xref: /openbmc/linux/fs/mbcache.c (revision 87c2ce3b)
1 /*
2  * linux/fs/mbcache.c
3  * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org>
4  */
5 
6 /*
7  * Filesystem Meta Information Block Cache (mbcache)
8  *
9  * The mbcache caches blocks of block devices that need to be located
10  * by their device/block number, as well as by other criteria (such
11  * as the block's contents).
12  *
13  * There can only be one cache entry in a cache per device and block number.
14  * Additional indexes need not be unique in this sense. The number of
15  * additional indexes (=other criteria) can be hardwired at compile time
16  * or specified at cache create time.
17  *
18  * Each cache entry is of fixed size. An entry may be `valid' or `invalid'
19  * in the cache. A valid entry is in the main hash tables of the cache,
20  * and may also be in the lru list. An invalid entry is not in any hashes
21  * or lists.
22  *
23  * A valid cache entry is only in the lru list if no handles refer to it.
24  * Invalid cache entries will be freed when the last handle to the cache
25  * entry is released. Entries that cannot be freed immediately are put
26  * back on the lru list.
27  */
28 
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 
32 #include <linux/hash.h>
33 #include <linux/fs.h>
34 #include <linux/mm.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/init.h>
38 #include <linux/mbcache.h>
39 
40 
41 #ifdef MB_CACHE_DEBUG
42 # define mb_debug(f...) do { \
43 		printk(KERN_DEBUG f); \
44 		printk("\n"); \
45 	} while (0)
46 #define mb_assert(c) do { if (!(c)) \
47 		printk(KERN_ERR "assertion " #c " failed\n"); \
48 	} while(0)
49 #else
50 # define mb_debug(f...) do { } while(0)
51 # define mb_assert(c) do { } while(0)
52 #endif
53 #define mb_error(f...) do { \
54 		printk(KERN_ERR f); \
55 		printk("\n"); \
56 	} while(0)
57 
58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1)
59 
60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue);
61 
62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>");
63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
64 MODULE_LICENSE("GPL");
65 
66 EXPORT_SYMBOL(mb_cache_create);
67 EXPORT_SYMBOL(mb_cache_shrink);
68 EXPORT_SYMBOL(mb_cache_destroy);
69 EXPORT_SYMBOL(mb_cache_entry_alloc);
70 EXPORT_SYMBOL(mb_cache_entry_insert);
71 EXPORT_SYMBOL(mb_cache_entry_release);
72 EXPORT_SYMBOL(mb_cache_entry_free);
73 EXPORT_SYMBOL(mb_cache_entry_get);
74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
75 EXPORT_SYMBOL(mb_cache_entry_find_first);
76 EXPORT_SYMBOL(mb_cache_entry_find_next);
77 #endif
78 
79 struct mb_cache {
80 	struct list_head		c_cache_list;
81 	const char			*c_name;
82 	struct mb_cache_op		c_op;
83 	atomic_t			c_entry_count;
84 	int				c_bucket_bits;
85 #ifndef MB_CACHE_INDEXES_COUNT
86 	int				c_indexes_count;
87 #endif
88 	kmem_cache_t			*c_entry_cache;
89 	struct list_head		*c_block_hash;
90 	struct list_head		*c_indexes_hash[0];
91 };
92 
93 
94 /*
95  * Global data: list of all mbcache's, lru list, and a spinlock for
96  * accessing cache data structures on SMP machines. The lru list is
97  * global across all mbcaches.
98  */
99 
100 static LIST_HEAD(mb_cache_list);
101 static LIST_HEAD(mb_cache_lru_list);
102 static DEFINE_SPINLOCK(mb_cache_spinlock);
103 static struct shrinker *mb_shrinker;
104 
105 static inline int
106 mb_cache_indexes(struct mb_cache *cache)
107 {
108 #ifdef MB_CACHE_INDEXES_COUNT
109 	return MB_CACHE_INDEXES_COUNT;
110 #else
111 	return cache->c_indexes_count;
112 #endif
113 }
114 
115 /*
116  * What the mbcache registers as to get shrunk dynamically.
