapping);
181 	} else {
182 		op_flags = 0;
183 		gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
184 	}
185 
186 	if (page_has_buffers(page))
187 		goto confused;
188 
189 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
190 	last_block = block_in_file + args->nr_pages * blocks_per_page;
191 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
192 	if (last_block > last_block_in_file)
193 		last_block = last_block_in_file;
194 	page_block = 0;
195 
196 	/*
197 	 * Map blocks using the result from the previous get_blocks call first.
198 	 */
199 	nblocks = map_bh->b_size >> blkbits;
200 	if (buffer_mapped(map_bh) &&
201 			block_in_file > args->first_logical_block &&
202 			block_in_file < (args->first_logical_block + nblocks)) {
203 		unsigned map_offset = block_in_file - args->first_logical_block;
204 		unsigned last = nblocks - map_offset;
205 
206 		for (relative_block = 0; ; relative_block++) {
207 			if (relative_block == last) {
208 				clear_buffer_mapped(map_bh);
209 				break;
210 			}
211 			if (page_block == blocks_per_page)
212 				break;
213 			blocks[page_block] = map_bh->b_blocknr + map_offset +
214 						relative_block;
215 			page_block++;
216 			block_in_file++;
217 		}
218 		bdev = map_bh->b_bdev;
219 	}
220 
221 	/*
222 	 * Then do more get_blocks calls until we are done with this page.
223 	 */
224 	map_bh->b_page = page;
225 	while (page_block < blocks_per_page) {
226 		map_bh->b_state = 0;
227 		map_bh->b_size = 0;
228 
229 		if (block_in_file < last_block) {
230 			map_bh->b_size = (last_block-block_in_file) << blkbits;
231 			if (args->get_block(inode, block_in_file, map_bh, 0))
232 				goto confused;
233 			args->first_logical_block = block_in_file;
234 		}
235 
236 		if (!buffer_mapped(map_bh)) {
237 			fully_mapped = 0;
238 			if (first_hole == blocks_per_page)
239 				first_hole = page_block;
240 			page_block++;
241 			block_in_file++;
242 			continue;
243 		}
244 
245 		/* some filesystems will copy data into the page during
246 		 * the get_block call, in which case we don't want to
247 		 * read it again.  map_buffer_to_page copies the data
248 		 * we just collected from get_block into the page's buffers
249 		 * so readpage doesn't have to repeat the get_block call
250 		 */
251 		if (buffer_uptodate(map_bh)) {
252 			map_buffer_to_page(page, map_bh, page_block);
253 			goto confused;
254 		}
255 
256 		if (first_hole != blocks_per_page)
257 			goto confused;		/* hole -> non-hole */
258 
259 		/* Contiguous blocks? */
260 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
261 			goto confused;
262 		nblocks = map_bh->b_size >> blkbits;
263 		for (relative_block = 0; ; relative_block++) {
264 			if (relative_block == nblocks) {
265 				clear_buffer_mapped(map_bh);
266 				break;
267 			} else if (page_block == blocks_per_page)
268 				break;
269 			blocks[page_block] = map_bh->b_blocknr+relative_block;
270 			page_block++;
271 			block_in_file++;
272 		}
273 		bdev = map_bh->b_bdev;
274 	}
275 
276 	if (first_hole != blocks_per_page) {
277 		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
278 		if (first_hole == 0) {
279 			SetPageUptodate(page);
280 			unlock_page(page);
281 			goto out;
282 		}
283 	} else if (fully_mapped) {
284 		SetPageMappedToDisk(page);
285 	}
286 
287 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
288 	    cleancache_get_page(page) == 0) {
289 		SetPageUptodate(page);
290 		goto confused;
291 	}
292 
293 	/*
294 	 * This page will go to BIO.  Do we need to send this BIO off first?
295 	 */
296 	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
297 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
298 
299 alloc_new:
300 	if (args->bio == NULL) {
301 		if (first_hole == blocks_per_page) {
302 			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
303 								page))
304 				goto out;
305 		}
306 		args->bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
307 					bio_max_segs(args->nr_pages), gfp);
308 		if (args->bio == NULL)
309 			goto confused;
310 	}
311 
312 	length = first_hole << blkbits;
313 	if (bio_add_page(args->bio, page, length, 0) < length) {
314 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
315 		goto alloc_new;
316 	}
317 
318 	relative_block = block_in_file - args->first_logical_block;
319 	nblocks = map_bh->b_size >> blkbits;
320 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
321 	    (first_hole != blocks_per_page))
322 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
323 	else
324 		args->last_block_in_bio = blocks[blocks_per_page - 1];
325 out:
326 	return args->bio;
327 
328 confused:
329 	if (args->bio)
330 		args->bio = mpage_bio_submit(REQ_OP_READ, op_flags, args->bio);
331 	if (!PageUptodate(page))
332 		block_read_full_page(page, args->get_block);
333 	else
334 		unlock_page(page);
335 	goto out;
336 }
337 
338 /**
339  * mpage_readahead - start reads against pages
340  * @rac: Describes which pages to read.
