1 /* 2 * linux/fs/mbcache.c 3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> 4 */ 5 6 /* 7 * Filesystem Meta Information Block Cache (mbcache) 8 * 9 * The mbcache caches blocks of block devices that need to be located 10 * by their device/block number, as well as by other criteria (such 11 * as the block's contents). 12 * 13 * There can only be one cache entry in a cache per device and block number. 14 * Additional indexes need not be unique in this sense. The number of 15 * additional indexes (=other criteria) can be hardwired at compile time 16 * or specified at cache create time. 17 * 18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid' 19 * in the cache. A valid entry is in the main hash tables of the cache, 20 * and may also be in the lru list. An invalid entry is not in any hashes 21 * or lists. 22 * 23 * A valid cache entry is only in the lru list if no handles refer to it. 24 * Invalid cache entries will be freed when the last handle to the cache 25 * entry is released. Entries that cannot be freed immediately are put 26 * back on the lru list. 27 */ 28 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 32 #include <linux/hash.h> 33 #include <linux/fs.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/sched.h> 37 #include <linux/init.h> 38 #include <linux/mbcache.h> 39 40 41 #ifdef MB_CACHE_DEBUG 42 # define mb_debug(f...) do { \ 43 printk(KERN_DEBUG f); \ 44 printk("\n"); \ 45 } while (0) 46 #define mb_assert(c) do { if (!(c)) \ 47 printk(KERN_ERR "assertion " #c " failed\n"); \ 48 } while(0) 49 #else 50 # define mb_debug(f...) do { } while(0) 51 # define mb_assert(c) do { } while(0) 52 #endif 53 #define mb_error(f...) do { \ 54 printk(KERN_ERR f); \ 55 printk("\n"); \ 56 } while(0) 57 58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1) 59 60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); 61 62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); 63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 64 MODULE_LICENSE("GPL"); 65 66 EXPORT_SYMBOL(mb_cache_create); 67 EXPORT_SYMBOL(mb_cache_shrink); 68 EXPORT_SYMBOL(mb_cache_destroy); 69 EXPORT_SYMBOL(mb_cache_entry_alloc); 70 EXPORT_SYMBOL(mb_cache_entry_insert); 71 EXPORT_SYMBOL(mb_cache_entry_release); 72 EXPORT_SYMBOL(mb_cache_entry_free); 73 EXPORT_SYMBOL(mb_cache_entry_get); 74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 75 EXPORT_SYMBOL(mb_cache_entry_find_first); 76 EXPORT_SYMBOL(mb_cache_entry_find_next); 77 #endif 78 79 /* 80 * Global data: list of all mbcache's, lru list, and a spinlock for 81 * accessing cache data structures on SMP machines. The lru list is 82 * global across all mbcaches. 83 */ 84 85 static LIST_HEAD(mb_cache_list); 86 static LIST_HEAD(mb_cache_lru_list); 87 static DEFINE_SPINLOCK(mb_cache_spinlock); 88 89 static inline int 90 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce) 91 { 92 return !list_empty(&ce->e_block_list); 93 } 94 95 96 static void 97 __mb_cache_entry_unhash(struct mb_cache_entry *ce) 98 { 99 if (__mb_cache_entry_is_hashed(ce)) { 100 list_del_init(&ce->e_block_list); 101 list_del(&ce->e_index.o_list); 102 } 103 } 104 105 106 static void 107 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask) 108 { 109 struct mb_cache *cache = ce->e_cache; 110 111 mb_assert(!(ce->e_used || ce->e_queued)); 112 kmem_cache_free(cache->c_entry_cache, ce); 113 atomic_dec(&cache->c_entry_count); 114 } 115 116 117 static void 118 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce) 119 __releases(mb_cache_spinlock) 120 { 121 /* Wake up all processes queuing for this cache entry. */ 122 if (ce->e_queued) 123 wake_up_all(&mb_cache_queue); 124 if (ce->e_used >= MB_CACHE_WRITER) 125 ce->e_used -= MB_CACHE_WRITER; 126 ce->e_used--; 127 if (!