117  */
118 
119 static int mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask);
120 
121 
122 static inline int
123 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce)
124 {
125 	return !list_empty(&ce->e_block_list);
126 }
127 
128 
129 static inline void
130 __mb_cache_entry_unhash(struct mb_cache_entry *ce)
131 {
132 	int n;
133 
134 	if (__mb_cache_entry_is_hashed(ce)) {
135 		list_del_init(&ce->e_block_list);
136 		for (n=0; n<mb_cache_indexes(ce->e_cache); n++)
137 			list_del(&ce->e_indexes[n].o_list);
138 	}
139 }
140 
141 
142 static inline void
143 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask)
144 {
145 	struct mb_cache *cache = ce->e_cache;
146 
147 	mb_assert(!(ce->e_used || ce->e_queued));
148 	if (cache->c_op.free && cache->c_op.free(ce, gfp_mask)) {
149 		/* free failed -- put back on the lru list
150 		   for freeing later. */
151 		spin_lock(&mb_cache_spinlock);
152 		list_add(&ce->e_lru_list, &mb_cache_lru_list);
153 		spin_unlock(&mb_cache_spinlock);
154 	} else {
155 		kmem_cache_free(cache->c_entry_cache, ce);
156 		atomic_dec(&cache->c_entry_count);
157 	}
158 }
159 
160 
161 static inline void
162 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce)
163 {
164 	/* Wake up all processes queuing for this cache entry. */
165 	if (ce->e_queued)
166 		wake_up_all(&mb_cache_queue);
167 	if (ce->e_used >= MB_CACHE_WRITER)
168 		ce->e_used -= MB_CACHE_WRITER;
169 	ce->e_used--;
170 	if (!(ce->e_used || ce->e_queued)) {
171 		if (!__mb_cache_entry_is_hashed(ce))
172 			goto forget;
173 		mb_assert(list_empty(&ce->e_lru_list));
174 		list_add_tail(&ce->e_lru_list, &mb_cache_lru_list);
175 	}
176 	spin_unlock(&mb_cache_spinlock);
177 	return;
178 forget:
179 	spin_unlock(&mb_cache_spinlock);
180 	__mb_cache_entry_forget(ce, GFP_KERNEL);
181 }
182 
183 
184 /*
185  * mb_cache_shrink_fn()  memory pressure callback
186  *
187  * This function is called by the kernel memory management when memory
188  * gets low.
189  *
190  * @nr_to_scan: Number of objects to scan
191  * @gfp_mask: (ignored)
192  *
193  * Returns the number of objects which are present in the cache.
194  */
195 static int
196 mb_cache_shrink_fn(int nr_to_scan, gfp_t gfp_mask)
197 {
198 	LIST_HEAD(free_list);
199 	struct list_head *l, *ltmp;
200 	int count = 0;
201 
202 	spin_lock(&mb_cache_spinlock);
203 	list_for_each(l, &mb_cache_list) {
204 		struct mb_cache *cache =
205 			list_entry(l, struct mb_cache, c_cache_list);
206 		mb_debug("cache %s (%d)", cache->c_name,
207 			  atomic_read(&cache->c_entry_count));
208 		count += atomic_read(&cache->c_entry_count);
209 	}
210 	mb_debug("trying to free %d entries", nr_to_scan);
211 	if (nr_to_scan == 0) {
212 		spin_unlock(&mb_cache_spinlock);
213 		goto out;
214 	}
215 	while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) {
216 		struct mb_cache_entry *ce =
217 			list_entry(mb_cache_lru_list.next,
218 				   struct mb_cache_entry, e_lru_list);
219 		list_move_tail(&ce->e_lru_list, &free_list);
220 		__mb_cache_entry_unhash(ce);
221 	}
222 	spin_unlock(&mb_cache_spinlock);
223 	list_for_each_safe(l, ltmp, &free_list) {
224 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
225 						   e_lru_list), gfp_mask);
226 	}
227 out:
228 	return (count / 100) * sysctl_vfs_cache_pressure;
229 }
230 
231 
232 /*
233  * mb_cache_create()  create a new cache
234  *
235  * All entries in one cache are equal size. Cache entries may be from
236  * multiple devices. If this is the first mbcache created, registers
237  * the cache with kernel memory management. Returns NULL if no more
238  * memory was available.
