xref: /openbmc/linux/fs/mbcache.c (revision b595076a)
1 /*
2  * linux/fs/mbcache.c
3  * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
4  */
5 
6 /*
7  * Filesystem Meta Information Block Cache (mbcache)
8  *
9  * The mbcache caches blocks of block devices that need to be located
10  * by their device/block number, as well as by other criteria (such
11  * as the block's contents).
12  *
13  * There can only be one cache entry in a cache per device and block number.
14  * Additional indexes need not be unique in this sense. The number of
15  * additional indexes (=other criteria) can be hardwired at compile time
16  * or specified at cache create time.
17  *
18  * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19  * in the cache. A valid entry is in the main hash tables of the cache,
20  * and may also be in the lru list. An invalid entry is not in any hashes
21  * or lists.
22  *
23  * A valid cache entry is only in the lru list if no handles refer to it.
24  * Invalid cache entries will be freed when the last handle to the cache
25  * entry is released. Entries that cannot be freed immediately are put
26  * back on the lru list.
27  */
28 
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 
32 #include <linux/hash.h>
33 #include <linux/fs.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
39 
40 
41 #ifdef MB_CACHE_DEBUG
42 # define mb_debug(f...) do { \
43 		printk(KERN_DEBUG f); \
44 		printk("\n"); \
45 	} while (0)
46 #define mb_assert(c) do { if (!(c)) \
47 		printk(KERN_ERR "assertion " #c " failed\n"); \
48 	} while(0)
49 #else
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
52 #endif
53 #define mb_error(f...) do { \
54 		printk(KERN_ERR f); \
55 		printk("\n"); \
56 	} while(0)
57 
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
59 
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
61 
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
65 
66 EXPORT_SYMBOL(mb_cache_create);
67 EXPORT_SYMBOL(mb_cache_shrink);
68 EXPORT_SYMBOL(mb_cache_destroy);
69 EXPORT_SYMBOL(mb_cache_entry_alloc);
70 EXPORT_SYMBOL(mb_cache_entry_insert);
71 EXPORT_SYMBOL(mb_cache_entry_release);
72 EXPORT_SYMBOL(mb_cache_entry_free);
73 EXPORT_SYMBOL(mb_cache_entry_get);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first);
76 EXPORT_SYMBOL(mb_cache_entry_find_next);
77 #endif
78 
79 struct mb_cache {
80 	struct list_head		c_cache_list;
81 	const char			*c_name;
82 	atomic_t			c_entry_count;
83 	int				c_max_entries;
84 	int				c_bucket_bits;
85 	struct kmem_cache		*c_entry_cache;
86 	struct list_head		*c_block_hash;
87 	struct list_head		*c_index_hash;
88 };
89 
90 
91 /*
92  * Global data: list of all mbcache's, lru list, and a spinlock for
93  * accessing cache data structures on SMP machines. The lru list is
94  * global across all mbcaches.
95  */
96 
97 static LIST_HEAD(mb_cache_list);
98 static LIST_HEAD(mb_cache_lru_list);
99 static DEFINE_SPINLOCK(mb_cache_spinlock);
100 
101 /*
102  * What the mbcache registers as to get shrunk dynamically.
103  */
104 
105 static int mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask);
106 
107 static struct shrinker mb_cache_shrinker = {
108 	.shrink = mb_cache_shrink_fn,
109 	.seeks = DEFAULT_SEEKS,
110 };
111 
112 static inline int
113 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
114 {
115 	return !list_empty(&ce->e_block_list);
116 }
117 
118 
119 static void
120 __mb_cache_entry_unhash(struct mb_cache_entry *ce)
121 {
122 	if (__mb_cache_entry_is_hashed(ce)) {
123 		list_del_init(&ce->e_block_list);
124 		list_del(&ce->e_index.o_list);
125 	}
126 }
127 
128 
129 static void
130 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
131 {
132 	struct mb_cache *cache = ce->e_cache;
133 
134 	mb_assert(!(ce->e_used || ce->e_queued));
135 	kmem_cache_free(cache->c_entry_cache, ce);
136 	atomic_dec(&cache->c_entry_count);
137 }
138 
139 
140 static void
141 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
142 	__releases(mb_cache_spinlock)
143 {
144 	/* Wake up all processes queuing for this cache entry. */
145 	if (ce->e_queued)
146 		wake_up_all(&mb_cache_queue);
147 	if (ce->e_used >= MB_CACHE_WRITER)
148 		ce->e_used -= MB_CACHE_WRITER;
149 	ce->e_used--;
150 	if (!(ce->e_used || ce->e_queued)) {
151 		if (!__mb_cache_entry_is_hashed(ce))
152 			goto forget;
153 		mb_assert(list_empty(&ce->e_lru_list));
154 		list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
155 	}
156 	spin_unlock(&mb_cache_spinlock);
157 	return;
158 forget:
159 	spin_unlock(&mb_cache_spinlock);
160 	__mb_cache_entry_forget(ce, GFP_KERNEL);
161 }
162 
163 
164 /*
165  * mb_cache_shrink_fn()  memory pressure callback
166  *
167  * This function is called by the kernel memory management when memory
168  * gets low.