(ce->e_used || ce->e_queued)) { 128 if (!__mb_cache_entry_is_hashed(ce)) 129 goto forget; 130 mb_assert(list_empty(&ce->e_lru_list)); 131 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); 132 } 133 spin_unlock(&mb_cache_spinlock); 134 return; 135 forget: 136 spin_unlock(&mb_cache_spinlock); 137 __mb_cache_entry_forget(ce, GFP_KERNEL); 138 } 139 140 141 /* 142 * mb_cache_shrink_scan() memory pressure callback 143 * 144 * This function is called by the kernel memory management when memory 145 * gets low. 146 * 147 * @shrink: (ignored) 148 * @sc: shrink_control passed from reclaim 149 * 150 * Returns the number of objects freed. 151 */ 152 static unsigned long 153 mb_cache_shrink_scan(struct shrinker *shrink, struct shrink_control *sc) 154 { 155 LIST_HEAD(free_list); 156 struct mb_cache_entry *entry, *tmp; 157 int nr_to_scan = sc->nr_to_scan; 158 gfp_t gfp_mask = sc->gfp_mask; 159 unsigned long freed = 0; 160 161 mb_debug("trying to free %d entries", nr_to_scan); 162 spin_lock(&mb_cache_spinlock); 163 while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) { 164 struct mb_cache_entry *ce = 165 list_entry(mb_cache_lru_list.next, 166 struct mb_cache_entry, e_lru_list); 167 list_move_tail(&ce->e_lru_list, &free_list); 168 __mb_cache_entry_unhash(ce); 169 freed++; 170 } 171 spin_unlock(&mb_cache_spinlock); 172 list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) { 173 __mb_cache_entry_forget(entry, gfp_mask); 174 } 175 return freed; 176 } 177 178 static unsigned long 179 mb_cache_shrink_count(struct shrinker *shrink, struct shrink_control *sc) 180 { 181 struct mb_cache *cache; 182 unsigned long count = 0; 183 184 spin_lock(&mb_cache_spinlock); 185 list_for_each_entry(cache, &mb_cache_list, c_cache_list) { 186 mb_debug("cache %s (%d)", cache->c_name, 187 atomic_read(&cache->c_entry_count)); 188 count += atomic_read(&cache->c_entry_count); 189 } 190 spin_unlock(&mb_cache_spinlock); 191 192 return vfs_pressure_ratio(count); 193 } 194 195 static struct shrinker mb_cache_shrinker = { 196 .count_objects = mb_cache_shrink_count, 197 .scan_objects = mb_cache_shrink_scan, 198 .seeks = DEFAULT_SEEKS, 199 }; 200 201 /* 202 * mb_cache_create() create a new cache 203 * 204 * All entries in one cache are equal size. Cache entries may be from 205 * multiple devices. If this is the first mbcache created, registers 206 * the cache with kernel memory management. Returns NULL if no more 207 * memory was available. 208 * 209 * @name: name of the cache (informal) 210 * @bucket_bits: log2(number of hash buckets) 211 */ 212 struct mb_cache * 213 mb_cache_create(const char *name, int bucket_bits) 214 { 215 int n, bucket_count = 1 << bucket_bits; 216 struct mb_cache *cache = NULL; 217 218 cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL); 219 if (!cache) 220 return NULL; 221 cache->c_name = name; 222 atomic_set(&cache->c_entry_count, 0); 223 cache->c_bucket_bits = bucket_bits; 224 cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head), 225 GFP_KERNEL); 226 if (!cache->c_block_hash) 227 goto fail; 228 for (n=0; n<bucket_count; n++) 229 INIT_LIST_HEAD(&cache->c_block_hash[n]); 230 cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head), 231 GFP_KERNEL); 232 if (!cache->c_index_hash) 233 goto fail; 234 for (n=0; n<bucket_count; n++) 235 INIT_LIST_HEAD(&cache->c_index_hash[n]); 236 cache->c_entry_cache = kmem_cache_create(name, 237 sizeof(struct mb_cache_entry), 0, 238 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 239 if (!cache->c_entry_cache) 240 goto fail2; 