xref: /openbmc/linux/fs/mbcache.c (revision e23feb16)
1 /*
2  * linux/fs/mbcache.c
3  * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
4  */
5 
6 /*
7  * Filesystem Meta Information Block Cache (mbcache)
8  *
9  * The mbcache caches blocks of block devices that need to be located
10  * by their device/block number, as well as by other criteria (such
11  * as the block's contents).
12  *
13  * There can only be one cache entry in a cache per device and block number.
14  * Additional indexes need not be unique in this sense. The number of
15  * additional indexes (=other criteria) can be hardwired at compile time
16  * or specified at cache create time.
17  *
18  * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19  * in the cache. A valid entry is in the main hash tables of the cache,
20  * and may also be in the lru list. An invalid entry is not in any hashes
21  * or lists.
22  *
23  * A valid cache entry is only in the lru list if no handles refer to it.
24  * Invalid cache entries will be freed when the last handle to the cache
25  * entry is released. Entries that cannot be freed immediately are put
26  * back on the lru list.
27  */
28 
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 
32 #include <linux/hash.h>
33 #include <linux/fs.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
39 
40 
41 #ifdef MB_CACHE_DEBUG
42 # define mb_debug(f...) do { \
43 		printk(KERN_DEBUG f); \
44 		printk("\n"); \
45 	} while (0)
46 #define mb_assert(c) do { if (!(c)) \
47 		printk(KERN_ERR "assertion " #c " failed\n"); \
48 	} while(0)
49 #else
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
52 #endif
53 #define mb_error(f...) do { \
54 		printk(KERN_ERR f); \
55 		printk("\n"); \
56 	} while(0)
57 
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
59 
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
61 
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
65 
66 EXPORT_SYMBOL(mb_cache_create);
67 EXPORT_SYMBOL(mb_cache_shrink);
68 EXPORT_SYMBOL(mb_cache_destroy);
69 EXPORT_SYMBOL(mb_cache_entry_alloc);
70 EXPORT_SYMBOL(mb_cache_entry_insert);
71 EXPORT_SYMBOL(mb_cache_entry_release);
72 EXPORT_SYMBOL(mb_cache_entry_free);
73 EXPORT_SYMBOL(mb_cache_entry_get);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first);
76 EXPORT_SYMBOL(mb_cache_entry_find_next);
77 #endif
78 
79 /*
80  * Global data: list of all mbcache's, lru list, and a spinlock for
81  * accessing cache data structures on SMP machines. The lru list is
82  * global across all mbcaches.
83  */
84 
85 static LIST_HEAD(mb_cache_list);
86 static LIST_HEAD(mb_cache_lru_list);
87 static DEFINE_SPINLOCK(mb_cache_spinlock);
88 
89 static inline int
90 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
91 {
92 	return !list_empty(&ce->e_block_list);
93 }
94 
95 
96 static void
97 __mb_cache_entry_unhash(struct mb_cache_entry *ce)
98 {
99 	if (__mb_cache_entry_is_hashed(ce)) {
100 		list_del_init(&ce->e_block_list);
101 		list_del(&ce->e_index.o_list);
102 	}
103 }
104 
105 
106 static void
107 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
108 {
109 	struct mb_cache *cache = ce->e_cache;
110 
111 	mb_assert(!(ce->e_used || ce->e_queued));
112 	kmem_cache_free(cache->c_entry_cache, ce);
113 	atomic_dec(&cache->c_entry_count);
114 }
115 
116 
117 static void
118 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
119 	__releases(mb_cache_spinlock)
120 {
121 	/* Wake up all processes queuing for this cache entry. */
122 	if (ce->e_queued)
123 		wake_up_all(&mb_cache_queue);
124 	if (ce->e_used >= MB_CACHE_WRITER)
125 		ce->e_used -= MB_CACHE_WRITER;
126 	ce->e_used--;
127 	if (!(ce->e_used || ce->e_queued)) {
128 		if (!__mb_cache_entry_is_hashed(ce))
129 			goto forget;
130 		mb_assert(list_empty(&ce->e_lru_list));
131 		list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
132 	}
133 	spin_unlock(&mb_cache_spinlock);
134 	return;
135 forget:
136 	spin_unlock(&mb_cache_spinlock);
137 	__mb_cache_entry_forget(ce, GFP_KERNEL);
138 }
139 
140 
141 /*
142  * mb_cache_shrink_scan()  memory pressure callback
143  *
144  * This function is called by the kernel memory management when memory
145  * gets low.
