xref: /openbmc/linux/fs/mpage.c (revision 18da174d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/mpage.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains functions related to preparing and submitting BIOs which contain
8  * multiple pagecache pages.
9  *
10  * 15May2002	Andrew Morton
11  *		Initial version
12  * 27Jun2002	axboe@suse.de
13  *		use bio_add_page() to build bio's just the right size
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/mm.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
22 #include <linux/fs.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
32 #include "internal.h"
33 
34 /*
35  * I/O completion handler for multipage BIOs.
36  *
37  * The mpage code never puts partial pages into a BIO (except for end-of-file).
38  * If a page does not map to a contiguous run of blocks then it simply falls
39  * back to block_read_full_folio().
40  *
41  * Why is this?  If a page's completion depends on a number of different BIOs
42  * which can complete in any order (or at the same time) then determining the
43  * status of that page is hard.  See end_buffer_async_read() for the details.
44  * There is no point in duplicating all that complexity.
45  */
46 static void mpage_read_end_io(struct bio *bio)
47 {
48 	struct folio_iter fi;
49 	int err = blk_status_to_errno(bio->bi_status);
50 
51 	bio_for_each_folio_all(fi, bio) {
52 		if (err)
53 			folio_set_error(fi.folio);
54 		else
55 			folio_mark_uptodate(fi.folio);
56 		folio_unlock(fi.folio);
57 	}
58 
59 	bio_put(bio);
60 }
61 
62 static void mpage_write_end_io(struct bio *bio)
63 {
64 	struct folio_iter fi;
65 	int err = blk_status_to_errno(bio->bi_status);
66 
67 	bio_for_each_folio_all(fi, bio) {
68 		if (err) {
69 			folio_set_error(fi.folio);
70 			mapping_set_error(fi.folio->mapping, err);
71 		}
72 		folio_end_writeback(fi.folio);
73 	}
74 
75 	bio_put(bio);
76 }
77 
78 static struct bio *mpage_bio_submit_read(struct bio *bio)
79 {
80 	bio->bi_end_io = mpage_read_end_io;
81 	guard_bio_eod(bio);
82 	submit_bio(bio);
83 	return NULL;
84 }
85 
86 static struct bio *mpage_bio_submit_write(struct bio *bio)
87 {
88 	bio->bi_end_io = mpage_write_end_io;
89 	guard_bio_eod(bio);
90 	submit_bio(bio);
91 	return NULL;
92 }
93 
94 /*
95  * support function for mpage_readahead.  The fs supplied get_block might
96  * return an up to date buffer.  This is used to map that buffer into
97  * the page, which allows read_folio to avoid triggering a duplicate call
98  * to get_block.
99  *
100  * The idea is to avoid adding buffers to pages that don't already have
101  * them.  So when the buffer is up to date and the page size == block size,
102  * this marks the page up to date instead of adding new buffers.
103  */
104 static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
105 		int page_block)
106 {
107 	struct inode *inode = folio->mapping->host;
108 	struct buffer_head *page_bh, *head;
109 	int block = 0;
110 
111 	head = folio_buffers(folio);
112 	if (!head) {
113 		/*
114 		 * don't make any buffers if there is only one buffer on
115 		 * the folio and the folio just needs to be set up to date
116 		 */
117 		if (inode->i_blkbits == PAGE_SHIFT &&
118 		    buffer_uptodate(bh)) {
119 			folio_mark_uptodate(folio);
120 			return;
121 		}
122 		create_empty_buffers(&folio->page, i_blocksize(inode), 0);
123 		head = folio_buffers(folio);
124 	}
125 
126 	page_bh = head;
127 	do {
128 		if (block == page_block) {
129 			page_bh->b_state = bh->b_state;
130 			page_bh->b_bdev = bh->b_bdev;
131 			page_bh->b_blocknr = bh->b_blocknr;
132 			break;
133 		}
134 		page_bh = page_bh->b_this_page;
135 		block++;
136 	} while (page_bh != head);
137 }
138 
139 struct mpage_readpage_args {
140 	struct bio *bio;
141 	struct folio *folio;
142 	unsigned int nr_pages;
143 	bool is_readahead;
144 	sector_t last_block_in_bio;
145 	struct buffer_head map_bh;
146 	unsigned long first_logical_block;
147 	get_block_t *get_block;
148 };
149 
150 /*
151  * This is the worker routine which does all the work of mapping the disk
152  * blocks and constructs largest possible bios, submits them for IO if the
153  * blocks are not contiguous on the disk.