239  *
240  * @name: name of the cache (informal)
241  * @cache_op: contains the callback called when freeing a cache entry
242  * @entry_size: The size of a cache entry, including
243  *              struct mb_cache_entry
244  * @indexes_count: number of additional indexes in the cache. Must equal
245  *                 MB_CACHE_INDEXES_COUNT if the number of indexes is
246  *                 hardwired.
247  * @bucket_bits: log2(number of hash buckets)
248  */
249 struct mb_cache *
250 mb_cache_create(const char *name, struct mb_cache_op *cache_op,
251 		size_t entry_size, int indexes_count, int bucket_bits)
252 {
253 	int m=0, n, bucket_count = 1 << bucket_bits;
254 	struct mb_cache *cache = NULL;
255 
256 	if(entry_size < sizeof(struct mb_cache_entry) +
257 	   indexes_count * sizeof(((struct mb_cache_entry *) 0)->e_indexes[0]))
258 		return NULL;
259 
260 	cache = kmalloc(sizeof(struct mb_cache) +
261 	                indexes_count * sizeof(struct list_head), GFP_KERNEL);
262 	if (!cache)
263 		goto fail;
264 	cache->c_name = name;
265 	cache->c_op.free = NULL;
266 	if (cache_op)
267 		cache->c_op.free = cache_op->free;
268 	atomic_set(&cache->c_entry_count, 0);
269 	cache->c_bucket_bits = bucket_bits;
270 #ifdef MB_CACHE_INDEXES_COUNT
271 	mb_assert(indexes_count == MB_CACHE_INDEXES_COUNT);
272 #else
273 	cache->c_indexes_count = indexes_count;
274 #endif
275 	cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head),
276 	                              GFP_KERNEL);
277 	if (!cache->c_block_hash)
278 		goto fail;
279 	for (n=0; n<bucket_count; n++)
280 		INIT_LIST_HEAD(&cache->c_block_hash[n]);
281 	for (m=0; m<indexes_count; m++) {
282 		cache->c_indexes_hash[m] = kmalloc(bucket_count *
283 		                                 sizeof(struct list_head),
284 		                                 GFP_KERNEL);
285 		if (!cache->c_indexes_hash[m])
286 			goto fail;
287 		for (n=0; n<bucket_count; n++)
288 			INIT_LIST_HEAD(&cache->c_indexes_hash[m][n]);
289 	}
290 	cache->c_entry_cache = kmem_cache_create(name, entry_size, 0,
291 		SLAB_RECLAIM_ACCOUNT, NULL, NULL);
292 	if (!cache->c_entry_cache)
293 		goto fail;
294 
295 	spin_lock(&mb_cache_spinlock);
296 	list_add(&cache->c_cache_list, &mb_cache_list);
297 	spin_unlock(&mb_cache_spinlock);
298 	return cache;
299 
300 fail:
301 	if (cache) {
302 		while (--m >= 0)
303 			kfree(cache->c_indexes_hash[m]);
304 		kfree(cache->c_block_hash);
305 		kfree(cache);
306 	}
307 	return NULL;
308 }
309 
310 
311 /*
312  * mb_cache_shrink()
313  *
314  * Removes all cache entires of a device from the cache. All cache entries
315  * currently in use cannot be freed, and thus remain in the cache. All others
316  * are freed.
317  *
318  * @bdev: which device's cache entries to shrink
319  */
320 void
321 mb_cache_shrink(struct block_device *bdev)
322 {
323 	LIST_HEAD(free_list);
324 	struct list_head *l, *ltmp;
325 
326 	spin_lock(&mb_cache_spinlock);
327 	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
328 		struct mb_cache_entry *ce =
329 			list_entry(l, struct mb_cache_entry, e_lru_list);
330 		if (ce->e_bdev == bdev) {
331 			list_move_tail(&ce->e_lru_list, &free_list);
332 			__mb_cache_entry_unhash(ce);
333 		}
334 	}
335 	spin_unlock(&mb_cache_spinlock);
336 	list_for_each_safe(l, ltmp, &free_list) {
337 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
338 						   e_lru_list), GFP_KERNEL);
339 	}
340 }
341 
342 
343 /*
344  * mb_cache_destroy()
345  *
346  * Shrinks the cache to its minimum possible size (hopefully 0 entries),
347  * and then destroys it. If this was the last mbcache, un-registers the
348  * mbcache from kernel memory management.
