1 /* 2 * linux/fs/mbcache.c 3 * (C) 2001-2002 Andreas Gruenbacher, <a.gruenbacher@computer.org> 4 */ 5 6 /* 7 * Filesystem Meta Information Block Cache (mbcache) 8 * 9 * The mbcache caches blocks of block devices that need to be located 10 * by their device/block number, as well as by other criteria (such 11 * as the block's contents). 12 * 13 * There can only be one cache entry in a cache per device and block number. 14 * Additional indexes need not be unique in this sense. The number of 15 * additional indexes (=other criteria) can be hardwired at compile time 16 * or specified at cache create time. 17 * 18 * Each cache entry is of fixed size. An entry may be `valid' or `invalid' 19 * in the cache. A valid entry is in the main hash tables of the cache, 20 * and may also be in the lru list. An invalid entry is not in any hashes 21 * or lists. 22 * 23 * A valid cache entry is only in the lru list if no handles refer to it. 24 * Invalid cache entries will be freed when the last handle to the cache 25 * entry is released. Entries that cannot be freed immediately are put 26 * back on the lru list. 27 */ 28 29 #include <linux/kernel.h> 30 #include <linux/module.h> 31 32 #include <linux/hash.h> 33 #include <linux/fs.h> 34 #include <linux/mm.h> 35 #include <linux/slab.h> 36 #include <linux/sched.h> 37 #include <linux/init.h> 38 #include <linux/mbcache.h> 39 40 41 #ifdef MB_CACHE_DEBUG 42 # define mb_debug(f...) do { \ 43 printk(KERN_DEBUG f); \ 44 printk("\n"); \ 45 } while (0) 46 #define mb_assert(c) do { if (!(c)) \ 47 printk(KERN_ERR "assertion " #c " failed\n"); \ 48 } while(0) 49 #else 50 # define mb_debug(f...) do { } while(0) 51 # define mb_assert(c) do { } while(0) 52 #endif 53 #define mb_error(f...) do { \ 54 printk(KERN_ERR f); \ 55 printk("\n"); \ 56 } while(0) 57 58 #define MB_CACHE_WRITER ((unsigned short)~0U >> 1) 59 60 static DECLARE_WAIT_QUEUE_HEAD(mb_cache_queue); 61 62 MODULE_AUTHOR("Andreas Gruenbacher <a.gruenbacher@computer.org>"); 63 MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 64 MODULE_LICENSE("GPL"); 65 66 EXPORT_SYMBOL(mb_cache_create); 67 EXPORT_SYMBOL(mb_cache_shrink); 68 EXPORT_SYMBOL(mb_cache_destroy); 69 EXPORT_SYMBOL(mb_cache_entry_alloc); 70 EXPORT_SYMBOL(mb_cache_entry_insert); 71 EXPORT_SYMBOL(mb_cache_entry_release); 72 EXPORT_SYMBOL(mb_cache_entry_free); 73 EXPORT_SYMBOL(mb_cache_entry_get); 74 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 75 EXPORT_SYMBOL(mb_cache_entry_find_first); 76 EXPORT_SYMBOL(mb_cache_entry_find_next); 77 #endif 78 79 /* 80 * Global data: list of all mbcache's, lru list, and a spinlock for 81 * accessing cache data structures on SMP machines. The lru list is 82 * global across all mbcaches. 83 */ 84 85 static LIST_HEAD(mb_cache_list); 86 static LIST_HEAD(mb_cache_lru_list); 87 static DEFINE_SPINLOCK(mb_cache_spinlock); 88 89 /* 90 * What the mbcache registers as to get shrunk dynamically. 91 */ 92 93 static int mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask); 94 95 static struct shrinker mb_cache_shrinker = { 96 .shrink = mb_cache_shrink_fn, 97 .seeks = DEFAULT_SEEKS, 98 }; 99 100 static inline int 101 __mb_cache_entry_is_hashed(struct mb_cache_entry *ce) 102 { 103 return !list_empty(&ce->e_block_list); 104 } 105 106 107 static void 108 __mb_cache_entry_unhash(struct mb_cache_entry *ce) 109 { 110 if (__mb_cache_entry_is_hashed(ce)) { 111 list_del_init(&ce->e_block_list); 112 list_del(&ce->e_index.o_list); 113 } 114 } 115 116 117 static void 118 __mb_cache_entry_forget(struct mb_cache_entry *ce, gfp_t gfp_mask) 119 { 120 struct mb_cache *cache = ce->e_cache; 121 122 mb_assert(!