146  *
147  * @shrink: (ignored)
148  * @sc: shrink_control passed from reclaim
149  *
150  * Returns the number of objects freed.
151  */
152 static unsigned long
153 mb_cache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
154 {
155 	LIST_HEAD(free_list);
156 	struct mb_cache_entry *entry, *tmp;
157 	int nr_to_scan = sc->nr_to_scan;
158 	gfp_t gfp_mask = sc->gfp_mask;
159 	unsigned long freed = 0;
160 
161 	mb_debug("trying to free %d entries", nr_to_scan);
162 	spin_lock(&mb_cache_spinlock);
163 	while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
164 		struct mb_cache_entry *ce =
165 			list_entry(mb_cache_lru_list.next,
166 				   struct mb_cache_entry, e_lru_list);
167 		list_move_tail(&ce->e_lru_list, &free_list);
168 		__mb_cache_entry_unhash(ce);
169 		freed++;
170 	}
171 	spin_unlock(&mb_cache_spinlock);
172 	list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
173 		__mb_cache_entry_forget(entry, gfp_mask);
174 	}
175 	return freed;
176 }
177 
178 static unsigned long
179 mb_cache_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
180 {
181 	struct mb_cache *cache;
182 	unsigned long count = 0;
183 
184 	spin_lock(&mb_cache_spinlock);
185 	list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
186 		mb_debug("cache %s (%d)", cache->c_name,
187 			  atomic_read(&cache->c_entry_count));
188 		count += atomic_read(&cache->c_entry_count);
189 	}
190 	spin_unlock(&mb_cache_spinlock);
191 
192 	return vfs_pressure_ratio(count);
193 }
194 
195 static struct shrinker mb_cache_shrinker = {
196 	.count_objects = mb_cache_shrink_count,
197 	.scan_objects = mb_cache_shrink_scan,
198 	.seeks = DEFAULT_SEEKS,
199 };
200 
201 /*
202  * mb_cache_create()  create a new cache
203  *
204  * All entries in one cache are equal size. Cache entries may be from
205  * multiple devices. If this is the first mbcache created, registers
206  * the cache with kernel memory management. Returns NULL if no more
207  * memory was available.
208  *
209  * @name: name of the cache (informal)
210  * @bucket_bits: log2(number of hash buckets)
211  */
212 struct mb_cache *
213 mb_cache_create(const char *name, int bucket_bits)
214 {
215 	int n, bucket_count = 1 << bucket_bits;
216 	struct mb_cache *cache = NULL;
217 
218 	cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
219 	if (!cache)
220 		return NULL;
221 	cache->c_name = name;
222 	atomic_set(&cache->c_entry_count, 0);
223 	cache->c_bucket_bits = bucket_bits;
224 	cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
225 	                              GFP_KERNEL);
226 	if (!cache->c_block_hash)
227 		goto fail;
228 	for (n=0; n<bucket_count; n++)
229 		INIT_LIST_HEAD(&cache->c_block_hash[n]);
230 	cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head),
231 				      GFP_KERNEL);
232 	if (!cache->c_index_hash)
233 		goto fail;
234 	for (n=0; n<bucket_count; n++)
235 		INIT_LIST_HEAD(&cache->c_index_hash[n]);
236 	cache->c_entry_cache = kmem_cache_create(name,
237 		sizeof(struct mb_cache_entry), 0,
238 		SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
239 	if (!cache->c_entry_cache)
240 		goto fail2;
241 
242 	/*
243 	 * Set an upper limit on the number of cache entries so that the hash
244 	 * chains won't grow too long.
