xref: /openbmc/linux/fs/minix/bitmap.c (revision b34e08d5)
1 /*
2  *  linux/fs/minix/bitmap.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * Modified for 680x0 by Hamish Macdonald
9  * Fixed for 680x0 by Andreas Schwab
10  */
11 
12 /* bitmap.c contains the code that handles the inode and block bitmaps */
13 
14 #include "minix.h"
15 #include <linux/buffer_head.h>
16 #include <linux/bitops.h>
17 #include <linux/sched.h>
18 
19 static DEFINE_SPINLOCK(bitmap_lock);
20 
21 /*
22  * bitmap consists of blocks filled with 16bit words
23  * bit set == busy, bit clear == free
24  * endianness is a mess, but for counting zero bits it really doesn't matter...
25  */
26 static __u32 count_free(struct buffer_head *map[], unsigned blocksize, __u32 numbits)
27 {
28 	__u32 sum = 0;
29 	unsigned blocks = DIV_ROUND_UP(numbits, blocksize * 8);
30 
31 	while (blocks--) {
32 		unsigned words = blocksize / 2;
33 		__u16 *p = (__u16 *)(*map++)->b_data;
34 		while (words--)
35 			sum += 16 - hweight16(*p++);
36 	}
37 
38 	return sum;
39 }
40 
41 void minix_free_block(struct inode *inode, unsigned long block)
42 {
43 	struct super_block *sb = inode->i_sb;
44 	struct minix_sb_info *sbi = minix_sb(sb);
45 	struct buffer_head *bh;
46 	int k = sb->s_blocksize_bits + 3;
47 	unsigned long bit, zone;
48 
49 	if (block < sbi->s_firstdatazone || block >= sbi->s_nzones) {
50 		printk("Trying to free block not in datazone\n");
51 		return;
52 	}
53 	zone = block - sbi->s_firstdatazone + 1;
54 	bit = zone & ((1<<k) - 1);
55 	zone >>= k;
56 	if (zone >= sbi->s_zmap_blocks) {
57 		printk("minix_free_block: nonexistent bitmap buffer\n");
58 		return;
59 	}
60 	bh = sbi->s_zmap[zone];
61 	spin_lock(&bitmap_lock);
62 	if (!minix_test_and_clear_bit(bit, bh->b_data))
63 		printk("minix_free_block (%s:%lu): bit already cleared\n",
64 		       sb->s_id, block);
65 	spin_unlock(&bitmap_lock);
66 	mark_buffer_dirty(bh);
67 	return;
68 }
69 
70 int minix_new_block(struct inode * inode)
71 {
72 	struct minix_sb_info *sbi = minix_sb(inode->i_sb);
73 	int bits_per_zone = 8 * inode->i_sb->s_blocksize;
74 	int i;
75 
76 	for (i = 0; i < sbi->s_zmap_blocks; i++) {
77 		struct buffer_head *bh = sbi->s_zmap[i];
78 		int j;
79 
80 		spin_lock(&bitmap_lock);
81 		j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
82 		if (j < bits_per_zone) {
83 			minix_set_bit(j, bh->b_data);
84 			spin_unlock(&bitmap_lock);
85 			mark_buffer_dirty(bh);
86 			j += i * bits_per_zone + sbi->s_firstdatazone-1;
87 			if (j < sbi->s_firstdatazone || j >= sbi->s_nzones)
88 				break;
89 			return j;
90 		}
91 		spin_unlock(&bitmap_lock);
92 	}
93 	return 0;
94 }
95 
96 unsigned long minix_count_free_blocks(struct super_block *sb)
97 {
98 	struct minix_sb_info *sbi = minix_sb(sb);
99 	u32 bits = sbi->s_nzones - (sbi->s_firstdatazone + 1);
100 
101 	return (count_free(sbi->s_zmap, sb->s_blocksize, bits)
102 		<< sbi->s_log_zone_size);
103 }
104 
105 struct minix_inode *
106 minix_V1_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
107 {
108 	int block;
109 	struct minix_sb_info *sbi = minix_sb(sb);
110 	struct minix_inode *p;
111 
112 	if (!ino || ino > sbi->s_ninodes) {
113 		printk("Bad inode number on dev %s: %ld is out of range\n",
114 		       sb->s_id, (long)ino);
115 		return NULL;
116 	}
117 	ino--;
118 	block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
119 		 ino / MINIX_INODES_PER_BLOCK;
120 	*bh = sb_bread(sb, block);
121 	if (!*bh) {
122 		printk("Unable to read inode block\n");
123 		return NULL;
124 	}
125 	p = (void *)(*bh)->b_data;
126 	return p + ino % MINIX_INODES_PER_BLOCK;
127 }
128 
129 struct minix2_inode *
130 minix_V2_raw_inode(struct super_block *sb, ino_t ino, struct buffer_head **bh)
131 {
132 	int block;
133 	struct minix_sb_info *sbi = minix_sb(sb);
134 	struct minix2_inode *p;
135 	int minix2_inodes_per_block = sb->s_blocksize / sizeof(struct minix2_inode);