349  */
350 void
351 mb_cache_destroy(struct mb_cache *cache)
352 {
353 	LIST_HEAD(free_list);
354 	struct list_head *l, *ltmp;
355 	int n;
356 
357 	spin_lock(&mb_cache_spinlock);
358 	list_for_each_safe(l, ltmp, &mb_cache_lru_list) {
359 		struct mb_cache_entry *ce =
360 			list_entry(l, struct mb_cache_entry, e_lru_list);
361 		if (ce->e_cache == cache) {
362 			list_move_tail(&ce->e_lru_list, &free_list);
363 			__mb_cache_entry_unhash(ce);
364 		}
365 	}
366 	list_del(&cache->c_cache_list);
367 	spin_unlock(&mb_cache_spinlock);
368 
369 	list_for_each_safe(l, ltmp, &free_list) {
370 		__mb_cache_entry_forget(list_entry(l, struct mb_cache_entry,
371 						   e_lru_list), GFP_KERNEL);
372 	}
373 
374 	if (atomic_read(&cache->c_entry_count) > 0) {
375 		mb_error("cache %s: %d orphaned entries",
376 			  cache->c_name,
377 			  atomic_read(&cache->c_entry_count));
378 	}
379 
380 	kmem_cache_destroy(cache->c_entry_cache);
381 
382 	for (n=0; n < mb_cache_indexes(cache); n++)
383 		kfree(cache->c_indexes_hash[n]);
384 	kfree(cache->c_block_hash);
385 	kfree(cache);
386 }
387 
388 
389 /*
390  * mb_cache_entry_alloc()
391  *
392  * Allocates a new cache entry. The new entry will not be valid initially,
393  * and thus cannot be looked up yet. It should be filled with data, and
394  * then inserted into the cache using mb_cache_entry_insert(). Returns NULL
395  * if no more memory was available.
396  */
397 struct mb_cache_entry *
398 mb_cache_entry_alloc(struct mb_cache *cache)
399 {
400 	struct mb_cache_entry *ce;
401 
402 	atomic_inc(&cache->c_entry_count);
403 	ce = kmem_cache_alloc(cache->c_entry_cache, GFP_KERNEL);
404 	if (ce) {
405 		INIT_LIST_HEAD(&ce->e_lru_list);
406 		INIT_LIST_HEAD(&ce->e_block_list);
407 		ce->e_cache = cache;
408 		ce->e_used = 1 + MB_CACHE_WRITER;
409 		ce->e_queued = 0;
410 	}
411 	return ce;
412 }
413 
414 
415 /*
416  * mb_cache_entry_insert()
417  *
418  * Inserts an entry that was allocated using mb_cache_entry_alloc() into
419  * the cache. After this, the cache entry can be looked up, but is not yet
420  * in the lru list as the caller still holds a handle to it. Returns 0 on
421  * success, or -EBUSY if a cache entry for that device + inode exists
422  * already (this may happen after a failed lookup, but when another process
423  * has inserted the same cache entry in the meantime).
424  *
425  * @bdev: device the cache entry belongs to
426  * @block: block number
427  * @keys: array of additional keys. There must be indexes_count entries
428  *        in the array (as specified when creating the cache).
