1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/spinlock.h> 3 #include <linux/slab.h> 4 #include <linux/list.h> 5 #include <linux/list_bl.h> 6 #include <linux/module.h> 7 #include <linux/sched.h> 8 #include <linux/workqueue.h> 9 #include <linux/mbcache.h> 10 11 /* 12 * Mbcache is a simple key-value store. Keys need not be unique, however 13 * key-value pairs are expected to be unique (we use this fact in 14 * mb_cache_entry_delete_or_get()). 15 * 16 * Ext2 and ext4 use this cache for deduplication of extended attribute blocks. 17 * Ext4 also uses it for deduplication of xattr values stored in inodes. 18 * They use hash of data as a key and provide a value that may represent a 19 * block or inode number. That's why keys need not be unique (hash of different 20 * data may be the same). However user provided value always uniquely 21 * identifies a cache entry. 22 * 23 * We provide functions for creation and removal of entries, search by key, 24 * and a special "delete entry with given key-value pair" operation. Fixed 25 * size hash table is used for fast key lookups. 26 */ 27 28 struct mb_cache { 29 /* Hash table of entries */ 30 struct hlist_bl_head *c_hash; 31 /* log2 of hash table size */ 32 int c_bucket_bits; 33 /* Maximum entries in cache to avoid degrading hash too much */ 34 unsigned long c_max_entries; 35 /* Protects c_list, c_entry_count */ 36 spinlock_t c_list_lock; 37 struct list_head c_list; 38 /* Number of entries in cache */ 39 unsigned long c_entry_count; 40 struct shrinker c_shrink; 41 /* Work for shrinking when the cache has too many entries */ 42 struct work_struct c_shrink_work; 43 }; 44 45 static struct kmem_cache *mb_entry_cache; 46 47 static unsigned long mb_cache_shrink(struct mb_cache *cache, 48 unsigned long nr_to_scan); 49 50 static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache, 51 u32 key) 52 { 53 return &cache->c_hash[hash_32(key, cache->c_bucket_bits)]; 54 } 55 56 /* 57 * Number of entries to reclaim synchronously when there are too many entries 58 * in cache 59 */ 60 #define SYNC_SHRINK_BATCH 64 61 62 /* 63 * mb_cache_entry_create - create entry in cache 64 * @cache - cache where the entry should be created 65 * @mask - gfp mask with which the entry should be allocated 66 * @key - key of the entry 67 * @value - value of the entry 68 * @reusable - is the entry reusable by others? 69 * 70 * Creates entry in @cache with key @key and value @value. The function returns 71 * -EBUSY if entry with the same key and value already exists in cache. 72 * Otherwise 0 is returned. 73 */ 74 int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key, 75 u64 value, bool reusable) 76 { 77 struct mb_cache_entry *entry, *dup; 78 struct hlist_bl_node *dup_node; 79 struct hlist_bl_head *head; 80 81 /* Schedule background reclaim if there are too many entries */ 82 if (cache->c_entry_count >= cache->c_max_entries) 83 schedule_work(&cache->c_shrink_work); 84 /* Do some sync reclaim if background reclaim cannot keep up */ 85 if (cache->c_entry_count >= 2*cache->c_max_entries) 86 mb_cache_shrink(cache, SYNC_SHRINK_BATCH); 87 88 entry = kmem_cache_alloc(mb_entry_cache, mask); 89 if (!entry) 90 return -ENOMEM; 91 92 INIT_LIST_HEAD(&entry->e_list); 93 /* 94 * We create entry with two references. One reference is kept by the 95 * hash table, the other reference is used to protect us from 96 * mb_cache_entry_delete_or_get() until the entry is fully setup. This 97 * avoids nesting