(ce->e_used || ce->e_queued)); 123 kmem_cache_free(cache->c_entry_cache, ce); 124 atomic_dec(&cache->c_entry_count); 125 } 126 127 128 static void 129 __mb_cache_entry_release_unlock(struct mb_cache_entry *ce) 130 __releases(mb_cache_spinlock) 131 { 132 /* Wake up all processes queuing for this cache entry. */ 133 if (ce->e_queued) 134 wake_up_all(&mb_cache_queue); 135 if (ce->e_used >= MB_CACHE_WRITER) 136 ce->e_used -= MB_CACHE_WRITER; 137 ce->e_used--; 138 if (!(ce->e_used || ce->e_queued)) { 139 if (!__mb_cache_entry_is_hashed(ce)) 140 goto forget; 141 mb_assert(list_empty(&ce->e_lru_list)); 142 list_add_tail(&ce->e_lru_list, &mb_cache_lru_list); 143 } 144 spin_unlock(&mb_cache_spinlock); 145 return; 146 forget: 147 spin_unlock(&mb_cache_spinlock); 148 __mb_cache_entry_forget(ce, GFP_KERNEL); 149 } 150 151 152 /* 153 * mb_cache_shrink_fn() memory pressure callback 154 * 155 * This function is called by the kernel memory management when memory 156 * gets low. 157 * 158 * @shrink: (ignored) 159 * @nr_to_scan: Number of objects to scan 160 * @gfp_mask: (ignored) 161 * 162 * Returns the number of objects which are present in the cache. 163 */ 164 static int 165 mb_cache_shrink_fn(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask) 166 { 167 LIST_HEAD(free_list); 168 struct mb_cache *cache; 169 struct mb_cache_entry *entry, *tmp; 170 int count = 0; 171 172 mb_debug("trying to free %d entries", nr_to_scan); 173 spin_lock(&mb_cache_spinlock); 174 while (nr_to_scan-- && !list_empty(&mb_cache_lru_list)) { 175 struct mb_cache_entry *ce = 176 list_entry(mb_cache_lru_list.next, 177 struct mb_cache_entry, e_lru_list); 178 list_move_tail(&ce->e_lru_list, &free_list); 179 __mb_cache_entry_unhash(ce); 180 } 181 list_for_each_entry(cache, &mb_cache_list, c_cache_list) { 182 mb_debug("cache %s (%d)", cache->c_name, 183 atomic_read(&cache->c_entry_count)); 184 count += atomic_read(&cache->c_entry_count); 185 } 186 spin_unlock(&mb_cache_spinlock); 187 list_for_each_entry_safe(entry, tmp, &free_list, e_lru_list) { 188 __mb_cache_entry_forget(entry, gfp_mask); 189 } 190 return (count / 100) * sysctl_vfs_cache_pressure; 191 } 192 193 194 /* 195 * mb_cache_create() create a new cache 196 * 197 * All entries in one cache are equal size. Cache entries may be from 198 * multiple devices. If this is the first mbcache created, registers 199 * the cache with kernel memory management. Returns NULL if no more 200 * memory was available. 201 * 202 * @name: name of the cache (informal) 203 * @bucket_bits: log2(number of hash buckets) 204 */ 205 struct mb_cache * 206 mb_cache_create(const char *name, int bucket_bits) 207 { 208 int n, bucket_count = 1 << bucket_bits; 209 struct mb_cache *cache = NULL; 210 211 cache = kmalloc(sizeof(struct mb_cache), GFP_KERNEL); 212 if (!cache) 213 return NULL; 214 cache->c_name = name; 215 atomic_set(&cache->c_entry_count, 0); 216 cache->c_bucket_bits = bucket_bits; 217 cache->c_block_hash = kmalloc(bucket_count * sizeof(struct list_head), 218 GFP_KERNEL); 219 if (!cache->c_block_hash) 220 goto fail; 221 for (n=0; n<bucket_count; n++) 222 INIT_LIST_HEAD(&cache->c_block_hash[n]); 223 cache->c_index_hash = kmalloc(bucket_count * sizeof(struct list_head), 224 GFP_KERNEL); 225 if (!cache->c_index_hash) 226 goto fail; 227 for (n=0; n<bucket_count; n++) 228 INIT_LIST_HEAD(&cache->c_index_hash[n]); 229 cache->c_entry_cache = kmem_cache_create(name, 230 sizeof(struct mb_cache_entry), 0, 231 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 232 if (!cache->c_entry_cache) 233 goto fail2; 234 235 /* 236 * Set an upper limit on the number of cache entries so that the hash 237 * chains won't grow too