245 	 */
246 	cache->c_max_entries = bucket_count << 4;
247 
248 	spin_lock(&mb_cache_spinlock);
249 	list_add(&cache->c_cache_list, &mb_cache_list);
250 	spin_unlock(&mb_cache_spinlock);
251 	return cache;
252 
253 fail2:
254 	kfree(cache->c_index_hash);
255 
256 fail:
257 	kfree(cache->c_block_hash);
258 	kfree(cache);
259 	return NULL;
260 }
261 
262 
263 /*
264  * mb_cache_shrink()
265  *
266  * Removes all cache entries of a device from the cache. All cache entries
267  * currently in use cannot be freed, and thus remain in the cache. All others
268  * are freed.
269  *
270  * @bdev: which device's cache entries to shrink
271  */
272 void
273 mb_cache_shrink(struct block_device *bdev)
274 {
275 	LIST_HEAD(free_list);
276 	struct list_head *l, *ltmp;
277 
278 	spin_lock(&mb_cache_spinlock);
279 	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
280 		struct mb_cache_entry *ce =
281 			list_entry(l, struct mb_cache_entry, e_lru_list);
282 		if (ce->e_bdev == bdev) {
283 			list_move_tail(&ce->e_lru_list, &free_list);
284 			__mb_cache_entry_unhash(ce);
285 		}
286 	}
287 	spin_unlock(&mb_cache_spinlock);
288 	list_for_each_safe(l, ltmp, &free_list) {
289 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
290 						   e_lru_list), GFP_KERNEL);
291 	}
292 }
293 
294 
295 /*
296  * mb_cache_destroy()
297  *
298  * Shrinks the cache to its minimum possible size (hopefully 0 entries),
299  * and then destroys it. If this was the last mbcache, un-registers the
300  * mbcache from kernel memory management.
301  */
302 void
303 mb_cache_destroy(struct mb_cache *cache)
304 {
305 	LIST_HEAD(free_list);
306 	struct list_head *l, *ltmp;
307 
308 	spin_lock(&mb_cache_spinlock);
309 	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
310 		struct mb_cache_entry *ce =
311 			list_entry(l, struct mb_cache_entry, e_lru_list);
312 		if (ce->e_cache == cache) {
313 			list_move_tail(&ce->e_lru_list, &free_list);
314 			__mb_cache_entry_unhash(ce);
315 		}
316 	}
317 	list_del(&cache->c_cache_list);
318 	spin_unlock(&mb_cache_spinlock);
319 
320 	list_for_each_safe(l, ltmp, &free_list) {
321 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
322 						   e_lru_list), GFP_KERNEL);
323 	}
324 
325 	if (atomic_read(&cache->c_entry_count) > 0) {
326 		mb_error("cache %s: %d orphaned entries",
327 			  cache->c_name,
328 			  atomic_read(&cache->c_entry_count));
329 	}
330 
331 	kmem_cache_destroy(cache->c_entry_cache);
332 
333 	kfree(cache->c_index_hash);
334 	kfree(cache->c_block_hash);
335 	kfree(cache);
336 }
337 
338 /*
339  * mb_cache_entry_alloc()
340  *
341  * Allocates a new cache entry. The new entry will not be valid initially,
342  * and thus cannot be looked up yet. It should be filled with data, and
343  * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
344  * if no more memory was available.
345  */
346 struct mb_cache_entry *
347 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
348 {
349 	struct mb_cache_entry *ce = NULL;
350 
351 	if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
352 		spin_lock(&mb_cache_spinlock);
353 		if (!list_empty(&mb_cache_lru_list)) {
354 			ce = list_entry(mb_cache_lru_list.next,
355 					struct mb_cache_entry, e_lru_list);
356 			list_del_init(&ce->e_lru_list);
357 			__mb_cache_entry_unhash(ce);
358 		}
359 		spin_unlock(&mb_cache_spinlock);
360 	}
361 	if (!ce) {
362 		ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
363 		if (!ce)
364 			return NULL;
365 		atomic_inc(&cache->c_entry_count);
366 		INIT_LIST_HEAD(&ce->e_lru_list);
367 		INIT_LIST_HEAD(&ce->e_block_list);
368 		ce->e_cache = cache;
369 		ce->e_queued = 0;
370 	}
371 	ce->e_used = 1 + MB_CACHE_WRITER;
372 	return ce;
373 }
374 
375 
376 /*
377  * mb_cache_entry_insert()
378  *
379  * Inserts an entry that was allocated using mb_cache_entry_alloc() into
380  * the cache. After this, the cache entry can be looked up, but is not yet
381  * in the lru list as the caller still holds a handle to it. Returns 0 on
382  * success, or -EBUSY if a cache entry for that device + inode exists
383  * already (this may happen after a failed lookup, but when another process
384  * has inserted the same cache entry in the meantime).