of cache->c_list_lock into hash table bit locks which 98 * is problematic for RT. 99 */ 100 atomic_set(&entry->e_refcnt, 2); 101 entry->e_key = key; 102 entry->e_value = value; 103 entry->e_reusable = reusable; 104 entry->e_referenced = 0; 105 head = mb_cache_entry_head(cache, key); 106 hlist_bl_lock(head); 107 hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) { 108 if (dup->e_key == key && dup->e_value == value) { 109 hlist_bl_unlock(head); 110 kmem_cache_free(mb_entry_cache, entry); 111 return -EBUSY; 112 } 113 } 114 hlist_bl_add_head(&entry->e_hash_list, head); 115 hlist_bl_unlock(head); 116 spin_lock(&cache->c_list_lock); 117 list_add_tail(&entry->e_list, &cache->c_list); 118 cache->c_entry_count++; 119 spin_unlock(&cache->c_list_lock); 120 mb_cache_entry_put(cache, entry); 121 122 return 0; 123 } 124 EXPORT_SYMBOL(mb_cache_entry_create); 125 126 void __mb_cache_entry_free(struct mb_cache *cache, struct mb_cache_entry *entry) 127 { 128 struct hlist_bl_head *head; 129 130 head = mb_cache_entry_head(cache, entry->e_key); 131 hlist_bl_lock(head); 132 hlist_bl_del(&entry->e_hash_list); 133 hlist_bl_unlock(head); 134 kmem_cache_free(mb_entry_cache, entry); 135 } 136 EXPORT_SYMBOL(__mb_cache_entry_free); 137 138 /* 139 * mb_cache_entry_wait_unused - wait to be the last user of the entry 140 * 141 * @entry - entry to work on 142 * 143 * Wait to be the last user of the entry. 144 */ 145 void mb_cache_entry_wait_unused(struct mb_cache_entry *entry) 146 { 147 wait_var_event(&entry->e_refcnt, atomic_read(&entry->e_refcnt) <= 2); 148 } 149 EXPORT_SYMBOL(mb_cache_entry_wait_unused); 150 151 static struct mb_cache_entry *__entry_find(struct mb_cache *cache, 152 struct mb_cache_entry *entry, 153 u32 key) 154 { 155 struct mb_cache_entry *old_entry = entry; 156 struct hlist_bl_node *node; 157 struct hlist_bl_head *head; 158 159 head = mb_cache_entry_head(cache, key); 160 hlist_bl_lock(head); 161 if (entry && !hlist_bl_unhashed(&entry->e_hash_list)) 162 node = entry->e_hash_list.next; 163 else 164 node = hlist_bl_first(head); 165 while (node) { 166 entry = hlist_bl_entry(node, struct mb_cache_entry, 167 e_hash_list); 168 if (entry->e_key == key && entry->e_reusable && 169 atomic_inc_not_zero(&entry->e_refcnt)) 170 goto out; 171 node = node->next; 172 } 173 entry = NULL; 174 out: 175 hlist_bl_unlock(head); 176 if (old_entry) 177 mb_cache_entry_put(cache, old_entry); 178 179 return entry; 180 } 181 182 /* 183 * mb_cache_entry_find_first - find the first reusable entry with the given key 184 * @cache: cache where we should search 185 * @key: key to look for 186 * 187 * Search in @cache for a reusable entry with key @key. Grabs reference to the 188 * first reusable entry found and returns the entry. 189 */ 190 struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache, 191 u32 key) 192 { 193 return __entry_find(cache, NULL, key); 194 } 195 EXPORT_SYMBOL(mb_cache_entry_find_first); 196 197 /* 198 * mb_cache_entry_find_next - find next reusable entry with the same key 199 * @cache: cache where we should search 200 * @entry: entry to start search from 201 * 202 * Finds next reusable entry in the hash chain which has the same key as @entry. 203 * If @entry is unhashed (which can happen when deletion of entry races with the 204 * search), finds the first reusable entry in the hash chain. The function drops 205 * reference to @entry and returns with a reference to the found entry. 