long. 238 */ 239 cache->c_max_entries = bucket_count << 4; 240 241 spin_lock(&mb_cache_spinlock); 242 list_add(&cache->c_cache_list, &mb_cache_list); 243 spin_unlock(&mb_cache_spinlock); 244 return cache; 245 246 fail2: 247 kfree(cache->c_index_hash); 248 249 fail: 250 kfree(cache->c_block_hash); 251 kfree(cache); 252 return NULL; 253 } 254 255 256 /* 257 * mb_cache_shrink() 258 * 259 * Removes all cache entries of a device from the cache. All cache entries 260 * currently in use cannot be freed, and thus remain in the cache. All others 261 * are freed. 262 * 263 * @bdev: which device's cache entries to shrink 264 */ 265 void 266 mb_cache_shrink(struct block_device *bdev) 267 { 268 LIST_HEAD(free_list); 269 struct list_head *l, *ltmp; 270 271 spin_lock(&mb_cache_spinlock); 272 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 273 struct mb_cache_entry *ce = 274 list_entry(l, struct mb_cache_entry, e_lru_list); 275 if (ce->e_bdev == bdev) { 276 list_move_tail(&ce->e_lru_list, &free_list); 277 __mb_cache_entry_unhash(ce); 278 } 279 } 280 spin_unlock(&mb_cache_spinlock); 281 list_for_each_safe(l, ltmp, &free_list) { 282 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 283 e_lru_list), GFP_KERNEL); 284 } 285 } 286 287 288 /* 289 * mb_cache_destroy() 290 * 291 * Shrinks the cache to its minimum possible size (hopefully 0 entries), 292 * and then destroys it. If this was the last mbcache, un-registers the 293 * mbcache from kernel memory management. 294 */ 295 void 296 mb_cache_destroy(struct mb_cache *cache) 297 { 298 LIST_HEAD(free_list); 299 struct list_head *l, *ltmp; 300 301 spin_lock(&mb_cache_spinlock); 302 list_for_each_safe(l, ltmp, &mb_cache_lru_list) { 303 struct mb_cache_entry *ce = 304 list_entry(l, struct mb_cache_entry, e_lru_list); 305 if (ce->e_cache == cache) { 306 list_move_tail(&ce->e_lru_list, &free_list); 307 __mb_cache_entry_unhash(ce); 308 } 309 } 310 list_del(&cache->c_cache_list); 311 spin_unlock(&mb_cache_spinlock); 312 313 list_for_each_safe(l, ltmp, &free_list) { 314 __mb_cache_entry_forget(list_entry(l, struct mb_cache_entry, 315 e_lru_list), GFP_KERNEL); 316 } 317 318 if (atomic_read(&cache->c_entry_count) > 0) { 319 mb_error("cache %s: %d orphaned entries", 320 cache->c_name, 321 atomic_read(&cache->c_entry_count)); 322 } 323 324 kmem_cache_destroy(cache->c_entry_cache); 325 326 kfree(cache->c_index_hash); 327 kfree(cache->c_block_hash); 328 kfree(cache); 329 } 330 331 /* 332 * mb_cache_entry_alloc() 333 * 334 * Allocates a new cache entry. The new entry will not be valid initially, 335 * and thus cannot be looked up yet. It should be filled with data, and 336 * then inserted into the cache using mb_cache_entry_insert(). Returns NULL 337 * if no more memory was available. 338 */ 339 struct mb_cache_entry * 340 mb_cache_entry_alloc(struct mb_cache *cache, gfp_t gfp_flags) 341 { 342 struct mb_cache_entry *ce = NULL; 343 344 if (atomic_read(&cache->c_entry_count) >= cache->c_max_entries) { 345 spin_lock(&mb_cache_spinlock); 346 if (!list_empty(&mb_cache_lru_list)) { 347 ce = list_entry(mb_cache_lru_list.next, 348 struct mb_cache_entry, e_lru_list); 349 list_del_init(&ce->e_lru_list); 350 __mb_cache_entry_unhash(ce); 351 } 352 spin_unlock(&mb_cache_spinlock); 353 } 354 if (!ce) { 355 ce = kmem_cache_alloc(cache->c_entry_cache, gfp_flags); 356 if (!ce) 357 return NULL; 358 atomic_inc(&cache->c_entry_count); 359 INIT_LIST_HEAD(&ce->e_lru_list); 360 INIT_LIST_HEAD(&ce->e_block_list); 361 ce->e_cache = cache; 362 ce->e_queued = 0; 363 } 364 ce->e_used = 1 + MB_CACHE_WRITER; 365 return ce; 366 } 367 368 369 /* 370 * mb_cache_entry_insert() 371 * 372 * Inserts an entry that was allocated using mb_cache_entry_alloc() into 373 * the cache. After this, the cache entry can be looked up, but is not yet 374 * in the lru list as the caller still holds a handle to it. Returns 0 on 375 * success, or -EBUSY if a cache entry for that device + inode exists 376 * already (this may happen after a failed lookup, but when another process 377 * has inserted the same cache entry in the meantime). 