169  *
170  * @shrink: (ignored)
171  * @nr_to_scan: Number of objects to scan
172  * @gfp_mask: (ignored)
173  *
174  * Returns the number of objects which are present in the cache.
175  */
176 static int
177 mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
178 {
179 	LIST_HEAD(free_list);
180 	struct mb_cache *cache;
181 	struct mb_cache_entry *entry, *tmp;
182 	int count = 0;
183 
184 	mb_debug("trying to free %d entries", nr_to_scan);
185 	spin_lock(&mb_cache_spinlock);
186 	while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
187 		struct mb_cache_entry *ce =
188 			list_entry(mb_cache_lru_list.next,
189 				   struct mb_cache_entry, e_lru_list);
190 		list_move_tail(&ce->e_lru_list, &free_list);
191 		__mb_cache_entry_unhash(ce);
192 	}
193 	list_for_each_entry(cache, &mb_cache_list, c_cache_list) {
194 		mb_debug("cache %s (%d)", cache->c_name,
195 			  atomic_read(&cache->c_entry_count));
196 		count += atomic_read(&cache->c_entry_count);
197 	}
198 	spin_unlock(&mb_cache_spinlock);
199 	list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) {
200 		__mb_cache_entry_forget(entry, gfp_mask);
201 	}
202 	return (count / 100) * sysctl_vfs_cache_pressure;
203 }
204 
205 
206 /*
207  * mb_cache_create()  create a new cache
208  *
209  * All entries in one cache are equal size. Cache entries may be from
210  * multiple devices. If this is the first mbcache created, registers
211  * the cache with kernel memory management. Returns NULL if no more
212  * memory was available.
213  *
214  * @name: name of the cache (informal)
215  * @bucket_bits: log2(number of hash buckets)
216  */
217 struct mb_cache *
218 mb_cache_create(const char *name, int bucket_bits)
219 {
220 	int n, bucket_count = 1 << bucket_bits;
221 	struct mb_cache *cache = NULL;
222 
223 	cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL);
224 	if (!cache)
225 		return NULL;
226 	cache->c_name = name;
227 	atomic_set(&cache->c_entry_count, 0);
228 	cache->c_bucket_bits = bucket_bits;
229 	cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
230 	                              GFP_KERNEL);
231 	if (!cache->c_block_hash)
232 		goto fail;
233 	for (n=0; n<bucket_count; n++)
234 		INIT_LIST_HEAD(&cache->c_block_hash[n]);
235 	cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head),
236 				      GFP_KERNEL);
237 	if (!cache->c_index_hash)
238 		goto fail;
239 	for (n=0; n<bucket_count; n++)
240 		INIT_LIST_HEAD(&cache->c_index_hash[n]);
241 	cache->c_entry_cache = kmem_cache_create(name,
242 		sizeof(struct mb_cache_entry), 0,
243 		SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
244 	if (!cache->c_entry_cache)
245 		goto fail2;
246 
247 	/*
248 	 * Set an upper limit on the number of cache entries so that the hash
249 	 * chains won't grow too long.