241 242 /* 243 * Set an upper limit on the number of cache entries so that the hash 244 * chains won't grow too long. 245 */ 246 cache->c_max_entries = bucket_count << 4; 247 248 spin_lock(&mb_cache_spinlock); 249 list_add(&cache->c_cache_list, &mb_cache_list); 250 spin_unlock(&mb_cache_spinlock); 251 return cache; 252 253 fail2: 254 kfree(cache->c_index_hash); 255 256 fail: 257 kfree(cache->c_block_hash); 258 kfree(cache); 259 return NULL; 260 } 261 262 263 /* 264 * mb_cache_shrink() 265 * 266 * Removes all cache entries of a device from the cache. All cache entries 267 * currently in use cannot be freed, and thus remain in the cache. All others 268 * are freed. 269 * 270 * @bdev: which device's cache entries to shrink 271 */ 272 void 273 mb_cache_shrink(struct block_device *bdev) 274 { 275 LIST_HEAD(free_list); 276 struct list_head *l, *ltmp; 277 278 spin_lock(&mb_cache_spinlock); 279 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 280 struct mb_cache_entry *ce = 281 list_entry(l, struct mb_cache_entry, e_lru_list); 282 if (ce->e_bdev == bdev) { 283 list_move_tail(&ce->e_lru_list, &free_list); 284 __mb_cache_entry_unhash(ce); 285 } 286 } 287 spin_unlock(&mb_cache_spinlock); 288 list_for_each_safe(l, ltmp, &free_list) { 289 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 290 e_lru_list), GFP_KERNEL); 291 } 292 } 293 294 295 /* 296 * mb_cache_destroy() 297 * 298 * Shrinks the cache to its minimum possible size (hopefully 0 entries), 299 * and then destroys it. If this was the last mbcache, un-registers the 300 * mbcache from kernel memory management. 301 */ 302 void 303 mb_cache_destroy(struct mb_cache *cache) 304 { 305 LIST_HEAD(free_list); 306 struct list_head *l, *ltmp; 307 308 spin_lock(&mb_cache_spinlock); 309 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 310 struct mb_cache_entry *ce = 311 list_entry(l, struct mb_cache_entry, e_lru_list); 312 if (ce->e_cache == cache) { 313 list_move_tail(&ce->e_lru_list, &free_list); 314 __mb_cache_entry_unhash(ce); 315 } 316 } 317 list_del(&cache->c_cache_list); 318 spin_unlock(&mb_cache_spinlock); 319 320 list_for_each_safe(l, ltmp, &free_list) { 321 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 322 e_lru_list), GFP_KERNEL); 323 } 324 325 if (atomic_read(&cache->c_entry_count) > 0) { 326 mb_error("cache %s: %d orphaned entries", 327 cache->c_name, 328 atomic_read(&cache->c_entry_count)); 329 } 330 331 kmem_cache_destroy(cache->c_entry_cache); 332 333 kfree(cache->c_index_hash); 334 kfree(cache->c_block_hash); 335 kfree(cache); 336 } 337 338 /* 339 * mb_cache_entry_alloc() 340 * 341 * Allocates a new cache entry. The new entry will not be valid initially, 342 * and thus cannot be looked up yet. It should be filled with data, and 343 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL 344 * if no more memory was available. 345 */ 346 struct mb_cache_entry * 347 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags) 348 { 349 struct mb_cache_entry *ce = NULL; 350 351 if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) { 352 spin_lock(&mb_cache_spinlock); 353 if (!list_empty(&mb_cache_lru_list)) { 354 ce = list_entry(mb_cache_lru_list.next, 355 struct mb_cache_entry, e_lru_list); 356 list_del_init(&ce->e_lru_list); 357 __mb_cache_entry_unhash(ce); 358 } 359 spin_unlock(&mb_cache_spinlock); 360 } 361 if (!ce) { 362 ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags); 363 if (!ce) 364 return NULL; 365 atomic_inc(&cache->c_entry_count); 366 INIT_LIST_HEAD(&ce->e_lru_list); 367 INIT_LIST_HEAD(&ce->e_block_list); 368 ce->e_cache = cache; 369 ce->e_queued = 0; 370 } 371 ce->e_used = 1 + MB_CACHE_WRITER; 372 return ce; 373 } 374 375 376 /* 377 * mb_cache_entry_insert() 378 * 379 * Inserts an entry that was allocated using mb_cache_entry_alloc() into 380 * the cache. After this, the cache entry can be looked up, but is not yet 381 * in the lru list as the caller still holds a handle to it. Returns 0 on 382 * success, or -EBUSY if a cache entry for that device + inode exists 383 * already (this may happen after a failed lookup, but when another process 384 * has inserted the same cache entry in the meantime). 