154  *
155  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
156  * represent the validity of its disk mapping and to decide when to do the next
157  * get_block() call.
158  */
159 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
160 {
161 	struct folio *folio = args->folio;
162 	struct inode *inode = folio->mapping->host;
163 	const unsigned blkbits = inode->i_blkbits;
164 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
165 	const unsigned blocksize = 1 << blkbits;
166 	struct buffer_head *map_bh = &args->map_bh;
167 	sector_t block_in_file;
168 	sector_t last_block;
169 	sector_t last_block_in_file;
170 	sector_t blocks[MAX_BUF_PER_PAGE];
171 	unsigned page_block;
172 	unsigned first_hole = blocks_per_page;
173 	struct block_device *bdev = NULL;
174 	int length;
175 	int fully_mapped = 1;
176 	blk_opf_t opf = REQ_OP_READ;
177 	unsigned nblocks;
178 	unsigned relative_block;
179 	gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
180 
181 	/* MAX_BUF_PER_PAGE, for example */
182 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
183 
184 	if (args->is_readahead) {
185 		opf |= REQ_RAHEAD;
186 		gfp |= __GFP_NORETRY | __GFP_NOWARN;
187 	}
188 
189 	if (folio_buffers(folio))
190 		goto confused;
191 
192 	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
193 	last_block = block_in_file + args->nr_pages * blocks_per_page;
194 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
195 	if (last_block > last_block_in_file)
196 		last_block = last_block_in_file;
197 	page_block = 0;
198 
199 	/*
200 	 * Map blocks using the result from the previous get_blocks call first.
201 	 */
202 	nblocks = map_bh->b_size >> blkbits;
203 	if (buffer_mapped(map_bh) &&
204 			block_in_file > args->first_logical_block &&
205 			block_in_file < (args->first_logical_block + nblocks)) {
206 		unsigned map_offset = block_in_file - args->first_logical_block;
207 		unsigned last = nblocks - map_offset;
208 
209 		for (relative_block = 0; ; relative_block++) {
210 			if (relative_block == last) {
211 				clear_buffer_mapped(map_bh);
212 				break;
213 			}
214 			if (page_block == blocks_per_page)
215 				break;
216 			blocks[page_block] = map_bh->b_blocknr + map_offset +
217 						relative_block;
218 			page_block++;
219 			block_in_file++;
220 		}
221 		bdev = map_bh->b_bdev;
222 	}
223 
224 	/*
225 	 * Then do more get_blocks calls until we are done with this folio.
226 	 */
227 	map_bh->b_folio = folio;
228 	while (page_block < blocks_per_page) {
229 		map_bh->b_state = 0;
230 		map_bh->b_size = 0;
231 
232 		if (block_in_file < last_block) {
233 			map_bh->b_size = (last_block-block_in_file) << blkbits;
234 			if (args->get_block(inode, block_in_file, map_bh, 0))
235 				goto confused;
236 			args->first_logical_block = block_in_file;
237 		}
238 
239 		if (!buffer_mapped(map_bh)) {
240 			fully_mapped = 0;
241 			if (first_hole == blocks_per_page)
242 				first_hole = page_block;
243 			page_block++;
244 			block_in_file++;
245 			continue;
246 		}
247 
248 		/* some filesystems will copy data into the page during
249 		 * the get_block call, in which case we don't want to
250 		 * read it again.  map_buffer_to_folio copies the data
251 		 * we just collected from get_block into the folio's buffers
252 		 * so read_folio doesn't have to repeat the get_block call
253 		 */
254 		if (buffer_uptodate(map_bh)) {
255 			map_buffer_to_folio(folio, map_bh, page_block);
256 			goto confused;
257 		}
258 
259 		if (first_hole != blocks_per_page)
260 			goto confused;		/* hole -> non-hole */
261 
262 		/* Contiguous blocks? */
263 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
264 			goto confused;
265 		nblocks = map_bh->b_size >> blkbits;
266 		for (relative_block = 0; ; relative_block++) {
267 			if (relative_block == nblocks) {
268 				clear_buffer_mapped(map_bh);
269 				break;
270 			} else if (page_block == blocks_per_page)
271 				break;
272 			blocks[page_block] = map_bh->b_blocknr+relative_block;
273 			page_block++;
274 			block_in_file++;
275 		}
276 		bdev = map_bh->b_bdev;
277 	}
278 
279 	if (first_hole != blocks_per_page) {
280 		folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE);
281 		if (first_hole == 0) {
282 			folio_mark_uptodate(folio);
283 			folio_unlock(folio);
284 			goto out;
285 		}
286 	} else if (fully_mapped) {
287 		folio_set_mappedtodisk(folio);
288 	}
289 
290 	/*
291 	 * This folio will go to BIO.  Do we need to send this BIO off first?