250 	 */
251 	cache->c_max_entries = bucket_count << 4;
252 
253 	spin_lock(&mb_cache_spinlock);
254 	list_add(&cache->c_cache_list, &mb_cache_list);
255 	spin_unlock(&mb_cache_spinlock);
256 	return cache;
257 
258 fail2:
259 	kfree(cache->c_index_hash);
260 
261 fail:
262 	kfree(cache->c_block_hash);
263 	kfree(cache);
264 	return NULL;
265 }
266 
267 
268 /*
269  * mb_cache_shrink()
270  *
271  * Removes all cache entries of a device from the cache. All cache entries
272  * currently in use cannot be freed, and thus remain in the cache. All others
273  * are freed.
274  *
275  * @bdev: which device's cache entries to shrink
276  */
277 void
278 mb_cache_shrink(struct block_device *bdev)
279 {
280 	LIST_HEAD(free_list);
281 	struct list_head *l, *ltmp;
282 
283 	spin_lock(&mb_cache_spinlock);
284 	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
285 		struct mb_cache_entry *ce =
286 			list_entry(l, struct mb_cache_entry, e_lru_list);
287 		if (ce->e_bdev == bdev) {
288 			list_move_tail(&ce->e_lru_list, &free_list);
289 			__mb_cache_entry_unhash(ce);
290 		}
291 	}
292 	spin_unlock(&mb_cache_spinlock);
293 	list_for_each_safe(l, ltmp, &free_list) {
294 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
295 						   e_lru_list), GFP_KERNEL);
296 	}
297 }
298 
299 
300 /*
301  * mb_cache_destroy()
302  *
303  * Shrinks the cache to its minimum possible size (hopefully 0 entries),
304  * and then destroys it. If this was the last mbcache, un-registers the
305  * mbcache from kernel memory management.
306  */
307 void
308 mb_cache_destroy(struct mb_cache *cache)
309 {
310 	LIST_HEAD(free_list);
311 	struct list_head *l, *ltmp;
312 
313 	spin_lock(&mb_cache_spinlock);
314 	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
315 		struct mb_cache_entry *ce =
316 			list_entry(l, struct mb_cache_entry, e_lru_list);
317 		if (ce->e_cache == cache) {
318 			list_move_tail(&ce->e_lru_list, &free_list);
319 			__mb_cache_entry_unhash(ce);
320 		}
321 	}
322 	list_del(&cache->c_cache_list);
323 	spin_unlock(&mb_cache_spinlock);
324 
325 	list_for_each_safe(l, ltmp, &free_list) {
326 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
327 						   e_lru_list), GFP_KERNEL);
328 	}
329 
330 	if (atomic_read(&cache->c_entry_count) > 0) {
331 		mb_error("cache %s: %d orphaned entries",
332 			  cache->c_name,
333 			  atomic_read(&cache->c_entry_count));
334 	}
335 
336 	kmem_cache_destroy(cache->c_entry_cache);
337 
338 	kfree(cache->c_index_hash);
339 	kfree(cache->c_block_hash);
340 	kfree(cache);
341 }
342 
343 /*
344  * mb_cache_entry_alloc()
345  *
346  * Allocates a new cache entry. The new entry will not be valid initially,
347  * and thus cannot be looked up yet. It should be filled with data, and
348  * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
349  * if no more memory was available.
350  */
351 struct mb_cache_entry *
352 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags)
353 {
354 	struct mb_cache_entry *ce = NULL;
355 
356 	if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) {
357 		spin_lock(&mb_cache_spinlock);
358 		if (!list_empty(&mb_cache_lru_list)) {
359 			ce = list_entry(mb_cache_lru_list.next,
360 					struct mb_cache_entry, e_lru_list);
361 			list_del_init(&ce->e_lru_list);
362 			__mb_cache_entry_unhash(ce);
363 		}
364 		spin_unlock(&mb_cache_spinlock);
365 	}
366 	if (!ce) {
367 		ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags);
368 		if (!ce)
369 			return NULL;
370 		atomic_inc(&cache->c_entry_count);
371 		INIT_LIST_HEAD(&ce->e_lru_list);
372 		INIT_LIST_HEAD(&ce->e_block_list);
373 		ce->e_cache = cache;
374 		ce->e_queued = 0;
375 	}
376 	ce->e_used = 1 + MB_CACHE_WRITER;
377 	return ce;
378 }
379 
380 
381 /*
382  * mb_cache_entry_insert()
383  *
384  * Inserts an entry that was allocated using mb_cache_entry_alloc() into
385  * the cache. After this, the cache entry can be looked up, but is not yet
386  * in the lru list as the caller still holds a handle to it. Returns 0 on
387  * success, or -EBUSY if a cache entry for that device + inode exists
388  * already (this may happen after a failed lookup, but when another process
389  * has inserted the same cache entry in the meantime).
