xref: /openbmc/linux/fs/locks.c (revision ed1666f6)
1 /*
2  *  linux/fs/locks.c
3  *
4  *  Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls.
5  *  Doug Evans (dje@spiff.uucp), August 07, 1992
6  *
7  *  Deadlock detection added.
8  *  FIXME: one thing isn't handled yet:
9  *	- mandatory locks (requires lots of changes elsewhere)
10  *  Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994.
11  *
12  *  Miscellaneous edits, and a total rewrite of posix_lock_file() code.
13  *  Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994
14  *
15  *  Converted file_lock_table to a linked list from an array, which eliminates
16  *  the limits on how many active file locks are open.
17  *  Chad Page (pageone@netcom.com), November 27, 1994
18  *
19  *  Removed dependency on file descriptors. dup()'ed file descriptors now
20  *  get the same locks as the original file descriptors, and a close() on
21  *  any file descriptor removes ALL the locks on the file for the current
22  *  process. Since locks still depend on the process id, locks are inherited
23  *  after an exec() but not after a fork(). This agrees with POSIX, and both
24  *  BSD and SVR4 practice.
25  *  Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995
26  *
27  *  Scrapped free list which is redundant now that we allocate locks
28  *  dynamically with kmalloc()/kfree().
29  *  Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995
30  *
31  *  Implemented two lock personalities - FL_FLOCK and FL_POSIX.
32  *
33  *  FL_POSIX locks are created with calls to fcntl() and lockf() through the
34  *  fcntl() system call. They have the semantics described above.
35  *
36  *  FL_FLOCK locks are created with calls to flock(), through the flock()
37  *  system call, which is new. Old C libraries implement flock() via fcntl()
38  *  and will continue to use the old, broken implementation.
39  *
40  *  FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated
41  *  with a file pointer (filp). As a result they can be shared by a parent
42  *  process and its children after a fork(). They are removed when the last
43  *  file descriptor referring to the file pointer is closed (unless explicitly
44  *  unlocked).
45  *
46  *  FL_FLOCK locks never deadlock, an existing lock is always removed before
47  *  upgrading from shared to exclusive (or vice versa). When this happens
48  *  any processes blocked by the current lock are woken up and allowed to
49  *  run before the new lock is applied.
50  *  Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995
51  *
52  *  Removed some race conditions in flock_lock_file(), marked other possible
53  *  races. Just grep for FIXME to see them.
54  *  Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996.
55  *
56  *  Addressed Dmitry's concerns. Deadlock checking no longer recursive.
57  *  Lock allocation changed to GFP_ATOMIC as we can't afford to sleep
58  *  once we've checked for blocking and deadlocking.
59  *  Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996.
60  *
61  *  Initial implementation of mandatory locks. SunOS turned out to be
62  *  a rotten model, so I implemented the "obvious" semantics.
63  *  See 'Documentation/filesystems/mandatory-locking.txt' for details.
64  *  Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996.
65  *
66  *  Don't allow mandatory locks on mmap()'ed files. Added simple functions to
67  *  check if a file has mandatory locks, used by mmap(), open() and creat() to
68  *  see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference
69  *  Manual, Section 2.
70  *  Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996.
71  *
72  *  Tidied up block list handling. Added '/proc/locks' interface.
73  *  Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996.
74  *
75  *  Fixed deadlock condition for pathological code that mixes calls to
76  *  flock() and fcntl().
77  *  Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996.
78  *
79  *  Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use
80  *  for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to
81  *  guarantee sensible behaviour in the case where file system modules might
82  *  be compiled with different options than the kernel itself.
83  *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
84  *
85  *  Added a couple of missing wake_up() calls. Thanks to Thomas Meckel
86  *  (Thomas.Meckel@mni.fh-giessen.de) for spotting this.
87  *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
88  *
89  *  Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK
90  *  locks. Changed process synchronisation to avoid dereferencing locks that
91  *  have already been freed.
92  *  Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996.
93  *
94  *  Made the block list a circular list to minimise searching in the list.