429  */
430 int
431 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev,
432 		      sector_t block, unsigned int keys[])
433 {
434 	struct mb_cache *cache = ce->e_cache;
435 	unsigned int bucket;
436 	struct list_head *l;
437 	int error = -EBUSY, n;
438 
439 	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
440 			   cache->c_bucket_bits);
441 	spin_lock(&mb_cache_spinlock);
442 	list_for_each_prev(l, &cache->c_block_hash[bucket]) {
443 		struct mb_cache_entry *ce =
444 			list_entry(l, struct mb_cache_entry, e_block_list);
445 		if (ce->e_bdev == bdev && ce->e_block == block)
446 			goto out;
447 	}
448 	__mb_cache_entry_unhash(ce);
449 	ce->e_bdev = bdev;
450 	ce->e_block = block;
451 	list_add(&ce->e_block_list, &cache->c_block_hash[bucket]);
452 	for (n=0; n<mb_cache_indexes(cache); n++) {
453 		ce->e_indexes[n].o_key = keys[n];
454 		bucket = hash_long(keys[n], cache->c_bucket_bits);
455 		list_add(&ce->e_indexes[n].o_list,
456 			 &cache->c_indexes_hash[n][bucket]);
457 	}
458 	error = 0;
459 out:
460 	spin_unlock(&mb_cache_spinlock);
461 	return error;
462 }
463 
464 
465 /*
466  * mb_cache_entry_release()
467  *
468  * Release a handle to a cache entry. When the last handle to a cache entry
469  * is released it is either freed (if it is invalid) or otherwise inserted
470  * in to the lru list.
471  */
472 void
473 mb_cache_entry_release(struct mb_cache_entry *ce)
474 {
475 	spin_lock(&mb_cache_spinlock);
476 	__mb_cache_entry_release_unlock(ce);
477 }
478 
479 
480 /*
481  * mb_cache_entry_free()
482  *
483  * This is equivalent to the sequence mb_cache_entry_takeout() --
484  * mb_cache_entry_release().
485  */
486 void
487 mb_cache_entry_free(struct mb_cache_entry *ce)
488 {
489 	spin_lock(&mb_cache_spinlock);
490 	mb_assert(list_empty(&ce->e_lru_list));
491 	__mb_cache_entry_unhash(ce);
492 	__mb_cache_entry_release_unlock(ce);
493 }
494 
495 
496 /*
497  * mb_cache_entry_get()
498  *
499  * Get a cache entry  by device / block number. (There can only be one entry
500  * in the cache per device and block.) Returns NULL if no such cache entry
501  * exists. The returned cache entry is locked for exclusive access ("single
502  * writer").
503  */
504 struct mb_cache_entry *
505 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev,
506 		   sector_t block)
507 {
508 	unsigned int bucket;
509 	struct list_head *l;
510 	struct mb_cache_entry *ce;
511 
512 	bucket = hash_long((unsigned long)bdev + (block & 0xffffffff),
513 			   cache->c_bucket_bits);
514 	spin_lock(&mb_cache_spinlock);
515 	list_for_each(l, &cache->c_block_hash[bucket]) {
516 		ce = list_entry(l, struct mb_cache_entry, e_block_list);
517 		if (ce->e_bdev == bdev && ce->e_block == block) {
518 			DEFINE_WAIT(wait);
519 
520 			if (!list_empty(&ce->e_lru_list))
521 				list_del_init(&ce->e_lru_list);
522 
523 			while (ce->e_used > 0) {
524 				ce->e_queued++;
525 				prepare_to_wait(&mb_cache_queue, &wait,
526 						TASK_UNINTERRUPTIBLE);
527 				spin_unlock(&mb_cache_spinlock);
528 				schedule();
529 				spin_lock(&mb_cache_spinlock);
530 				ce->e_queued--;
531 			}
532 			finish_wait(&mb_cache_queue, &wait);
533 			ce->e_used += 1 + MB_CACHE_WRITER;
534 
535 			if (!__mb_cache_entry_is_hashed(ce)) {
536 				__mb_cache_entry_release_unlock(ce);
537 				return NULL;
538 			}
539 			goto cleanup;
540 		}
541 	}
542 	ce = NULL;
543 
544 cleanup:
545 	spin_unlock(&mb_cache_spinlock);
546 	return ce;
547 }
548 
549 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0)
550 
551 static struct mb_cache_entry *
552 __mb_cache_entry_find(struct list_head *l, struct list_head *head,
553 		      int index, struct block_device *bdev, unsigned int key)
554 {
555 	while (l != head) {
556 		struct mb_cache_entry *ce =
557 			list_entry(l, struct mb_cache_entry,