390  *
391  * @bdev: device the cache entry belongs to
392  * @block: block number
393  * @key: lookup key
394  */
395 int
396 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
397 		      sector_t block, unsigned int key)
398 {
399 	struct mb_cache *cache = ce->e_cache;
400 	unsigned int bucket;
401 	struct list_head *l;
402 	int error = -EBUSY;
403 
404 	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
405 			   cache->c_bucket_bits);
406 	spin_lock(&mb_cache_spinlock);
407 	list_for_each_prev(l, &cache->c_block_hash[bucket]) {
408 		struct mb_cache_entry *ce =
409 			list_entry(l, struct mb_cache_entry, e_block_list);
410 		if (ce->e_bdev == bdev && ce->e_block == block)
411 			goto out;
412 	}
413 	__mb_cache_entry_unhash(ce);
414 	ce->e_bdev = bdev;
415 	ce->e_block = block;
416 	list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
417 	ce->e_index.o_key = key;
418 	bucket = hash_long(key, cache->c_bucket_bits);
419 	list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]);
420 	error = 0;
421 out:
422 	spin_unlock(&mb_cache_spinlock);
423 	return error;
424 }
425 
426 
427 /*
428  * mb_cache_entry_release()
429  *
430  * Release a handle to a cache entry. When the last handle to a cache entry
431  * is released it is either freed (if it is invalid) or otherwise inserted
432  * in to the lru list.
433  */
434 void
435 mb_cache_entry_release(struct mb_cache_entry *ce)
436 {
437 	spin_lock(&mb_cache_spinlock);
438 	__mb_cache_entry_release_unlock(ce);
439 }
440 
441 
442 /*
443  * mb_cache_entry_free()
444  *
445  * This is equivalent to the sequence mb_cache_entry_takeout() --
446  * mb_cache_entry_release().
447  */
448 void
449 mb_cache_entry_free(struct mb_cache_entry *ce)
450 {
451 	spin_lock(&mb_cache_spinlock);
452 	mb_assert(list_empty(&ce->e_lru_list));
453 	__mb_cache_entry_unhash(ce);
454 	__mb_cache_entry_release_unlock(ce);
455 }
456 
457 
458 /*
459  * mb_cache_entry_get()
460  *
461  * Get a cache entry  by device / block number. (There can only be one entry
462  * in the cache per device and block.) Returns NULL if no such cache entry
463  * exists. The returned cache entry is locked for exclusive access ("single
464  * writer").
465  */
466 struct mb_cache_entry *
467 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
468 		   sector_t block)
469 {
470 	unsigned int bucket;
471 	struct list_head *l;
472 	struct mb_cache_entry *ce;
473 
474 	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
475 			   cache->c_bucket_bits);
476 	spin_lock(&mb_cache_spinlock);
477 	list_for_each(l, &cache->c_block_hash[bucket]) {
478 		ce = list_entry(l, struct mb_cache_entry, e_block_list);
479 		if (ce->e_bdev == bdev && ce->e_block == block) {
480 			DEFINE_WAIT(wait);
481 
482 			if (!list_empty(&ce->e_lru_list))
483 				list_del_init(&ce->e_lru_list);
484 
485 			while (ce->e_used > 0) {
486 				ce->e_queued++;
487 				prepare_to_wait(&mb_cache_queue, &wait,
488 						TASK_UNINTERRUPTIBLE);
489 				spin_unlock(&mb_cache_spinlock);
490 				schedule();
491 				spin_lock(&mb_cache_spinlock);
492 				ce->e_queued--;
493 			}
494 			finish_wait(&mb_cache_queue, &wait);
495 			ce->e_used += 1 + MB_CACHE_WRITER;
496 
497 			if (!__mb_cache_entry_is_hashed(ce)) {
498 				__mb_cache_entry_release_unlock(ce);
499 				return NULL;
500 			}
501 			goto cleanup;
502 		}
503 	}
504 	ce = NULL;
505 
506 cleanup:
507 	spin_unlock(&mb_cache_spinlock);
508 	return ce;
509 }
510 
511 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
512 
513 static struct mb_cache_entry *