385  *
386  * @bdev: device the cache entry belongs to
387  * @block: block number
388  * @key: lookup key
389  */
390 int
391 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
392 		      sector_t block, unsigned int key)
393 {
394 	struct mb_cache *cache = ce->e_cache;
395 	unsigned int bucket;
396 	struct list_head *l;
397 	int error = -EBUSY;
398 
399 	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
400 			   cache->c_bucket_bits);
401 	spin_lock(&mb_cache_spinlock);
402 	list_for_each_prev(l, &cache->c_block_hash[bucket]) {
403 		struct mb_cache_entry *ce =
404 			list_entry(l, struct mb_cache_entry, e_block_list);
405 		if (ce->e_bdev == bdev && ce->e_block == block)
406 			goto out;
407 	}
408 	__mb_cache_entry_unhash(ce);
409 	ce->e_bdev = bdev;
410 	ce->e_block = block;
411 	list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
412 	ce->e_index.o_key = key;
413 	bucket = hash_long(key, cache->c_bucket_bits);
414 	list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]);
415 	error = 0;
416 out:
417 	spin_unlock(&mb_cache_spinlock);
418 	return error;
419 }
420 
421 
422 /*
423  * mb_cache_entry_release()
424  *
425  * Release a handle to a cache entry. When the last handle to a cache entry
426  * is released it is either freed (if it is invalid) or otherwise inserted
427  * in to the lru list.
428  */
429 void
430 mb_cache_entry_release(struct mb_cache_entry *ce)
431 {
432 	spin_lock(&mb_cache_spinlock);
433 	__mb_cache_entry_release_unlock(ce);
434 }
435 
436 
437 /*
438  * mb_cache_entry_free()
439  *
440  * This is equivalent to the sequence mb_cache_entry_takeout() --
441  * mb_cache_entry_release().
442  */
443 void
444 mb_cache_entry_free(struct mb_cache_entry *ce)
445 {
446 	spin_lock(&mb_cache_spinlock);
447 	mb_assert(list_empty(&ce->e_lru_list));
448 	__mb_cache_entry_unhash(ce);
449 	__mb_cache_entry_release_unlock(ce);
450 }
451 
452 
453 /*
454  * mb_cache_entry_get()
455  *
456  * Get a cache entry  by device / block number. (There can only be one entry
457  * in the cache per device and block.) Returns NULL if no such cache entry
458  * exists. The returned cache entry is locked for exclusive access ("single
459  * writer").
460  */
461 struct mb_cache_entry *
462 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
463 		   sector_t block)
464 {
465 	unsigned int bucket;
466 	struct list_head *l;
467 	struct mb_cache_entry *ce;
468 
469 	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
470 			   cache->c_bucket_bits);
471 	spin_lock(&mb_cache_spinlock);
472 	list_for_each(l, &cache->c_block_hash[bucket]) {
473 		ce = list_entry(l, struct mb_cache_entry, e_block_list);
474 		if (ce->e_bdev == bdev && ce->e_block == block) {
475 			DEFINE_WAIT(wait);
476 
477 			if (!list_empty(&ce->e_lru_list))
478 				list_del_init(&ce->e_lru_list);
479 
480 			while (ce->e_used > 0) {
481 				ce->e_queued++;
482 				prepare_to_wait(&mb_cache_queue, &wait,
483 						TASK_UNINTERRUPTIBLE);
484 				spin_unlock(&mb_cache_spinlock);
485 				schedule();
486 				spin_lock(&mb_cache_spinlock);
487 				ce->e_queued--;
488 			}
489 			finish_wait(&mb_cache_queue, &wait);
490 			ce->e_used += 1 + MB_CACHE_WRITER;
491 
492 			if (!__mb_cache_entry_is_hashed(ce)) {
493 				__mb_cache_entry_release_unlock(ce);
494 				return NULL;
495 			}
496 			goto cleanup;
497 		}
498 	}
499 	ce = NULL;
500 
501 cleanup:
502 	spin_unlock(&mb_cache_spinlock);
503 	return ce;
504 }
505 
506 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
507 
508 static struct mb_cache_entry *