558 			           e_indexes[index].o_list);
559 		if (ce->e_bdev == bdev && ce->e_indexes[index].o_key == key) {
560 			DEFINE_WAIT(wait);
561 
562 			if (!list_empty(&ce->e_lru_list))
563 				list_del_init(&ce->e_lru_list);
564 
565 			/* Incrementing before holding the lock gives readers
566 			   priority over writers. */
567 			ce->e_used++;
568 			while (ce->e_used >= MB_CACHE_WRITER) {
569 				ce->e_queued++;
570 				prepare_to_wait(&mb_cache_queue, &wait,
571 						TASK_UNINTERRUPTIBLE);
572 				spin_unlock(&mb_cache_spinlock);
573 				schedule();
574 				spin_lock(&mb_cache_spinlock);
575 				ce->e_queued--;
576 			}
577 			finish_wait(&mb_cache_queue, &wait);
578 
579 			if (!__mb_cache_entry_is_hashed(ce)) {
580 				__mb_cache_entry_release_unlock(ce);
581 				spin_lock(&mb_cache_spinlock);
582 				return ERR_PTR(-EAGAIN);
583 			}
584 			return ce;
585 		}
586 		l = l->next;
587 	}
588 	return NULL;
589 }
590 
591 
592 /*
593  * mb_cache_entry_find_first()
594  *
595  * Find the first cache entry on a given device with a certain key in
596  * an additional index. Additonal matches can be found with
597  * mb_cache_entry_find_next(). Returns NULL if no match was found. The
598  * returned cache entry is locked for shared access ("multiple readers").
599  *
600  * @cache: the cache to search
601  * @index: the number of the additonal index to search (0<=index<indexes_count)
602  * @bdev: the device the cache entry should belong to
603  * @key: the key in the index
604  */
605 struct mb_cache_entry *
606 mb_cache_entry_find_first(struct mb_cache *cache, int index,
607 			  struct block_device *bdev, unsigned int key)
608 {
609 	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
610 	struct list_head *l;
611 	struct mb_cache_entry *ce;
612 
613 	mb_assert(index < mb_cache_indexes(cache));
614 	spin_lock(&mb_cache_spinlock);
615 	l = cache->c_indexes_hash[index][bucket].next;
616 	ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
617 	                           index, bdev, key);
618 	spin_unlock(&mb_cache_spinlock);
619 	return ce;
620 }
621 
622 
623 /*
624  * mb_cache_entry_find_next()
625  *
626  * Find the next cache entry on a given device with a certain key in an
627  * additional index. Returns NULL if no match could be found. The previous
628  * entry is atomatically released, so that mb_cache_entry_find_next() can
629  * be called like this:
630  *
631  * entry = mb_cache_entry_find_first();
632  * while (entry) {
633  * 	...
634  *	entry = mb_cache_entry_find_next(entry, ...);
635  * }
636  *
637  * @prev: The previous match
638  * @index: the number of the additonal index to search (0<=index<indexes_count)
639  * @bdev: the device the cache entry should belong to
640  * @key: the key in the index
641  */
642 struct mb_cache_entry *
643 mb_cache_entry_find_next(struct mb_cache_entry *prev, int index,
644 			 struct block_device *bdev, unsigned int key)
645 {
646 	struct mb_cache *cache = prev->e_cache;
647 	unsigned int bucket = hash_long(key, cache->c_bucket_bits);
648 	struct list_head *l;
649 	struct mb_cache_entry *ce;
650 
651 	mb_assert(index < mb_cache_indexes(cache));
652 	spin_lock(&mb_cache_spinlock);
653 	l = prev->e_indexes[index].o_list.next;
654 	ce = __mb_cache_entry_find(l, &cache->c_indexes_hash[index][bucket],
655 	                           index, bdev, key);
656 	__mb_cache_entry_release_unlock(prev);
657 	return ce;
658 }
659 
660 #endif  /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */
661 
662 static int __init init_mbcache(void)
663 {
664 	mb_shrinker = set_shrinker(DEFAULT_SEEKS, mb_cache_shrink_fn);
665 	return 0;
666 }
667 
668 static void __exit exit_mbcache(void)
669 {
670 	remove_shrinker(mb_shrinker);
671 }
672 
673 module_init(init_mbcache)
674 module_exit(exit_mbcache)
675 
676