341  * @get_block: The filesystem's block mapper function.
342  *
343  * This function walks the pages and the blocks within each page, building and
344  * emitting large BIOs.
345  *
346  * If anything unusual happens, such as:
347  *
348  * - encountering a page which has buffers
349  * - encountering a page which has a non-hole after a hole
350  * - encountering a page with non-contiguous blocks
351  *
352  * then this code just gives up and calls the buffer_head-based read function.
353  * It does handle a page which has holes at the end - that is a common case:
354  * the end-of-file on blocksize < PAGE_SIZE setups.
355  *
356  * BH_Boundary explanation:
357  *
358  * There is a problem.  The mpage read code assembles several pages, gets all
359  * their disk mappings, and then submits them all.  That's fine, but obtaining
360  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
361  *
362  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
363  * submitted in the following order:
364  *
365  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
366  *
367  * because the indirect block has to be read to get the mappings of blocks
368  * 13,14,15,16.  Obviously, this impacts performance.
369  *
370  * So what we do it to allow the filesystem's get_block() function to set
371  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
372  * after this one will require I/O against a block which is probably close to
373  * this one.  So you should push what I/O you have currently accumulated.
374  *
375  * This all causes the disk requests to be issued in the correct order.
376  */
377 void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
378 {
379 	struct page *page;
380 	struct mpage_readpage_args args = {
381 		.get_block = get_block,
382 		.is_readahead = true,
383 	};
384 
385 	while ((page = readahead_page(rac))) {
386 		prefetchw(&page->flags);
387 		args.page = page;
388 		args.nr_pages = readahead_count(rac);
389 		args.bio = do_mpage_readpage(&args);
390 		put_page(page);
391 	}
392 	if (args.bio)
393 		mpage_bio_submit(REQ_OP_READ, REQ_RAHEAD, args.bio);
394 }
395 EXPORT_SYMBOL(mpage_readahead);
396 
397 /*
398  * This isn't called much at all
399  */
400 int mpage_readpage(struct page *page, get_block_t get_block)
401 {
402 	struct mpage_readpage_args args = {
403 		.page = page,
404 		.nr_pages = 1,
405 		.get_block = get_block,
406 	};
407 
408 	args.bio = do_mpage_readpage(&args);
409 	if (args.bio)
410 		mpage_bio_submit(REQ_OP_READ, 0, args.bio);
411 	return 0;
412 }
413 EXPORT_SYMBOL(mpage_readpage);
414 
415 /*
416  * Writing is not so simple.
417  *
418  * If the page has buffers then they will be used for obtaining the disk
419  * mapping.  We only support pages which are fully mapped-and-dirty, with a
420  * special case for pages which are unmapped at the end: end-of-file.
421  *
422  * If the page has no buffers (preferred) then the page is mapped here.
423  *
424  * If all blocks are found to be contiguous then the page can go into the
425  * BIO.  Otherwise fall back to the mapping's writepage().
426  *
427  * FIXME: This code wants an estimate of how many pages are still to be
428  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
429  * just allocate full-size (16-page) BIOs.
430  */
431 
432 struct mpage_data {
433 	struct bio *bio;
434 	sector_t last_block_in_bio;
435 	get_block_t *get_block;
436 	unsigned use_writepage;
437 };
438 
439 /*
440  * We have our BIO, so we can now mark the buffers clean.  Make
441  * sure to only clean buffers which we know we'll be writing.
442  */
443 static void clean_buffers(struct page *page, unsigned first_unmapped)
444 {
445 	unsigned buffer_counter = 0;
446 	struct buffer_head *bh, *head;
447 	if (!page_has_buffers(page))
448 		return;
449 	head = page_buffers(page);
450 	bh = head;
451 
452 	do {
453 		if (buffer_counter++ == first_unmapped)
454 			break;
455 		clear_buffer_dirty(bh);
456 		bh = bh->b_this_page;
457 	} while (bh != head);
458 
459 	/*
460 	 * we cannot drop the bh if the page is not uptodate or a concurrent
461 	 * readpage would fail to serialize with the bh and it would read from
462 	 * disk before we reach the platter.