136 
137 	*bh = NULL;
138 	if (!ino || ino > sbi->s_ninodes) {
139 		printk("Bad inode number on dev %s: %ld is out of range\n",
140 		       sb->s_id, (long)ino);
141 		return NULL;
142 	}
143 	ino--;
144 	block = 2 + sbi->s_imap_blocks + sbi->s_zmap_blocks +
145 		 ino / minix2_inodes_per_block;
146 	*bh = sb_bread(sb, block);
147 	if (!*bh) {
148 		printk("Unable to read inode block\n");
149 		return NULL;
150 	}
151 	p = (void *)(*bh)->b_data;
152 	return p + ino % minix2_inodes_per_block;
153 }
154 
155 /* Clear the link count and mode of a deleted inode on disk. */
156 
157 static void minix_clear_inode(struct inode *inode)
158 {
159 	struct buffer_head *bh = NULL;
160 
161 	if (INODE_VERSION(inode) == MINIX_V1) {
162 		struct minix_inode *raw_inode;
163 		raw_inode = minix_V1_raw_inode(inode->i_sb, inode->i_ino, &bh);
164 		if (raw_inode) {
165 			raw_inode->i_nlinks = 0;
166 			raw_inode->i_mode = 0;
167 		}
168 	} else {
169 		struct minix2_inode *raw_inode;
170 		raw_inode = minix_V2_raw_inode(inode->i_sb, inode->i_ino, &bh);
171 		if (raw_inode) {
172 			raw_inode->i_nlinks = 0;
173 			raw_inode->i_mode = 0;
174 		}
175 	}
176 	if (bh) {
177 		mark_buffer_dirty(bh);
178 		brelse (bh);
179 	}
180 }
181 
182 void minix_free_inode(struct inode * inode)
183 {
184 	struct super_block *sb = inode->i_sb;
185 	struct minix_sb_info *sbi = minix_sb(inode->i_sb);
186 	struct buffer_head *bh;
187 	int k = sb->s_blocksize_bits + 3;
188 	unsigned long ino, bit;
189 
190 	ino = inode->i_ino;
191 	if (ino < 1 || ino > sbi->s_ninodes) {
192 		printk("minix_free_inode: inode 0 or nonexistent inode\n");
193 		return;
194 	}
195 	bit = ino & ((1<<k) - 1);
196 	ino >>= k;
197 	if (ino >= sbi->s_imap_blocks) {
198 		printk("minix_free_inode: nonexistent imap in superblock\n");
199 		return;
200 	}
201 
202 	minix_clear_inode(inode);	/* clear on-disk copy */
203 
204 	bh = sbi->s_imap[ino];
205 	spin_lock(&bitmap_lock);
206 	if (!minix_test_and_clear_bit(bit, bh->b_data))
207 		printk("minix_free_inode: bit %lu already cleared\n", bit);
208 	spin_unlock(&bitmap_lock);
209 	mark_buffer_dirty(bh);
210 }
211 
212 struct inode *minix_new_inode(const struct inode *dir, umode_t mode, int *error)
213 {
214 	struct super_block *sb = dir->i_sb;
215 	struct minix_sb_info *sbi = minix_sb(sb);
216 	struct inode *inode = new_inode(sb);
217 	struct buffer_head * bh;
218 	int bits_per_zone = 8 * sb->s_blocksize;
219 	unsigned long j;
220 	int i;
221 
222 	if (!inode) {
223 		*error = -ENOMEM;
224 		return NULL;
225 	}
226 	j = bits_per_zone;
227 	bh = NULL;
228 	*error = -ENOSPC;
229 	spin_lock(&bitmap_lock);
230 	for (i = 0; i < sbi->s_imap_blocks; i++) {
231 		bh = sbi->s_imap[i];
232 		j = minix_find_first_zero_bit(bh->b_data, bits_per_zone);
233 		if (j < bits_per_zone)
234 			break;
235 	}
236 	if (!bh || j >= bits_per_zone) {
237 		spin_unlock(&bitmap_lock);
238 		iput(inode);
239 		return NULL;
240 	}
241 	if (minix_test_and_set_bit(j, bh->b_data)) {	/* shouldn't happen */
242 		spin_unlock(&bitmap_lock);
243 		printk("minix_new_inode: bit already set\n");
244 		iput(inode);
245 		return NULL;
246 	}
247 	spin_unlock(&bitmap_lock);
248 	mark_buffer_dirty(bh);
249 	j += i * bits_per_zone;
250 	if (!j || j > sbi->s_ninodes) {
251 		iput(inode);
252 		return NULL;
253 	}
254 	inode_init_owner(inode, dir, mode);
255 	inode->i_ino = j;
256 	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME_SEC;
257 	inode->i_blocks = 0;
258 	memset(&minix_i(inode)->u, 0, sizeof(minix_i(inode)->u));
259 	insert_inode_hash(inode);
260 	mark_inode_dirty(inode);
261 
262 	*error = 0;
263 	return inode;
264 }
265 
266 unsigned long minix_count_free_inodes(struct super_block *sb)
267 {
268 	struct minix_sb_info *sbi = minix_sb(sb);
269 	u32 bits = sbi->s_ninodes + 1;
270 
271 	return count_free(sbi->s_imap, sb->s_blocksize, bits);
272 }
273