509 __mb_cache_entry_find(struct list_head *l, struct list_head *head,
510 		      struct block_device *bdev, unsigned int key)
511 {
512 	while (l != head) {
513 		struct mb_cache_entry *ce =
514 			list_entry(l, struct mb_cache_entry, e_index.o_list);
515 		if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
516 			DEFINE_WAIT(wait);
517 
518 			if (!list_empty(&ce->e_lru_list))
519 				list_del_init(&ce->e_lru_list);
520 
521 			/* Incrementing before holding the lock gives readers
522 			   priority over writers. */
523 			ce->e_used++;
524 			while (ce->e_used >= MB_CACHE_WRITER) {
525 				ce->e_queued++;
526 				prepare_to_wait(&mb_cache_queue, &wait,
527 						TASK_UNINTERRUPTIBLE);
528 				spin_unlock(&mb_cache_spinlock);
529 				schedule();
530 				spin_lock(&mb_cache_spinlock);
531 				ce->e_queued--;
532 			}
533 			finish_wait(&mb_cache_queue, &wait);
534 
535 			if (!__mb_cache_entry_is_hashed(ce)) {
536 				__mb_cache_entry_release_unlock(ce);
537 				spin_lock(&mb_cache_spinlock);
538 				return ERR_PTR(-EAGAIN);
539 			}
540 			return ce;
541 		}
542 		l = l->next;
543 	}
544 	return NULL;
545 }
546 
547 
548 /*
549  * mb_cache_entry_find_first()
550  *
551  * Find the first cache entry on a given device with a certain key in
552  * an additional index. Additional matches can be found with
553  * mb_cache_entry_find_next(). Returns NULL if no match was found. The
554  * returned cache entry is locked for shared access ("multiple readers").
555  *
556  * @cache: the cache to search
557  * @bdev: the device the cache entry should belong to
558  * @key: the key in the index
559  */
560 struct mb_cache_entry *
561 mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
562 			  unsigned int key)
563 {
564 	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
565 	struct list_head *l;
566 	struct mb_cache_entry *ce;
567 
568 	spin_lock(&mb_cache_spinlock);
569 	l = cache->c_index_hash[bucket].next;
570 	ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
571 	spin_unlock(&mb_cache_spinlock);
572 	return ce;
573 }
574 
575 
576 /*
577  * mb_cache_entry_find_next()
578  *
579  * Find the next cache entry on a given device with a certain key in an
580  * additional index. Returns NULL if no match could be found. The previous
581  * entry is atomatically released, so that mb_cache_entry_find_next() can
582  * be called like this:
583  *
584  * entry = mb_cache_entry_find_first();
585  * while (entry) {
586  * 	...
587  *	entry = mb_cache_entry_find_next(entry, ...);
588  * }
589  *
590  * @prev: The previous match
591  * @bdev: the device the cache entry should belong to
592  * @key: the key in the index
593  */
594 struct mb_cache_entry *
595 mb_cache_entry_find_next(struct mb_cache_entry *prev,
596 			 struct block_device *bdev, unsigned int key)
597 {
598 	struct mb_cache *cache = prev->e_cache;
599 	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
600 	struct list_head *l;
601 	struct mb_cache_entry *ce;
602 
603 	spin_lock(&mb_cache_spinlock);
604 	l = prev->e_index.o_list.next;
605 	ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
606 	__mb_cache_entry_release_unlock(prev);
607 	return ce;
608 }
609 
610 #endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
611 
612 static int __init init_mbcache(void)
613 {
614 	register_shrinker(&mb_cache_shrinker);
615 	return 0;
616 }
617 
618 static void __exit exit_mbcache(void)
619 {
620 	unregister_shrinker(&mb_cache_shrinker);
621 }
622 
623 module_init(init_mbcache)
624 module_exit(exit_mbcache)
625 
626