385 * 386 * @bdev: device the cache entry belongs to 387 * @block: block number 388 * @key: lookup key 389 */ 390 int 391 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, 392 sector_t block, unsigned int key) 393 { 394 struct mb_cache *cache = ce->e_cache; 395 unsigned int bucket; 396 struct list_head *l; 397 int error = -EBUSY; 398 399 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 400 cache->c_bucket_bits); 401 spin_lock(&mb_cache_spinlock); 402 list_for_each_prev(l, &cache->c_block_hash[bucket]) { 403 struct mb_cache_entry *ce = 404 list_entry(l, struct mb_cache_entry, e_block_list); 405 if (ce->e_bdev == bdev && ce->e_block == block) 406 goto out; 407 } 408 __mb_cache_entry_unhash(ce); 409 ce->e_bdev = bdev; 410 ce->e_block = block; 411 list_add(&ce->e_block_list, &cache->c_block_hash[bucket]); 412 ce->e_index.o_key = key; 413 bucket = hash_long(key, cache->c_bucket_bits); 414 list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]); 415 error = 0; 416 out: 417 spin_unlock(&mb_cache_spinlock); 418 return error; 419 } 420 421 422 /* 423 * mb_cache_entry_release() 424 * 425 * Release a handle to a cache entry. When the last handle to a cache entry 426 * is released it is either freed (if it is invalid) or otherwise inserted 427 * in to the lru list. 428 */ 429 void 430 mb_cache_entry_release(struct mb_cache_entry *ce) 431 { 432 spin_lock(&mb_cache_spinlock); 433 __mb_cache_entry_release_unlock(ce); 434 } 435 436 437 /* 438 * mb_cache_entry_free() 439 * 440 * This is equivalent to the sequence mb_cache_entry_takeout() -- 441 * mb_cache_entry_release(). 442 */ 443 void 444 mb_cache_entry_free(struct mb_cache_entry *ce) 445 { 446 spin_lock(&mb_cache_spinlock); 447 mb_assert(list_empty(&ce->e_lru_list)); 448 __mb_cache_entry_unhash(ce); 449 __mb_cache_entry_release_unlock(ce); 450 } 451 452 453 /* 454 * mb_cache_entry_get() 455 * 456 * Get a cache entry by device / block number. (There can only be one entry 457 * in the cache per device and block.) Returns NULL if no such cache entry 458 * exists. The returned cache entry is locked for exclusive access ("single 459 * writer"). 460 */ 461 struct mb_cache_entry * 462 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, 463 sector_t block) 464 { 465 unsigned int bucket; 466 struct list_head *l; 467 struct mb_cache_entry *ce; 468 469 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 470 cache->c_bucket_bits); 471 spin_lock(&mb_cache_spinlock); 472 list_for_each(l, &cache->c_block_hash[bucket]) { 473 ce = list_entry(l, struct mb_cache_entry, e_block_list); 474 if (ce->e_bdev == bdev && ce->e_block == block) { 475 DEFINE_WAIT(wait); 476 477 if (!list_empty(&ce->e_lru_list)) 478 list_del_init(&ce->e_lru_list); 479 480 while (ce->e_used > 0) { 481 ce->e_queued++; 482 prepare_to_wait(&mb_cache_queue, &wait, 483 TASK_UNINTERRUPTIBLE); 484 spin_unlock(&mb_cache_spinlock); 485 schedule(); 486 spin_lock(&mb_cache_spinlock); 487 ce->e_queued--; 488 } 489 finish_wait(&mb_cache_queue, &wait); 490 ce->e_used += 1 + MB_CACHE_WRITER; 491 492 if (!