378 * 379 * @bdev: device the cache entry belongs to 380 * @block: block number 381 * @key: lookup key 382 */ 383 int 384 mb_cache_entry_insert(struct mb_cache_entry *ce, struct block_device *bdev, 385 sector_t block, unsigned int key) 386 { 387 struct mb_cache *cache = ce->e_cache; 388 unsigned int bucket; 389 struct list_head *l; 390 int error = -EBUSY; 391 392 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 393 cache->c_bucket_bits); 394 spin_lock(&mb_cache_spinlock); 395 list_for_each_prev(l, &cache->c_block_hash[bucket]) { 396 struct mb_cache_entry *ce = 397 list_entry(l, struct mb_cache_entry, e_block_list); 398 if (ce->e_bdev == bdev && ce->e_block == block) 399 goto out; 400 } 401 __mb_cache_entry_unhash(ce); 402 ce->e_bdev = bdev; 403 ce->e_block = block; 404 list_add(&ce->e_block_list, &cache->c_block_hash[bucket]); 405 ce->e_index.o_key = key; 406 bucket = hash_long(key, cache->c_bucket_bits); 407 list_add(&ce->e_index.o_list, &cache->c_index_hash[bucket]); 408 error = 0; 409 out: 410 spin_unlock(&mb_cache_spinlock); 411 return error; 412 } 413 414 415 /* 416 * mb_cache_entry_release() 417 * 418 * Release a handle to a cache entry. When the last handle to a cache entry 419 * is released it is either freed (if it is invalid) or otherwise inserted 420 * in to the lru list. 421 */ 422 void 423 mb_cache_entry_release(struct mb_cache_entry *ce) 424 { 425 spin_lock(&mb_cache_spinlock); 426 __mb_cache_entry_release_unlock(ce); 427 } 428 429 430 /* 431 * mb_cache_entry_free() 432 * 433 * This is equivalent to the sequence mb_cache_entry_takeout() -- 434 * mb_cache_entry_release(). 435 */ 436 void 437 mb_cache_entry_free(struct mb_cache_entry *ce) 438 { 439 spin_lock(&mb_cache_spinlock); 440 mb_assert(list_empty(&ce->e_lru_list)); 441 __mb_cache_entry_unhash(ce); 442 __mb_cache_entry_release_unlock(ce); 443 } 444 445 446 /* 447 * mb_cache_entry_get() 448 * 449 * Get a cache entry by device / block number. (There can only be one entry 450 * in the cache per device and block.) Returns NULL if no such cache entry 451 * exists. The returned cache entry is locked for exclusive access ("single 452 * writer"). 453 */ 454 struct mb_cache_entry * 455 mb_cache_entry_get(struct mb_cache *cache, struct block_device *bdev, 456 sector_t block) 457 { 458 unsigned int bucket; 459 struct list_head *l; 460 struct mb_cache_entry *ce; 461 462 bucket = hash_long((unsigned long)bdev + (block & 0xffffffff), 463 cache->c_bucket_bits); 464 spin_lock(&mb_cache_spinlock); 465 list_for_each(l, &cache->c_block_hash[bucket]) { 466 ce = list_entry(l, struct mb_cache_entry, e_block_list); 467 if (ce->e_bdev == bdev && ce->e_block == block) { 468 DEFINE_WAIT(wait); 469 470 if (!list_empty(&ce->e_lru_list)) 471 list_del_init(&ce->e_lru_list); 472 473 while (ce->e_used > 0) { 474 ce->e_queued++; 475 prepare_to_wait(&mb_cache_queue, &wait, 476 TASK_UNINTERRUPTIBLE); 477 spin_unlock(&mb_cache_spinlock); 478 schedule(); 479 spin_lock(&mb_cache_spinlock); 480 ce->e_queued--; 481 } 482 finish_wait(&mb_cache_queue, &wait); 483 ce->e_used += 1 + MB_CACHE_WRITER; 484 485 if (!