206 */ 207 struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache, 208 struct mb_cache_entry *entry) 209 { 210 return __entry_find(cache, entry, entry->e_key); 211 } 212 EXPORT_SYMBOL(mb_cache_entry_find_next); 213 214 /* 215 * mb_cache_entry_get - get a cache entry by value (and key) 216 * @cache - cache we work with 217 * @key - key 218 * @value - value 219 */ 220 struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key, 221 u64 value) 222 { 223 struct hlist_bl_node *node; 224 struct hlist_bl_head *head; 225 struct mb_cache_entry *entry; 226 227 head = mb_cache_entry_head(cache, key); 228 hlist_bl_lock(head); 229 hlist_bl_for_each_entry(entry, node, head, e_hash_list) { 230 if (entry->e_key == key && entry->e_value == value && 231 atomic_inc_not_zero(&entry->e_refcnt)) 232 goto out; 233 } 234 entry = NULL; 235 out: 236 hlist_bl_unlock(head); 237 return entry; 238 } 239 EXPORT_SYMBOL(mb_cache_entry_get); 240 241 /* mb_cache_entry_delete_or_get - remove a cache entry if it has no users 242 * @cache - cache we work with 243 * @key - key 244 * @value - value 245 * 246 * Remove entry from cache @cache with key @key and value @value. The removal 247 * happens only if the entry is unused. The function returns NULL in case the 248 * entry was successfully removed or there's no entry in cache. Otherwise the 249 * function grabs reference of the entry that we failed to delete because it 250 * still has users and return it. 251 */ 252 struct mb_cache_entry *mb_cache_entry_delete_or_get(struct mb_cache *cache, 253 u32 key, u64 value) 254 { 255 struct mb_cache_entry *entry; 256 257 entry = mb_cache_entry_get(cache, key, value); 258 if (!entry) 259 return NULL; 260 261 /* 262 * Drop the ref we got from mb_cache_entry_get() and the initial hash 263 * ref if we are the last user 264 */ 265 if (atomic_cmpxchg(&entry->e_refcnt, 2, 0) != 2) 266 return entry; 267 268 spin_lock(&cache->c_list_lock); 269 if (!list_empty(&entry->e_list)) 270 list_del_init(&entry->e_list); 271 cache->c_entry_count--; 272 spin_unlock(&cache->c_list_lock); 273 __mb_cache_entry_free(cache, entry); 274 return NULL; 275 } 276 EXPORT_SYMBOL(mb_cache_entry_delete_or_get); 277 278 /* mb_cache_entry_touch - cache entry got used 279 * @cache - cache the entry belongs to 280 * @entry - entry that got used 281 * 282 * Marks entry as used to give hit higher chances of surviving in cache. 283 */ 284 void mb_cache_entry_touch(struct mb_cache *cache, 285 struct mb_cache_entry *entry) 286 { 287 entry->e_referenced = 1; 288 } 289 EXPORT_SYMBOL(mb_cache_entry_touch); 290 291 static unsigned long mb_cache_count(struct shrinker *shrink, 292 struct shrink_control *sc) 293 { 294 struct mb_cache *cache = container_of(shrink, struct mb_cache, 295 c_shrink); 296 297 return cache->c_entry_count; 298 } 299 300 /* Shrink number of entries in cache */ 301 static unsigned long mb_cache_shrink(struct mb_cache *cache, 302 unsigned long nr_to_scan) 303 { 304 struct mb_cache_entry *entry; 305 unsigned long shrunk = 0; 306 307 spin_lock(&cache->c_list_lock); 308 while (nr_to_scan-- && !list_empty(&cache->c_list)) { 309 entry = list_first_entry(&cache->c_list, 310 struct mb_cache_entry, e_list); 311 /* Drop initial hash reference if there is no user */ 312 if (entry->e_referenced || 313 atomic_cmpxchg(&entry->e_refcnt, 1, 0) != 1) { 314 entry->e_referenced = 0; 315 list_move_tail(&entry->e_list, &cache->c_list); 316 continue; 317 } 318 list_del_init(&entry->e_list); 319 