95  *  Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996.
96  *
97  *  Made mandatory locking a mount option. Default is not to allow mandatory
98  *  locking.
99  *  Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996.
100  *
101  *  Some adaptations for NFS support.
102  *  Olaf Kirch (okir@monad.swb.de), Dec 1996,
103  *
104  *  Fixed /proc/locks interface so that we can't overrun the buffer we are handed.
105  *  Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997.
106  *
107  *  Use slab allocator instead of kmalloc/kfree.
108  *  Use generic list implementation from <linux/list.h>.
109  *  Sped up posix_locks_deadlock by only considering blocked locks.
110  *  Matthew Wilcox <willy@debian.org>, March, 2000.
111  *
112  *  Leases and LOCK_MAND
113  *  Matthew Wilcox <willy@debian.org>, June, 2000.
114  *  Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000.
115  *
116  * Locking conflicts and dependencies:
117  * If multiple threads attempt to lock the same byte (or flock the same file)
118  * only one can be granted the lock, and other must wait their turn.
119  * The first lock has been "applied" or "granted", the others are "waiting"
120  * and are "blocked" by the "applied" lock..
121  *
122  * Waiting and applied locks are all kept in trees whose properties are:
123  *
124  *	- the root of a tree may be an applied or waiting lock.
125  *	- every other node in the tree is a waiting lock that
126  *	  conflicts with every ancestor of that node.
127  *
128  * Every such tree begins life as a waiting singleton which obviously
129  * satisfies the above properties.
130  *
131  * The only ways we modify trees preserve these properties:
132  *
133  *	1. We may add a new leaf node, but only after first verifying that it
134  *	   conflicts with all of its ancestors.
135  *	2. We may remove the root of a tree, creating a new singleton
136  *	   tree from the root and N new trees rooted in the immediate
137  *	   children.
138  *	3. If the root of a tree is not currently an applied lock, we may
139  *	   apply it (if possible).
140  *	4. We may upgrade the root of the tree (either extend its range,
141  *	   or upgrade its entire range from read to write).
142  *
143  * When an applied lock is modified in a way that reduces or downgrades any
144  * part of its range, we remove all its children (2 above).  This particularly
145  * happens when a lock is unlocked.
146  *
147  * For each of those child trees we "wake up" the thread which is
148  * waiting for the lock so it can continue handling as follows: if the
149  * root of the tree applies, we do so (3).  If it doesn't, it must
150  * conflict with some applied lock.  We remove (wake up) all of its children
151  * (2), and add it is a new leaf to the tree rooted in the applied
152  * lock (1).  We then repeat the process recursively with those
153  * children.
154  *
155  */
156 
157 #include <linux/capability.h>
158 #include <linux/file.h>
159 #include <linux/fdtable.h>
160 #include <linux/fs.h>
161 #include <linux/init.h>
162 #include <linux/security.h>
163 #include <linux/slab.h>
164 #include <linux/syscalls.h>
165 #include <linux/time.h>
166 #include <linux/rcupdate.h>
167 #include <linux/pid_namespace.h>
168 #include <linux/hashtable.h>
169 #include <linux/percpu.h>
170 
171 #define CREATE_TRACE_POINTS
172 #include <trace/events/filelock.h>
173 
174 #include <linux/uaccess.h>
175 
176 #define IS_POSIX(fl)	(fl->fl_flags & FL_POSIX)
177 #define IS_FLOCK(fl)	(fl->fl_flags & FL_FLOCK)
178 #define IS_LEASE(fl)	(fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
179 #define IS_OFDLCK(fl)	(fl->fl_flags & FL_OFDLCK)
180 #define IS_REMOTELCK(fl)	(fl->fl_pid <= 0)
181 
182 static bool lease_breaking(struct file_lock *fl)
183 {
184 	return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
185 }
186 
187 static int target_leasetype(struct file_lock *fl)
188 {
189 	if (fl->fl_flags & FL_UNLOCK_PENDING)
190 		return F_UNLCK;
191 	if (fl->fl_flags & FL_DOWNGRADE_PENDING)
192 		return F_RDLCK;
193 	return fl->fl_type;
194 }
195 
196 int leases_enable = 1;
197 int lease_break_time = 45;
198 
199 /*
200  * The global file_lock_list is only used for displaying /proc/locks, so we
201  * keep a list on each CPU, with each list protected by its own spinlock.