__mb_cache_entry_is_hashed(ce)) { 493 __mb_cache_entry_release_unlock(ce); 494 return NULL; 495 } 496 goto cleanup; 497 } 498 } 499 ce = NULL; 500 501 cleanup: 502 spin_unlock(&mb_cache_spinlock); 503 return ce; 504 } 505 506 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 507 508 static struct mb_cache_entry * 509 __mb_cache_entry_find(struct list_head *l, struct list_head *head, 510 struct block_device *bdev, unsigned int key) 511 { 512 while (l != head) { 513 struct mb_cache_entry *ce = 514 list_entry(l, struct mb_cache_entry, e_index.o_list); 515 if (ce->e_bdev == bdev && ce->e_index.o_key == key) { 516 DEFINE_WAIT(wait); 517 518 if (!list_empty(&ce->e_lru_list)) 519 list_del_init(&ce->e_lru_list); 520 521 /* Incrementing before holding the lock gives readers 522 priority over writers. */ 523 ce->e_used++; 524 while (ce->e_used >= MB_CACHE_WRITER) { 525 ce->e_queued++; 526 prepare_to_wait(&mb_cache_queue, &wait, 527 TASK_UNINTERRUPTIBLE); 528 spin_unlock(&mb_cache_spinlock); 529 schedule(); 530 spin_lock(&mb_cache_spinlock); 531 ce->e_queued--; 532 } 533 finish_wait(&mb_cache_queue, &wait); 534 535 if (!__mb_cache_entry_is_hashed(ce)) { 536 __mb_cache_entry_release_unlock(ce); 537 spin_lock(&mb_cache_spinlock); 538 return ERR_PTR(-EAGAIN); 539 } 540 return ce; 541 } 542 l = l->next; 543 } 544 return NULL; 545 } 546 547 548 /* 549 * mb_cache_entry_find_first() 550 * 551 * Find the first cache entry on a given device with a certain key in 552 * an additional index. Additional matches can be found with 553 * mb_cache_entry_find_next(). Returns NULL if no match was found. The 554 * returned cache entry is locked for shared access ("multiple readers"). 555 * 556 * @cache: the cache to search 557 * @bdev: the device the cache entry should belong to 558 * @key: the key in the index 559 */ 560 struct mb_cache_entry * 561 mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev, 562 unsigned int key) 563 { 564 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 565 struct list_head *l; 566 struct mb_cache_entry *ce; 567 568 spin_lock(&mb_cache_spinlock); 569 l = cache->c_index_hash[bucket].next; 570 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key); 571 spin_unlock(&mb_cache_spinlock); 572 return ce; 573 } 574 575 576 /* 577 * mb_cache_entry_find_next() 578 * 579 * Find the next cache entry on a given device with a certain key in an 580 * additional index. Returns NULL if no match could be found. The previous 581 * entry is atomatically released, so that mb_cache_entry_find_next() can 582 * be called like this: 583 * 584 * entry = mb_cache_entry_find_first(); 585 * while (entry) { 586 * ... 587 * entry = mb_cache_entry_find_next(entry, ...); 588 * } 589 * 590 * @prev: The previous match 591 * @bdev: the device the cache entry should belong to 592 * @key: the key in the index 593 */ 594 struct mb_cache_entry * 595 mb_cache_entry_find_next(struct mb_cache_entry *prev, 596 struct block_device *bdev, unsigned int key) 597 { 598 struct mb_cache *cache = prev->e_cache; 599 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 600 struct list_head *l; 601 struct mb_cache_entry *ce; 602 603 spin_lock(&mb_cache_spinlock); 604 l = prev->e_index.o_list.next; 605 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key); 606 __mb_cache_entry_release_unlock(prev); 607 return ce; 608 } 609 610 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ 611 612 static int __init init_mbcache(void) 613 { 614 register_shrinker(&mb_cache_shrinker); 615 return 0; 616 } 617 618 static void __exit exit_mbcache(void) 619 { 620 unregister_shrinker(&mb_cache_shrinker); 621 } 622 623 module_init(init_mbcache) 624 module_exit(exit_mbcache) 625 626