292 	 */
293 	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
294 		args->bio = mpage_bio_submit_read(args->bio);
295 
296 alloc_new:
297 	if (args->bio == NULL) {
298 		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
299 				      gfp);
300 		if (args->bio == NULL)
301 			goto confused;
302 		args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
303 	}
304 
305 	length = first_hole << blkbits;
306 	if (!bio_add_folio(args->bio, folio, length, 0)) {
307 		args->bio = mpage_bio_submit_read(args->bio);
308 		goto alloc_new;
309 	}
310 
311 	relative_block = block_in_file - args->first_logical_block;
312 	nblocks = map_bh->b_size >> blkbits;
313 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
314 	    (first_hole != blocks_per_page))
315 		args->bio = mpage_bio_submit_read(args->bio);
316 	else
317 		args->last_block_in_bio = blocks[blocks_per_page - 1];
318 out:
319 	return args->bio;
320 
321 confused:
322 	if (args->bio)
323 		args->bio = mpage_bio_submit_read(args->bio);
324 	if (!folio_test_uptodate(folio))
325 		block_read_full_folio(folio, args->get_block);
326 	else
327 		folio_unlock(folio);
328 	goto out;
329 }
330 
331 /**
332  * mpage_readahead - start reads against pages
333  * @rac: Describes which pages to read.
334  * @get_block: The filesystem's block mapper function.
335  *
336  * This function walks the pages and the blocks within each page, building and
337  * emitting large BIOs.
338  *
339  * If anything unusual happens, such as:
340  *
341  * - encountering a page which has buffers
342  * - encountering a page which has a non-hole after a hole
343  * - encountering a page with non-contiguous blocks
344  *
345  * then this code just gives up and calls the buffer_head-based read function.
346  * It does handle a page which has holes at the end - that is a common case:
347  * the end-of-file on blocksize < PAGE_SIZE setups.
348  *
349  * BH_Boundary explanation:
350  *
351  * There is a problem.  The mpage read code assembles several pages, gets all
352  * their disk mappings, and then submits them all.  That's fine, but obtaining
353  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
354  *
355  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
356  * submitted in the following order:
357  *
358  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
359  *
360  * because the indirect block has to be read to get the mappings of blocks
361  * 13,14,15,16.  Obviously, this impacts performance.
362  *
363  * So what we do it to allow the filesystem's get_block() function to set
364  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
365  * after this one will require I/O against a block which is probably close to
366  * this one.  So you should push what I/O you have currently accumulated.
367  *
368  * This all causes the disk requests to be issued in the correct order.
369  */
370 void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
371 {
372 	struct folio *folio;
373 	struct mpage_readpage_args args = {
374 		.get_block = get_block,
375 		.is_readahead = true,
376 	};
377 
378 	while ((folio = readahead_folio(rac))) {
379 		prefetchw(&folio->flags);
380 		args.folio = folio;
381 		args.nr_pages = readahead_count(rac);
382 		args.bio = do_mpage_readpage(&args);
383 	}
384 	if (args.bio)
385 		mpage_bio_submit_read(args.bio);
386 }
387 EXPORT_SYMBOL(mpage_readahead);
388 
389 /*
390  * This isn't called much at all
391  */
392 int mpage_read_folio(struct folio *folio, get_block_t get_block)
393 {
394 	struct mpage_readpage_args args = {
395 		.folio = folio,
396 		.nr_pages = 1,
397 		.get_block = get_block,
398 	};
399 
400 	args.bio = do_mpage_readpage(&args);
401 	if (args.bio)
402 		mpage_bio_submit_read(args.bio);
403 	return 0;
404 }
405 EXPORT_SYMBOL(mpage_read_folio);
406 
407 /*
408  * Writing is not so simple.
409  *
410  * If the page has buffers then they will be used for obtaining the disk
411  * mapping.  We only support pages which are fully mapped-and-dirty, with a
412  * special case for pages which are unmapped at the end: end-of-file.
413  *
414  * If the page has no buffers (preferred) then the page is mapped here.
415  *
416  * If all blocks are found to be contiguous then the page can go into the
417  * BIO.  Otherwise fall back to the mapping's writepage().
418  *
419  * FIXME: This code wants an estimate of how many pages are still to be
420  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
421  * just allocate full-size (16-page) BIOs.