202  * Global serialization is done using file_rwsem.
203  *
204  * Note that alterations to the list also require that the relevant flc_lock is
205  * held.
206  */
207 struct file_lock_list_struct {
208 	spinlock_t		lock;
209 	struct hlist_head	hlist;
210 };
211 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
212 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
213 
214 /*
215  * The blocked_hash is used to find POSIX lock loops for deadlock detection.
216  * It is protected by blocked_lock_lock.
217  *
218  * We hash locks by lockowner in order to optimize searching for the lock a
219  * particular lockowner is waiting on.
220  *
221  * FIXME: make this value scale via some heuristic? We generally will want more
222  * buckets when we have more lockowners holding locks, but that's a little
223  * difficult to determine without knowing what the workload will look like.
224  */
225 #define BLOCKED_HASH_BITS	7
226 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
227 
228 /*
229  * This lock protects the blocked_hash. Generally, if you're accessing it, you
230  * want to be holding this lock.
231  *
232  * In addition, it also protects the fl->fl_blocked_requests list, and the
233  * fl->fl_blocker pointer for file_lock structures that are acting as lock
234  * requests (in contrast to those that are acting as records of acquired locks).
235  *
236  * Note that when we acquire this lock in order to change the above fields,
237  * we often hold the flc_lock as well. In certain cases, when reading the fields
238  * protected by this lock, we can skip acquiring it iff we already hold the
239  * flc_lock.
240  */
241 static DEFINE_SPINLOCK(blocked_lock_lock);
242 
243 static struct kmem_cache *flctx_cache __read_mostly;
244 static struct kmem_cache *filelock_cache __read_mostly;
245 
246 static struct file_lock_context *
247 locks_get_lock_context(struct inode *inode, int type)
248 {
249 	struct file_lock_context *ctx;
250 
251 	/* paired with cmpxchg() below */
252 	ctx = smp_load_acquire(&inode->i_flctx);
253 	if (likely(ctx) || type == F_UNLCK)
254 		goto out;
255 
256 	ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
257 	if (!ctx)
258 		goto out;
259 
260 	spin_lock_init(&ctx->flc_lock);
261 	INIT_LIST_HEAD(&ctx->flc_flock);
262 	INIT_LIST_HEAD(&ctx->flc_posix);
263 	INIT_LIST_HEAD(&ctx->flc_lease);
264 
265 	/*
266 	 * Assign the pointer if it's not already assigned. If it is, then
267 	 * free the context we just allocated.