463 	 */
464 	if (buffer_heads_over_limit && PageUptodate(page))
465 		try_to_free_buffers(page);
466 }
467 
468 /*
469  * For situations where we want to clean all buffers attached to a page.
470  * We don't need to calculate how many buffers are attached to the page,
471  * we just need to specify a number larger than the maximum number of buffers.
472  */
473 void clean_page_buffers(struct page *page)
474 {
475 	clean_buffers(page, ~0U);
476 }
477 
478 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
479 		      void *data)
480 {
481 	struct mpage_data *mpd = data;
482 	struct bio *bio = mpd->bio;
483 	struct address_space *mapping = page->mapping;
484 	struct inode *inode = page->mapping->host;
485 	const unsigned blkbits = inode->i_blkbits;
486 	unsigned long end_index;
487 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
488 	sector_t last_block;
489 	sector_t block_in_file;
490 	sector_t blocks[MAX_BUF_PER_PAGE];
491 	unsigned page_block;
492 	unsigned first_unmapped = blocks_per_page;
493 	struct block_device *bdev = NULL;
494 	int boundary = 0;
495 	sector_t boundary_block = 0;
496 	struct block_device *boundary_bdev = NULL;
497 	int length;
498 	struct buffer_head map_bh;
499 	loff_t i_size = i_size_read(inode);
500 	int ret = 0;
501 	int op_flags = wbc_to_write_flags(wbc);
502 
503 	if (page_has_buffers(page)) {
504 		struct buffer_head *head = page_buffers(page);
505 		struct buffer_head *bh = head;
506 
507 		/* If they're all mapped and dirty, do it */
508 		page_block = 0;
509 		do {
510 			BUG_ON(buffer_locked(bh));
511 			if (!buffer_mapped(bh)) {
512 				/*
513 				 * unmapped dirty buffers are created by
514 				 * __set_page_dirty_buffers -> mmapped data
515 				 */
516 				if (buffer_dirty(bh))
517 					goto confused;
518 				if (first_unmapped == blocks_per_page)
519 					first_unmapped = page_block;
520 				continue;
521 			}
522 
523 			if (first_unmapped != blocks_per_page)
524 				goto confused;	/* hole -> non-hole */
525 
526 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
527 				goto confused;
528 			if (page_block) {
529 				if (bh->b_blocknr != blocks[page_block-1] + 1)
530 					goto confused;
531 			}
532 			blocks[page_block++] = bh->b_blocknr;
533 			boundary = buffer_boundary(bh);
534 			if (boundary) {
535 				boundary_block = bh->b_blocknr;
536 				boundary_bdev = bh->b_bdev;
537 			}
538 			bdev = bh->b_bdev;
539 		} while ((bh = bh->b_this_page) != head);
540 
541 		if (first_unmapped)
542 			goto page_is_mapped;
543 
544 		/*
545 		 * Page has buffers, but they are all unmapped. The page was
546 		 * created by pagein or read over a hole which was handled by
547 		 * block_read_full_page().  If this address_space is also
548 		 * using mpage_readahead then this can rarely happen.
549 		 */
550 		goto confused;
551 	}
552 
553 	/*
554 	 * The page has no buffers: map it to disk
555 	 */
556 	BUG_ON(!PageUptodate(page));
557 	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
558 	last_block = (i_size - 1) >> blkbits;
559 	map_bh.b_page = page;
560 	for (page_block = 0; page_block < blocks_per_page; ) {
561 
562 		map_bh.b_state = 0;
563 		map_bh.b_size = 1 << blkbits;
564 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
565 			goto confused;
566 		if (buffer_new(&map_bh))
567 			clean_bdev_bh_alias(&map_bh);
568 		if (buffer_boundary(&map_bh)) {
569 			boundary_block = map_bh.b_blocknr;
570 			boundary_bdev = map_bh.b_bdev;
571 		}
572 		if (page_block) {
573 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
574 				goto confused;
575 		}
576 		blocks[page_block++] = map_bh.b_blocknr;
577 		boundary = buffer_boundary(&map_bh);
578 		bdev = map_bh.b_bdev;
579 		if (block_in_file == last_block)
580 			break;
581 		block_in_file++;
582 	}
583 	BUG_ON(page_block == 0);
584 
585 	first_unmapped = page_block;
586 
587 page_is_mapped:
588 	end_index = i_size >> PAGE_SHIFT;
589 	if (page->index >= end_index) {
590 		/*
591 		 * The page straddles i_size.  It must be zeroed out on each
592 		 * and every writepage invocation because it may be mmapped.
593 		 * "A file is mapped in multiples of the page size.  For a file
594 		 * that is not a multiple of the page size, the remaining memory
595 		 * is zeroed when mapped, and writes to that region are not
596 		 * written out to the file."