__mb_cache_entry_is_hashed(ce)) { 486 __mb_cache_entry_release_unlock(ce); 487 return NULL; 488 } 489 goto cleanup; 490 } 491 } 492 ce = NULL; 493 494 cleanup: 495 spin_unlock(&mb_cache_spinlock); 496 return ce; 497 } 498 499 #if !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) 500 501 static struct mb_cache_entry * 502 __mb_cache_entry_find(struct list_head *l, struct list_head *head, 503 struct block_device *bdev, unsigned int key) 504 { 505 while (l != head) { 506 struct mb_cache_entry *ce = 507 list_entry(l, struct mb_cache_entry, e_index.o_list); 508 if (ce->e_bdev == bdev && ce->e_index.o_key == key) { 509 DEFINE_WAIT(wait); 510 511 if (!list_empty(&ce->e_lru_list)) 512 list_del_init(&ce->e_lru_list); 513 514 /* Incrementing before holding the lock gives readers 515 priority over writers. */ 516 ce->e_used++; 517 while (ce->e_used >= MB_CACHE_WRITER) { 518 ce->e_queued++; 519 prepare_to_wait(&mb_cache_queue, &wait, 520 TASK_UNINTERRUPTIBLE); 521 spin_unlock(&mb_cache_spinlock); 522 schedule(); 523 spin_lock(&mb_cache_spinlock); 524 ce->e_queued--; 525 } 526 finish_wait(&mb_cache_queue, &wait); 527 528 if (!__mb_cache_entry_is_hashed(ce)) { 529 __mb_cache_entry_release_unlock(ce); 530 spin_lock(&mb_cache_spinlock); 531 return ERR_PTR(-EAGAIN); 532 } 533 return ce; 534 } 535 l = l->next; 536 } 537 return NULL; 538 } 539 540 541 /* 542 * mb_cache_entry_find_first() 543 * 544 * Find the first cache entry on a given device with a certain key in 545 * an additional index. Additonal matches can be found with 546 * mb_cache_entry_find_next(). Returns NULL if no match was found. The 547 * returned cache entry is locked for shared access ("multiple readers"). 548 * 549 * @cache: the cache to search 550 * @bdev: the device the cache entry should belong to 551 * @key: the key in the index 552 */ 553 struct mb_cache_entry * 554 mb_cache_entry_find_first(struct mb_cache *cache, struct block_device *bdev, 555 unsigned int key) 556 { 557 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 558 struct list_head *l; 559 struct mb_cache_entry *ce; 560 561 spin_lock(&mb_cache_spinlock); 562 l = cache->c_index_hash[bucket].next; 563 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key); 564 spin_unlock(&mb_cache_spinlock); 565 return ce; 566 } 567 568 569 /* 570 * mb_cache_entry_find_next() 571 * 572 * Find the next cache entry on a given device with a certain key in an 573 * additional index. Returns NULL if no match could be found. The previous 574 * entry is atomatically released, so that mb_cache_entry_find_next() can 575 * be called like this: 576 * 577 * entry = mb_cache_entry_find_first(); 578 * while (entry) { 579 * ... 580 * entry = mb_cache_entry_find_next(entry, ...); 581 * } 582 * 583 * @prev: The previous match 584 * @bdev: the device the cache entry should belong to 585 * @key: the key in the index 586 */ 587 struct mb_cache_entry * 588 mb_cache_entry_find_next(struct mb_cache_entry *prev, 589 struct block_device *bdev, unsigned int key) 590 { 591 struct mb_cache *cache = prev->e_cache; 592 unsigned int bucket = hash_long(key, cache->c_bucket_bits); 593 struct list_head *l; 594 struct mb_cache_entry *ce; 595 596 spin_lock(&mb_cache_spinlock); 597 l = prev->e_index.o_list.next; 598 ce = __mb_cache_entry_find(l, &cache->c_index_hash[bucket], bdev, key); 599 __mb_cache_entry_release_unlock(prev); 600 return ce; 601 } 602 603 #endif /* !defined(MB_CACHE_INDEXES_COUNT) || (MB_CACHE_INDEXES_COUNT > 0) */ 604 605 static int __init init_mbcache(void) 606 { 607 register_shrinker(&mb_cache_shrinker); 608 return 0; 609 } 610 611 static void __exit exit_mbcache(void) 612 { 613 unregister_shrinker(&mb_cache_shrinker); 614 } 615 616 module_init(init_mbcache) 617 module_exit(exit_mbcache) 618 619