268 	 */
269 	if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
270 		kmem_cache_free(flctx_cache, ctx);
271 		ctx = smp_load_acquire(&inode->i_flctx);
272 	}
273 out:
274 	trace_locks_get_lock_context(inode, type, ctx);
275 	return ctx;
276 }
277 
278 static void
279 locks_dump_ctx_list(struct list_head *list, char *list_type)
280 {
281 	struct file_lock *fl;
282 
283 	list_for_each_entry(fl, list, fl_list) {
284 		pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
285 	}
286 }
287 
288 static void
289 locks_check_ctx_lists(struct inode *inode)
290 {
291 	struct file_lock_context *ctx = inode->i_flctx;
292 
293 	if (unlikely(!list_empty(&ctx->flc_flock) ||
294 		     !list_empty(&ctx->flc_posix) ||
295 		     !list_empty(&ctx->flc_lease))) {
296 		pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
297 			MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
298 			inode->i_ino);
299 		locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
300 		locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
301 		locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
302 	}
303 }
304 
305 static void
306 locks_check_ctx_file_list(struct file *filp, struct list_head *list,
307 				char *list_type)
308 {
309 	struct file_lock *fl;
310 	struct inode *inode = locks_inode(filp);
311 
312 	list_for_each_entry(fl, list, fl_list)
313 		if (fl->fl_file == filp)
314 			pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
315 				" fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
316 				list_type, MAJOR(inode->i_sb->s_dev),
317 				MINOR(inode->i_sb->s_dev), inode->i_ino,
318 				fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
319 }
320 
321 void
322 locks_free_lock_context(struct inode *inode)
323 {
324 	struct file_lock_context *ctx = inode->i_flctx;
325 
326 	if (unlikely(ctx)) {
327 		locks_check_ctx_lists(inode);
328 		kmem_cache_free(flctx_cache, ctx);
329 	}
330 }
331 
332 static void locks_init_lock_heads(struct file_lock *fl)
333 {
334 	INIT_HLIST_NODE(&fl->fl_link);
335 	INIT_LIST_HEAD(&fl->fl_list);
336 	INIT_LIST_HEAD(&fl->fl_blocked_requests);
337 	INIT_LIST_HEAD(&fl->fl_blocked_member);
338 	init_waitqueue_head(&fl->fl_wait);
339 }
340 
341 /* Allocate an empty lock structure. */
342 struct file_lock *locks_alloc_lock(void)
343 {
344 	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
345 
346 	if (fl)
347 		locks_init_lock_heads(fl);
348 
349 	return fl;
350 }
351 EXPORT_SYMBOL_GPL(locks_alloc_lock);
352 
353 void locks_release_private(struct file_lock *fl)
354 {
355 	if (fl->fl_ops) {
356 		if (fl->fl_ops->fl_release_private)
357 			fl->fl_ops->fl_release_private(fl);
358 		fl->fl_ops = NULL;
359 	}
360 
361 	if (fl->fl_lmops) {
362 		if (fl->fl_lmops->lm_put_owner) {
363 			fl->fl_lmops->lm_put_owner(fl->fl_owner);
364 			fl->fl_owner = NULL;
365 		}
366 		fl->fl_lmops = NULL;
367 	}
368 }
369 EXPORT_SYMBOL_GPL(locks_release_private);
370 
371 /* Free a lock which is not in use. */
372 void locks_free_lock(struct file_lock *fl)
373 {
374 	BUG_ON(waitqueue_active(&fl->fl_wait));
375 	BUG_ON(!list_empty(&fl->fl_list));
376 	BUG_ON(!list_empty(&fl->fl_blocked_requests));
377 	BUG_ON(!list_empty(&fl->fl_blocked_member));
378 	BUG_ON(!hlist_unhashed(&fl->fl_link));
379 
380 	locks_release_private(fl);
381 	kmem_cache_free(filelock_cache, fl);
382 }
383 EXPORT_SYMBOL(locks_free_lock);
384 
385 static void
386 locks_dispose_list(struct list_head *dispose)
387 {
388 	struct file_lock *fl;
389 
390 	while (!list_empty(dispose)) {
391 		fl = list_first_entry(dispose, struct file_lock, fl_list);
392 		list_del_init(&fl->fl_list);
393 		locks_free_lock(fl);
394 	}
395 }
396 
397 void locks_init_lock(struct file_lock *fl)
398 {
399 	memset(fl, 0, sizeof(struct file_lock));
400 	locks_init_lock_heads(fl);
401 }
402 EXPORT_SYMBOL(locks_init_lock);
403 
404 /*
405  * Initialize a new lock from an existing file_lock structure.
