1 #include <linux/spinlock.h> 2 #include <linux/slab.h> 3 #include <linux/list.h> 4 #include <linux/list_bl.h> 5 #include <linux/module.h> 6 #include <linux/sched.h> 7 #include <linux/workqueue.h> 8 #include <linux/mbcache.h> 9 10 /* 11 * Mbcache is a simple key-value store. Keys need not be unique, however 12 * key-value pairs are expected to be unique (we use this fact in 13 * mb_cache_entry_delete_block()). 14 * 15 * Ext2 and ext4 use this cache for deduplication of extended attribute blocks. 16 * They use hash of a block contents as a key and block number as a value. 17 * That's why keys need not be unique (different xattr blocks may end up having 18 * the same hash). However block number always uniquely identifies a cache 19 * entry. 20 * 21 * We provide functions for creation and removal of entries, search by key, 22 * and a special "delete entry with given key-value pair" operation. Fixed 23 * size hash table is used for fast key lookups. 24 */ 25 26 struct mb_cache { 27 /* Hash table of entries */ 28 struct hlist_bl_head *c_hash; 29 /* log2 of hash table size */ 30 int c_bucket_bits; 31 /* Maximum entries in cache to avoid degrading hash too much */ 32 unsigned long c_max_entries; 33 /* Protects c_list, c_entry_count */ 34 spinlock_t c_list_lock; 35 struct list_head c_list; 36 /* Number of entries in cache */ 37 unsigned long c_entry_count; 38 struct shrinker c_shrink; 39 /* Work for shrinking when the cache has too many entries */ 40 struct work_struct c_shrink_work; 41 }; 42 43 static struct kmem_cache *mb_entry_cache; 44 45 static unsigned long mb_cache_shrink(struct mb_cache *cache, 46 unsigned long nr_to_scan); 47 48 static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache, 49 u32 key) 50 { 51 return &cache->c_hash[hash_32(key, cache->c_bucket_bits)]; 52 } 53 54 /* 55 * Number of entries to reclaim synchronously when there are too many entries 56 * in cache 57 */ 58 #define SYNC_SHRINK_BATCH 64 59 60 /* 61 * mb_cache_entry_create - create entry in cache 62 * @cache - cache where the entry should be created 63 * @mask - gfp mask with which the entry should be allocated 64 * @key - key of the entry 65 * @block - block that contains data 66 * @reusable - is the block reusable by other inodes? 67 * 68 * Creates entry in @cache with key @key and records that data is stored in 69 * block @block. The function returns -EBUSY if entry with the same key 70 * and for the same block already exists in cache. Otherwise 0 is returned. 71 */ 72 int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key, 73 sector_t block, bool reusable) 74 { 75 struct mb_cache_entry *entry, *dup; 76 struct hlist_bl_node *dup_node; 77 struct hlist_bl_head *head; 78 79 /* Schedule background reclaim if there are too many entries */ 80 if (cache->c_entry_count >= cache->c_max_entries) 81 schedule_work(&cache->c_shrink_work); 82 /* Do some sync reclaim if background reclaim cannot keep up */ 83 if (cache->c_entry_count >= 2*cache->c_max_entries) 84 mb_cache_shrink(cache, SYNC_SHRINK_BATCH); 85 86 entry = kmem_cache_alloc(mb_entry_cache, mask); 87 if (!entry) 88 return -ENOMEM; 89 90 INIT_LIST_HEAD(&entry->e_list); 91 /* One ref for hash, one ref returned */ 92 atomic_set(&entry->e_refcnt, 1); 93 entry->e_key = key; 94 entry->e_block = block; 95 entry->e_reusable = reusable; 96 head = mb_cache_entry_head(cache, key); 97 hlist_bl_lock(head); 98 hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) { 99 if (dup->e_key == key && dup->e_block == block) { 100 hlist_bl_unlock(head); 101 kmem_cache_free(mb_entry_cache, entry); 102 return -EBUSY; 103 } 104 } 105 hlist_bl_add_head(&entry->e_hash_list, head); 106 hlist_bl_unlock(head); 107 108 spin_lock(&cache->c_list_lock); 109 list_add_tail(&entry->e_list, &cache->c_list); 110 /* Grab ref for LRU list */ 111 atomic_inc(&entry->e_refcnt); 112 cache->c_entry_count++; 113 spin_unlock(&cache->c_list_lock); 114 115 return 0; 116 } 117 EXPORT_SYMBOL(mb_cache_entry_create); 118 119 void __mb_cache_entry_free(struct mb_cache_entry *entry) 120 { 121 kmem_cache_free(mb_entry_cache, entry); 122 } 123 EXPORT_SYMBOL(__mb_cache_entry_free); 124 125 static struct mb_cache_entry *__entry_find(struct mb_cache *cache, 126 struct mb_cache_entry *entry, 127 u32 key) 128 { 129 struct mb_cache_entry *old_entry = entry; 130 struct hlist_bl_node *node; 131 struct hlist_bl_head *head; 132 133 head = mb_cache_entry_head(cache, key); 134 hlist_bl_lock(head); 135 if (entry && !hlist_bl_unhashed(&entry->e_hash_list)) 136 node = entry->e_hash_list.next; 137 else 138 node = hlist_bl_first(head); 139 while (node) { 140 entry = hlist_bl_entry(node, struct mb_cache_entry, 141 e_hash_list); 142 if (entry->e_key == key && entry->e_reusable) { 143 atomic_inc(&entry->e_refcnt); 144 goto out; 145 } 146 node = node->next; 147 } 148 entry = NULL; 149 out: 150 hlist_bl_unlock(head); 151 if (old_entry) 152 mb_cache_entry_put(cache, old_entry); 153 154 return entry; 155 } 156 157 /* 158 * mb_cache_entry_find_first - find the first reusable entry with the given key 159 * @cache: cache where we should search 160 * @key: key to look for 161 * 162 * Search in @cache for a reusable entry with key @key. Grabs reference to the 163 * first reusable entry found and returns the entry. 164 */ 165 struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache, 166 u32 key) 167 { 168 return __entry_find(cache, NULL, key); 169 } 170 EXPORT_SYMBOL(mb_cache_entry_find_first); 171 172 /* 173 * mb_cache_entry_find_next - find next reusable entry with the same key 174 * @cache: cache where we should search 175 * @entry: entry to start search from 176 * 177 * Finds next reusable entry in the hash chain which has the same key as @entry. 178 * If @entry is unhashed (which can happen when deletion of entry races with the 179 * search), finds the first reusable entry in the hash chain. The function drops 180 * reference to @entry and returns with a reference to the found entry. 181 */ 182 struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache, 183 struct mb_cache_entry *entry) 184 { 185 return __entry_find(cache, entry, entry->e_key); 186 } 187 EXPORT_SYMBOL(mb_cache_entry_find_next); 188 189 /* 190 * mb_cache_entry_get - get a cache entry by block number (and key) 191 * @cache - cache we work with 192 * @key - key of block number @block 193 * @block - block number 194 */ 195 struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key, 196 sector_t block) 197 { 198 struct hlist_bl_node *node; 199 struct hlist_bl_head *head; 200 struct mb_cache_entry *entry; 201 202 head = mb_cache_entry_head(cache, key); 203 hlist_bl_lock(head); 204 hlist_bl_for_each_entry(entry, node, head, e_hash_list) { 205 if (entry->e_key == key && entry->e_block == block) { 206 atomic_inc(&entry->e_refcnt); 207 goto out; 208 } 209 } 210 entry = NULL; 211 out: 212 hlist_bl_unlock(head); 213 return entry; 214 } 215 EXPORT_SYMBOL(mb_cache_entry_get); 216 217 /* mb_cache_entry_delete_block - remove information about block from cache 218 * @cache - cache we work with 219 * @key - key of block @block 220 * @block - block number 221 * 222 * Remove entry from cache @cache with key @key with data stored in @block. 223 */ 224 void mb_cache_entry_delete_block(struct mb_cache *cache, u32 key, 225 sector_t block) 226 { 227 struct hlist_bl_node *node; 228 struct hlist_bl_head *head; 229 struct mb_cache_entry *entry; 230 231 head = mb_cache_entry_head(cache, key); 232 hlist_bl_lock(head); 233 hlist_bl_for_each_entry(entry, node, head, e_hash_list) { 234 if (entry->e_key == key && entry->e_block == block) { 235 /* We keep hash list reference to keep entry alive */ 236 hlist_bl_del_init(&entry->e_hash_list); 237 hlist_bl_unlock(head); 238 spin_lock(&cache->c_list_lock); 239 if (!list_empty(&entry->e_list)) { 240 list_del_init(&entry->e_list); 241 cache->c_entry_count--; 242 atomic_dec(&entry->e_refcnt); 243 } 244 spin_unlock(&cache->c_list_lock); 245 mb_cache_entry_put(cache, entry); 246 return; 247 } 248 } 249 hlist_bl_unlock(head); 250 } 251 EXPORT_SYMBOL(mb_cache_entry_delete_block); 252 253 /* mb_cache_entry_touch - cache entry got used 254 * @cache - cache the entry belongs to 255 * @entry - entry that got used 256 * 257 * Marks entry as used to give hit higher chances of surviving in cache. 