cache->c_entry_count--; 320 spin_unlock(&cache->c_list_lock); 321 __mb_cache_entry_free(cache, entry); 322 shrunk++; 323 cond_resched(); 324 spin_lock(&cache->c_list_lock); 325 } 326 spin_unlock(&cache->c_list_lock); 327 328 return shrunk; 329 } 330 331 static unsigned long mb_cache_scan(struct shrinker *shrink, 332 struct shrink_control *sc) 333 { 334 struct mb_cache *cache = container_of(shrink, struct mb_cache, 335 c_shrink); 336 return mb_cache_shrink(cache, sc->nr_to_scan); 337 } 338 339 /* We shrink 1/X of the cache when we have too many entries in it */ 340 #define SHRINK_DIVISOR 16 341 342 static void mb_cache_shrink_worker(struct work_struct *work) 343 { 344 struct mb_cache *cache = container_of(work, struct mb_cache, 345 c_shrink_work); 346 mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR); 347 } 348 349 /* 350 * mb_cache_create - create cache 351 * @bucket_bits: log2 of the hash table size 352 * 353 * Create cache for keys with 2^bucket_bits hash entries. 354 */ 355 struct mb_cache *mb_cache_create(int bucket_bits) 356 { 357 struct mb_cache *cache; 358 unsigned long bucket_count = 1UL << bucket_bits; 359 unsigned long i; 360 361 cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL); 362 if (!cache) 363 goto err_out; 364 cache->c_bucket_bits = bucket_bits; 365 cache->c_max_entries = bucket_count << 4; 366 INIT_LIST_HEAD(&cache->c_list); 367 spin_lock_init(&cache->c_list_lock); 368 cache->c_hash = kmalloc_array(bucket_count, 369 sizeof(struct hlist_bl_head), 370 GFP_KERNEL); 371 if (!cache->c_hash) { 372 kfree(cache); 373 goto err_out; 374 } 375 for (i = 0; i < bucket_count; i++) 376 INIT_HLIST_BL_HEAD(&cache->c_hash[i]); 377 378 cache->c_shrink.count_objects = mb_cache_count; 379 cache->c_shrink.scan_objects = mb_cache_scan; 380 cache->c_shrink.seeks = DEFAULT_SEEKS; 381 if (register_shrinker(&cache->c_shrink, "mbcache-shrinker")) { 382 kfree(cache->c_hash); 383 kfree(cache); 384 goto err_out; 385 } 386 387 INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker); 388 389 return cache; 390 391 err_out: 392 return NULL; 393 } 394 EXPORT_SYMBOL(mb_cache_create); 395 396 /* 397 * mb_cache_destroy - destroy cache 398 * @cache: the cache to destroy 399 * 400 * Free all entries in cache and cache itself. Caller must make sure nobody 401 * (except shrinker) can reach @cache when calling this. 402 */ 403 void mb_cache_destroy(struct mb_cache *cache) 404 { 405 struct mb_cache_entry *entry, *next; 406 407 unregister_shrinker(&cache->c_shrink); 408 409 /* 410 * We don't bother with any locking. Cache must not be used at this 411 * point. 412 */ 413 list_for_each_entry_safe(entry, next, &cache->c_list, e_list) { 414 list_del(&entry->e_list); 415 WARN_ON(atomic_read(&entry->e_refcnt) != 1); 416 mb_cache_entry_put(cache, entry); 417 } 418 kfree(cache->c_hash); 419 kfree(cache); 420 } 421 EXPORT_SYMBOL(mb_cache_destroy); 422 423 static int __init mbcache_init(void) 424 { 425 mb_entry_cache = kmem_cache_create("mbcache", 426 sizeof(struct mb_cache_entry), 0, 427 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL); 428 if (!mb_entry_cache) 429 return -ENOMEM; 430 return 0; 431 } 432 433 static void __exit mbcache_exit(void) 434 { 435 kmem_cache_destroy(mb_entry_cache); 436 } 437 438 module_init(mbcache_init) 439 module_exit(mbcache_exit) 440 441 MODULE_AUTHOR("Jan Kara <jack@suse.cz>"); 442 MODULE_DESCRIPTION("Meta block cache (for extended attributes)"); 443 MODULE_LICENSE("GPL"); 444