406  */
407 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
408 {
409 	new->fl_owner = fl->fl_owner;
410 	new->fl_pid = fl->fl_pid;
411 	new->fl_file = NULL;
412 	new->fl_flags = fl->fl_flags;
413 	new->fl_type = fl->fl_type;
414 	new->fl_start = fl->fl_start;
415 	new->fl_end = fl->fl_end;
416 	new->fl_lmops = fl->fl_lmops;
417 	new->fl_ops = NULL;
418 
419 	if (fl->fl_lmops) {
420 		if (fl->fl_lmops->lm_get_owner)
421 			fl->fl_lmops->lm_get_owner(fl->fl_owner);
422 	}
423 }
424 EXPORT_SYMBOL(locks_copy_conflock);
425 
426 void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
427 {
428 	/* "new" must be a freshly-initialized lock */
429 	WARN_ON_ONCE(new->fl_ops);
430 
431 	locks_copy_conflock(new, fl);
432 
433 	new->fl_file = fl->fl_file;
434 	new->fl_ops = fl->fl_ops;
435 
436 	if (fl->fl_ops) {
437 		if (fl->fl_ops->fl_copy_lock)
438 			fl->fl_ops->fl_copy_lock(new, fl);
439 	}
440 }
441 EXPORT_SYMBOL(locks_copy_lock);
442 
443 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
444 {
445 	struct file_lock *f;
446 
447 	/*
448 	 * As ctx->flc_lock is held, new requests cannot be added to
449 	 * ->fl_blocked_requests, so we don't need a lock to check if it
450 	 * is empty.
451 	 */
452 	if (list_empty(&fl->fl_blocked_requests))
453 		return;
454 	spin_lock(&blocked_lock_lock);
455 	list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests);
456 	list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member)
457 		f->fl_blocker = new;
458 	spin_unlock(&blocked_lock_lock);
459 }
460 
461 static inline int flock_translate_cmd(int cmd) {
462 	if (cmd & LOCK_MAND)
463 		return cmd & (LOCK_MAND | LOCK_RW);
464 	switch (cmd) {
465 	case LOCK_SH:
466 		return F_RDLCK;
467 	case LOCK_EX:
468 		return F_WRLCK;
469 	case LOCK_UN:
470 		return F_UNLCK;
471 	}
472 	return -EINVAL;
473 }
474 
475 /* Fill in a file_lock structure with an appropriate FLOCK lock. */
476 static struct file_lock *
477 flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl)
478 {
479 	int type = flock_translate_cmd(cmd);
480 
481 	if (type < 0)
482 		return ERR_PTR(type);
483 
484 	if (fl == NULL) {
485 		fl = locks_alloc_lock();
486 		if (fl == NULL)
487 			return ERR_PTR(-ENOMEM);
488 	} else {
489 		locks_init_lock(fl);
490 	}
491 
492 	fl->fl_file = filp;
493 	fl->fl_owner = filp;
494 	fl->fl_pid = current->tgid;
495 	fl->fl_flags = FL_FLOCK;
496 	fl->fl_type = type;
497 	fl->fl_end = OFFSET_MAX;
498 
499 	return fl;
500 }
501 
502 static int assign_type(struct file_lock *fl, long type)
503 {
504 	switch (type) {
505 	case F_RDLCK:
506 	case F_WRLCK:
507 	case F_UNLCK:
508 		fl->fl_type = type;
509 		break;
510 	default:
511 		return -EINVAL;
512 	}
513 	return 0;
514 }
515 
516 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
517 				 struct flock64 *l)
518 {
519 	switch (l->l_whence) {
520 	case SEEK_SET:
521 		fl->fl_start = 0;
522 		break;
523 	case SEEK_CUR:
524 		fl->fl_start = filp->f_pos;
525 		break;
526 	case SEEK_END:
527 		fl->fl_start = i_size_read(file_inode(filp));
528 		break;
529 	default:
530 		return -EINVAL;
531 	}
532 	if (l->l_start > OFFSET_MAX - fl->fl_start)
533 		return -EOVERFLOW;
534 	fl->fl_start += l->l_start;
535 	if (fl->fl_start < 0)
536 		return -EINVAL;
537 
538 	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
539 	   POSIX-2001 defines it. */
540 	if (l->l_len > 0) {
541 		if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
542 			return -EOVERFLOW;
543 		fl->fl_end = fl->fl_start + l->l_len - 1;
544 
545 	} else if (l->l_len < 0) {
546 		if (fl->fl_start + l->l_len < 0)
547 			return -EINVAL;
548 		fl->fl_end = fl->fl_start - 1;
549 		fl->fl_start += l->l_len;
550 	} else
551 		fl->fl_end = OFFSET_MAX;
552 
553 	fl->fl_owner = current->files;
554 	fl->fl_pid = current->tgid;
555 	fl->fl_file = filp;
556 	fl->fl_flags = FL_POSIX;
557 	fl->fl_ops = NULL;
558 	fl->fl_lmops = NULL;
559 
560 	return assign_type(fl, l->l_type);
561 }
562 
563 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
564  * style lock.