422  */
423 
424 struct mpage_data {
425 	struct bio *bio;
426 	sector_t last_block_in_bio;
427 	get_block_t *get_block;
428 };
429 
430 /*
431  * We have our BIO, so we can now mark the buffers clean.  Make
432  * sure to only clean buffers which we know we'll be writing.
433  */
434 static void clean_buffers(struct page *page, unsigned first_unmapped)
435 {
436 	unsigned buffer_counter = 0;
437 	struct buffer_head *bh, *head;
438 	if (!page_has_buffers(page))
439 		return;
440 	head = page_buffers(page);
441 	bh = head;
442 
443 	do {
444 		if (buffer_counter++ == first_unmapped)
445 			break;
446 		clear_buffer_dirty(bh);
447 		bh = bh->b_this_page;
448 	} while (bh != head);
449 
450 	/*
451 	 * we cannot drop the bh if the page is not uptodate or a concurrent
452 	 * read_folio would fail to serialize with the bh and it would read from
453 	 * disk before we reach the platter.
454 	 */
455 	if (buffer_heads_over_limit && PageUptodate(page))
456 		try_to_free_buffers(page_folio(page));
457 }
458 
459 /*
460  * For situations where we want to clean all buffers attached to a page.
461  * We don't need to calculate how many buffers are attached to the page,
462  * we just need to specify a number larger than the maximum number of buffers.
463  */
464 void clean_page_buffers(struct page *page)
465 {
466 	clean_buffers(page, ~0U);
467 }
468 
469 static int __mpage_writepage(struct folio *folio, struct writeback_control *wbc,
470 		      void *data)
471 {
472 	struct mpage_data *mpd = data;
473 	struct bio *bio = mpd->bio;
474 	struct address_space *mapping = folio->mapping;
475 	struct inode *inode = mapping->host;
476 	const unsigned blkbits = inode->i_blkbits;
477 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
478 	sector_t last_block;
479 	sector_t block_in_file;
480 	sector_t blocks[MAX_BUF_PER_PAGE];
481 	unsigned page_block;
482 	unsigned first_unmapped = blocks_per_page;
483 	struct block_device *bdev = NULL;
484 	int boundary = 0;
485 	sector_t boundary_block = 0;
486 	struct block_device *boundary_bdev = NULL;
487 	size_t length;
488 	struct buffer_head map_bh;
489 	loff_t i_size = i_size_read(inode);
490 	int ret = 0;
491 	struct buffer_head *head = folio_buffers(folio);
492 
493 	if (head) {
494 		struct buffer_head *bh = head;
495 
496 		/* If they're all mapped and dirty, do it */
497 		page_block = 0;
498 		do {
499 			BUG_ON(buffer_locked(bh));
500 			if (!buffer_mapped(bh)) {
501 				/*
502 				 * unmapped dirty buffers are created by
503 				 * block_dirty_folio -> mmapped data
504 				 */
505 				if (buffer_dirty(bh))
506 					goto confused;
507 				if (first_unmapped == blocks_per_page)
508 					first_unmapped = page_block;
509 				continue;
510 			}
511 
512 			if (first_unmapped != blocks_per_page)
513 				goto confused;	/* hole -> non-hole */
514 
515 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
516 				goto confused;
517 			if (page_block) {
518 				if (bh->b_blocknr != blocks[page_block-1] + 1)
519 					goto confused;
520 			}
521 			blocks[page_block++] = bh->b_blocknr;
522 			boundary = buffer_boundary(bh);
523 			if (boundary) {
524 				boundary_block = bh->b_blocknr;
525 				boundary_bdev = bh->b_bdev;
526 			}
527 			bdev = bh->b_bdev;
528 		} while ((bh = bh->b_this_page) != head);
529 
530 		if (first_unmapped)
531 			goto page_is_mapped;
532 
533 		/*
534 		 * Page has buffers, but they are all unmapped. The page was
535 		 * created by pagein or read over a hole which was handled by
536 		 * block_read_full_folio().  If this address_space is also
537 		 * using mpage_readahead then this can rarely happen.
538 		 */
539 		goto confused;
540 	}
541 
542 	/*
543 	 * The page has no buffers: map it to disk
544 	 */
545 	BUG_ON(!folio_test_uptodate(folio));
546 	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
547 	/*
548 	 * Whole page beyond EOF? Skip allocating blocks to avoid leaking
549 	 * space.