597 		 */
598 		unsigned offset = i_size & (PAGE_SIZE - 1);
599 
600 		if (page->index > end_index || !offset)
601 			goto confused;
602 		zero_user_segment(page, offset, PAGE_SIZE);
603 	}
604 
605 	/*
606 	 * This page will go to BIO.  Do we need to send this BIO off first?
607 	 */
608 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
609 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
610 
611 alloc_new:
612 	if (bio == NULL) {
613 		if (first_unmapped == blocks_per_page) {
614 			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
615 								page, wbc))
616 				goto out;
617 		}
618 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
619 				BIO_MAX_VECS, GFP_NOFS|__GFP_HIGH);
620 		if (bio == NULL)
621 			goto confused;
622 
623 		wbc_init_bio(wbc, bio);
624 		bio->bi_write_hint = inode->i_write_hint;
625 	}
626 
627 	/*
628 	 * Must try to add the page before marking the buffer clean or
629 	 * the confused fail path above (OOM) will be very confused when
630 	 * it finds all bh marked clean (i.e. it will not write anything)
631 	 */
632 	wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
633 	length = first_unmapped << blkbits;
634 	if (bio_add_page(bio, page, length, 0) < length) {
635 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
636 		goto alloc_new;
637 	}
638 
639 	clean_buffers(page, first_unmapped);
640 
641 	BUG_ON(PageWriteback(page));
642 	set_page_writeback(page);
643 	unlock_page(page);
644 	if (boundary || (first_unmapped != blocks_per_page)) {
645 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
646 		if (boundary_block) {
647 			write_boundary_block(boundary_bdev,
648 					boundary_block, 1 << blkbits);
649 		}
650 	} else {
651 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
652 	}
653 	goto out;
654 
655 confused:
656 	if (bio)
657 		bio = mpage_bio_submit(REQ_OP_WRITE, op_flags, bio);
658 
659 	if (mpd->use_writepage) {
660 		ret = mapping->a_ops->writepage(page, wbc);
661 	} else {
662 		ret = -EAGAIN;
663 		goto out;
664 	}
665 	/*
666 	 * The caller has a ref on the inode, so *mapping is stable
667 	 */
668 	mapping_set_error(mapping, ret);
669 out:
670 	mpd->bio = bio;
671 	return ret;
672 }
673 
674 /**
675  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
676  * @mapping: address space structure to write
677  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
678  * @get_block: the filesystem's block mapper function.
679  *             If this is NULL then use a_ops->writepage.  Otherwise, go
680  *             direct-to-BIO.
681  *
682  * This is a library function, which implements the writepages()
683  * address_space_operation.
684  *
685  * If a page is already under I/O, generic_writepages() skips it, even
686  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
687  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
688  * and msync() need to guarantee that all the data which was dirty at the time
689  * the call was made get new I/O started against them.  If wbc->sync_mode is
690  * WB_SYNC_ALL then we were called for data integrity and we must wait for
691  * existing IO to complete.
692  */
693 int
694 mpage_writepages(struct address_space *mapping,
695 		struct writeback_control *wbc, get_block_t get_block)
696 {
697 	struct blk_plug plug;
698 	int ret;
699 
700 	blk_start_plug(&plug);
701 
702 	if (!get_block)
703 		ret = generic_writepages(mapping, wbc);
704 	else {
705 		struct mpage_data mpd = {
706 			.bio = NULL,
707 			.last_block_in_bio = 0,
708 			.get_block = get_block,
709 			.use_writepage = 1,
710 		};
711 
712 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
713 		if (mpd.bio) {
714 			int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
715 				  REQ_SYNC : 0);
716 			mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
717 		}
718 	}
719 	blk_finish_plug(&plug);
720 	return ret;
721 }
722 EXPORT_SYMBOL(mpage_writepages);
723 
724 int mpage_writepage(struct page *page, get_block_t get_block,
725 	struct writeback_control *wbc)
726 {
727 	struct mpage_data mpd = {
728 		.bio = NULL,
729 		.last_block_in_bio = 0,
730 		.get_block = get_block,
731 		.use_writepage = 0,
732 	};
733 	int ret = __mpage_writepage(page, wbc, &mpd);
734 	if (mpd.bio) {
735 		int op_flags = (wbc->sync_mode == WB_SYNC_ALL ?
736 			  REQ_SYNC : 0);
737 		mpage_bio_submit(REQ_OP_WRITE, op_flags, mpd.bio);
738 	}
739 	return ret;
740 }
741 EXPORT_SYMBOL(mpage_writepage);
742