514 __mb_cache_entry_find(struct list_head *l, struct list_head *head,
515 		      struct block_device *bdev, unsigned int key)
516 {
517 	while (l != head) {
518 		struct mb_cache_entry *ce =
519 			list_entry(l, struct mb_cache_entry, e_index.o_list);
520 		if (ce->e_bdev == bdev && ce->e_index.o_key == key) {
521 			DEFINE_WAIT(wait);
522 
523 			if (!list_empty(&ce->e_lru_list))
524 				list_del_init(&ce->e_lru_list);
525 
526 			/* Incrementing before holding the lock gives readers
527 			   priority over writers. */
528 			ce->e_used++;
529 			while (ce->e_used >= MB_CACHE_WRITER) {
530 				ce->e_queued++;
531 				prepare_to_wait(&mb_cache_queue, &wait,
532 						TASK_UNINTERRUPTIBLE);
533 				spin_unlock(&mb_cache_spinlock);
534 				schedule();
535 				spin_lock(&mb_cache_spinlock);
536 				ce->e_queued--;
537 			}
538 			finish_wait(&mb_cache_queue, &wait);
539 
540 			if (!__mb_cache_entry_is_hashed(ce)) {
541 				__mb_cache_entry_release_unlock(ce);
542 				spin_lock(&mb_cache_spinlock);
543 				return ERR_PTR(-EAGAIN);
544 			}
545 			return ce;
546 		}
547 		l = l->next;
548 	}
549 	return NULL;
550 }
551 
552 
553 /*
554  * mb_cache_entry_find_first()
555  *
556  * Find the first cache entry on a given device with a certain key in
557  * an additional index. Additonal matches can be found with
558  * mb_cache_entry_find_next(). Returns NULL if no match was found. The
559  * returned cache entry is locked for shared access ("multiple readers").
560  *
561  * @cache: the cache to search
562  * @bdev: the device the cache entry should belong to
563  * @key: the key in the index
564  */
565 struct mb_cache_entry *
566 mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev,
567 			  unsigned int key)
568 {
569 	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
570 	struct list_head *l;
571 	struct mb_cache_entry *ce;
572 
573 	spin_lock(&mb_cache_spinlock);
574 	l = cache->c_index_hash[bucket].next;
575 	ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
576 	spin_unlock(&mb_cache_spinlock);
577 	return ce;
578 }
579 
580 
581 /*
582  * mb_cache_entry_find_next()
583  *
584  * Find the next cache entry on a given device with a certain key in an
585  * additional index. Returns NULL if no match could be found. The previous
586  * entry is atomatically released, so that mb_cache_entry_find_next() can
587  * be called like this:
588  *
589  * entry = mb_cache_entry_find_first();
590  * while (entry) {
591  * 	...
592  *	entry = mb_cache_entry_find_next(entry, ...);
593  * }
594  *
595  * @prev: The previous match
596  * @bdev: the device the cache entry should belong to
597  * @key: the key in the index
598  */
599 struct mb_cache_entry *
600 mb_cache_entry_find_next(struct mb_cache_entry *prev,
601 			 struct block_device *bdev, unsigned int key)
602 {
603 	struct mb_cache *cache = prev->e_cache;
604 	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
605 	struct list_head *l;
606 	struct mb_cache_entry *ce;
607 
608 	spin_lock(&mb_cache_spinlock);
609 	l = prev->e_index.o_list.next;
610 	ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key);
611 	__mb_cache_entry_release_unlock(prev);
612 	return ce;
613 }
614 
615 #endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
616 
617 static int __init init_mbcache(void)
618 {
619 	register_shrinker(&mb_cache_shrinker);
620 	return 0;
621 }
622 
623 static void __exit exit_mbcache(void)
624 {
625 	unregister_shrinker(&mb_cache_shrinker);
626 }
627 
628 module_init(init_mbcache)
629 module_exit(exit_mbcache)
630 
631