258 */ 259 void mb_cache_entry_touch(struct mb_cache *cache, 260 struct mb_cache_entry *entry) 261 { 262 entry->e_referenced = 1; 263 } 264 EXPORT_SYMBOL(mb_cache_entry_touch); 265 266 static unsigned long mb_cache_count(struct shrinker *shrink, 267 struct shrink_control *sc) 268 { 269 struct mb_cache *cache = container_of(shrink, struct mb_cache, 270 c_shrink); 271 272 return cache->c_entry_count; 273 } 274 275 /* Shrink number of entries in cache */ 276 static unsigned long mb_cache_shrink(struct mb_cache *cache, 277 unsigned long nr_to_scan) 278 { 279 struct mb_cache_entry *entry; 280 struct hlist_bl_head *head; 281 unsigned long shrunk = 0; 282 283 spin_lock(&cache->c_list_lock); 284 while (nr_to_scan-- && !list_empty(&cache->c_list)) { 285 entry = list_first_entry(&cache->c_list, 286 struct mb_cache_entry, e_list); 287 if (entry->e_referenced) { 288 entry->e_referenced = 0; 289 list_move_tail(&entry->e_list, &cache->c_list); 290 continue; 291 } 292 list_del_init(&entry->e_list); 293 cache->c_entry_count--; 294 /* 295 * We keep LRU list reference so that entry doesn't go away 296 * from under us. 297 */ 298 spin_unlock(&cache->c_list_lock); 299 head = mb_cache_entry_head(cache, entry->e_key); 300 hlist_bl_lock(head); 301 if (!hlist_bl_unhashed(&entry->e_hash_list)) { 302 hlist_bl_del_init(&entry->e_hash_list); 303 atomic_dec(&entry->e_refcnt); 304 } 305 hlist_bl_unlock(head); 306 if (mb_cache_entry_put(cache, entry)) 307 shrunk++; 308 cond_resched(); 309 spin_lock(&cache->c_list_lock); 310 } 311 spin_unlock(&cache->c_list_lock); 312 313 return shrunk; 314 } 315 316 static unsigned long mb_cache_scan(struct shrinker *shrink, 317 struct shrink_control *sc) 318 { 319 struct mb_cache *cache = container_of(shrink, struct mb_cache, 320 c_shrink); 321 return mb_cache_shrink(cache, sc->nr_to_scan); 322 } 323 324 /* We shrink 1/X of the cache when we have too many entries in it */ 325 #define SHRINK_DIVISOR 16 326 327 static void mb_cache_shrink_worker(struct work_struct *work) 328 { 329 struct mb_cache *cache = container_of(work, struct mb_cache, 330 c_shrink_work); 331 mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR); 332 } 333 334 /* 335 * mb_cache_create - create cache 336 * @bucket_bits: log2 of the hash table size 337 * 338 * Create cache for keys with 2^bucket_bits hash entries. 339 */ 340 struct mb_cache *mb_cache_create(int bucket_bits) 341 { 342 struct mb_cache *cache; 343 unsigned long bucket_count = 1UL << bucket_bits; 344 unsigned long i; 345 346 cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL); 347 if (!cache) 348 goto err_out; 349 cache->c_bucket_bits = bucket_bits; 350 cache->c_max_entries = bucket_count << 4; 351 INIT_LIST_HEAD(&cache->c_list); 352 spin_lock_init(&cache->c_list_lock); 353 cache->c_hash = kmalloc(bucket_count * sizeof(struct hlist_bl_head), 354 GFP_KERNEL); 355 if (!cache->c_hash) { 356 kfree(cache); 357 goto err_out; 358 } 359 for (i = 0; i < bucket_count; i++) 360 INIT_HLIST_BL_HEAD(&cache->c_hash[i]); 361 362 cache->c_shrink.count_objects = mb_cache_count; 363 cache->c_shrink.scan_objects = mb_cache_scan; 364 cache->c_shrink.seeks = DEFAULT_SEEKS; 365 if (register_shrinker(&cache->c_shrink)) { 366 kfree(cache->c_hash); 367 kfree(cache); 368 goto err_out; 369 } 370 371 INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker); 372 373 return cache; 374 375 err_out: 376 return NULL; 377 } 378 EXPORT_SYMBOL(mb_cache_create); 379 380 /* 381 * mb_cache_destroy - destroy cache 382 * @cache: the cache to destroy 383 * 384 * Free all entries in cache and cache itself. Caller must make sure nobody 385 * (except shrinker) can reach @cache when calling this. 386 */ 387 void mb_cache_destroy(struct mb_cache *cache) 388 { 389 struct mb_cache_entry *entry, *next; 390 391 unregister_shrinker(&cache->c_shrink); 392 393 /* 394 * We don't bother with any locking. Cache must not be used at this 395 * point. 396 */ 397 list_for_each_entry_safe(entry, next, &cache->c_list, e_list) { 398 if (!hlist_bl_unhashed(&entry->e_hash_list)) { 399 hlist_bl_del_init(&entry->e_hash_list); 400 atomic_dec(&entry->e_refcnt); 401 } else 402 WARN_ON(1); 403 list_del(&entry->e_list); 404 WARN_ON(atomic_read(&entry->e_refcnt) != 1); 405 mb_cache_entry_put(cache, entry); 406 } 407 kfree(cache->c_hash); 408 kfree(cache); 409 } 410 EXPORT_SYMBOL(mb_cache_destroy); 411 412 static int __init mbcache_init(void) 413 { 414 mb_entry_cache = kmem_cache_create("mbcache", 415 sizeof(struct mb_cache_entry), 0, 416 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 417 if (!mb_entry_cache) 418 return -ENOMEM; 419 return 0; 420 } 421 422 static void __exit mbcache_exit(void) 423 { 424 kmem_cache_destroy(mb_entry_cache); 425 } 426 427 module_init(mbcache_init) 428 module_exit(mbcache_exit) 429 430 MODULE_AUTHOR("Jan Kara <jack@suse.cz>"); 431 MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 432 MODULE_LICENSE("GPL"); 433