550 	 */
551 	if (block_in_file >= (i_size + (1 << blkbits) - 1) >> blkbits)
552 		goto page_is_mapped;
553 	last_block = (i_size - 1) >> blkbits;
554 	map_bh.b_folio = folio;
555 	for (page_block = 0; page_block < blocks_per_page; ) {
556 
557 		map_bh.b_state = 0;
558 		map_bh.b_size = 1 << blkbits;
559 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
560 			goto confused;
561 		if (!buffer_mapped(&map_bh))
562 			goto confused;
563 		if (buffer_new(&map_bh))
564 			clean_bdev_bh_alias(&map_bh);
565 		if (buffer_boundary(&map_bh)) {
566 			boundary_block = map_bh.b_blocknr;
567 			boundary_bdev = map_bh.b_bdev;
568 		}
569 		if (page_block) {
570 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
571 				goto confused;
572 		}
573 		blocks[page_block++] = map_bh.b_blocknr;
574 		boundary = buffer_boundary(&map_bh);
575 		bdev = map_bh.b_bdev;
576 		if (block_in_file == last_block)
577 			break;
578 		block_in_file++;
579 	}
580 	BUG_ON(page_block == 0);
581 
582 	first_unmapped = page_block;
583 
584 page_is_mapped:
585 	/* Don't bother writing beyond EOF, truncate will discard the folio */
586 	if (folio_pos(folio) >= i_size)
587 		goto confused;
588 	length = folio_size(folio);
589 	if (folio_pos(folio) + length > i_size) {
590 		/*
591 		 * The page straddles i_size.  It must be zeroed out on each
592 		 * and every writepage invocation because it may be mmapped.
593 		 * "A file is mapped in multiples of the page size.  For a file
594 		 * that is not a multiple of the page size, the remaining memory
595 		 * is zeroed when mapped, and writes to that region are not
596 		 * written out to the file."
597 		 */
598 		length = i_size - folio_pos(folio);
599 		folio_zero_segment(folio, length, folio_size(folio));
600 	}
601 
602 	/*
603 	 * This page will go to BIO.  Do we need to send this BIO off first?
604 	 */
605 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
606 		bio = mpage_bio_submit_write(bio);
607 
608 alloc_new:
609 	if (bio == NULL) {
610 		bio = bio_alloc(bdev, BIO_MAX_VECS,
611 				REQ_OP_WRITE | wbc_to_write_flags(wbc),
612 				GFP_NOFS);
613 		bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
614 		wbc_init_bio(wbc, bio);
615 	}
616 
617 	/*
618 	 * Must try to add the page before marking the buffer clean or
619 	 * the confused fail path above (OOM) will be very confused when
620 	 * it finds all bh marked clean (i.e. it will not write anything)
621 	 */
622 	wbc_account_cgroup_owner(wbc, &folio->page, folio_size(folio));
623 	length = first_unmapped << blkbits;
624 	if (!bio_add_folio(bio, folio, length, 0)) {
625 		bio = mpage_bio_submit_write(bio);
626 		goto alloc_new;
627 	}
628 
629 	clean_buffers(&folio->page, first_unmapped);
630 
631 	BUG_ON(folio_test_writeback(folio));
632 	folio_start_writeback(folio);
633 	folio_unlock(folio);
634 	if (boundary || (first_unmapped != blocks_per_page)) {
635 		bio = mpage_bio_submit_write(bio);
636 		if (boundary_block) {
637 			write_boundary_block(boundary_bdev,
638 					boundary_block, 1 << blkbits);
639 		}
640 	} else {
641 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
642 	}
643 	goto out;
644 
645 confused:
646 	if (bio)
647 		bio = mpage_bio_submit_write(bio);
648 
649 	/*
650 	 * The caller has a ref on the inode, so *mapping is stable
651 	 */
652 	ret = block_write_full_page(&folio->page, mpd->get_block, wbc);
653 	mapping_set_error(mapping, ret);
654 out:
655 	mpd->bio = bio;
656 	return ret;
657 }
658 
659 /**
660  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
661  * @mapping: address space structure to write
662  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
663  * @get_block: the filesystem's block mapper function.
664  *
665  * This is a library function, which implements the writepages()
666  * address_space_operation.
667  */
668 int
669 mpage_writepages(struct address_space *mapping,
670 		struct writeback_control *wbc, get_block_t get_block)
671 {
672 	struct mpage_data mpd = {
673 		.get_block	= get_block,
674 	};
675 	struct blk_plug plug;
676 	int ret;
677 
678 	blk_start_plug(&plug);
679 	ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
680 	if (mpd.bio)
681 		mpage_bio_submit_write(mpd.bio);
682 	blk_finish_plug(&plug);
683 	return ret;
684 }
685 EXPORT_SYMBOL(mpage_writepages);
686