565  */
566 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
567 			       struct flock *l)
568 {
569 	struct flock64 ll = {
570 		.l_type = l->l_type,
571 		.l_whence = l->l_whence,
572 		.l_start = l->l_start,
573 		.l_len = l->l_len,
574 	};
575 
576 	return flock64_to_posix_lock(filp, fl, &ll);
577 }
578 
579 /* default lease lock manager operations */
580 static bool
581 lease_break_callback(struct file_lock *fl)
582 {
583 	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
584 	return false;
585 }
586 
587 static void
588 lease_setup(struct file_lock *fl, void **priv)
589 {
590 	struct file *filp = fl->fl_file;
591 	struct fasync_struct *fa = *priv;
592 
593 	/*
594 	 * fasync_insert_entry() returns the old entry if any. If there was no
595 	 * old entry, then it used "priv" and inserted it into the fasync list.
596 	 * Clear the pointer to indicate that it shouldn't be freed.
597 	 */
598 	if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
599 		*priv = NULL;
600 
601 	__f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
602 }
603 
604 static const struct lock_manager_operations lease_manager_ops = {
605 	.lm_break = lease_break_callback,
606 	.lm_change = lease_modify,
607 	.lm_setup = lease_setup,
608 };
609 
610 /*
611  * Initialize a lease, use the default lock manager operations
612  */
613 static int lease_init(struct file *filp, long type, struct file_lock *fl)
614 {
615 	if (assign_type(fl, type) != 0)
616 		return -EINVAL;
617 
618 	fl->fl_owner = filp;
619 	fl->fl_pid = current->tgid;
620 
621 	fl->fl_file = filp;
622 	fl->fl_flags = FL_LEASE;
623 	fl->fl_start = 0;
624 	fl->fl_end = OFFSET_MAX;
625 	fl->fl_ops = NULL;
626 	fl->fl_lmops = &lease_manager_ops;
627 	return 0;
628 }
629 
630 /* Allocate a file_lock initialised to this type of lease */
631 static struct file_lock *lease_alloc(struct file *filp, long type)
632 {
633 	struct file_lock *fl = locks_alloc_lock();
634 	int error = -ENOMEM;
635 
636 	if (fl == NULL)
637 		return ERR_PTR(error);
638 
639 	error = lease_init(filp, type, fl);
640 	if (error) {
641 		locks_free_lock(fl);
642 		return ERR_PTR(error);
643 	}
644 	return fl;
645 }
646 
647 /* Check if two locks overlap each other.
648  */
649 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
650 {
651 	return ((fl1->fl_end >= fl2->fl_start) &&
652 		(fl2->fl_end >= fl1->fl_start));
653 }
654 
655 /*
656  * Check whether two locks have the same owner.
657  */
658 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
659 {
660 	if (fl1->fl_lmops && fl1->fl_lmops->lm_compare_owner)
661 		return fl2->fl_lmops == fl1->fl_lmops &&
662 			fl1->fl_lmops->lm_compare_owner(fl1, fl2);
663 	return fl1->fl_owner == fl2->fl_owner;
664 }
665 
666 /* Must be called with the flc_lock held! */
667 static void locks_insert_global_locks(struct file_lock *fl)
668 {
669 	struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
670 
671 	percpu_rwsem_assert_held(&file_rwsem);
672 
673 	spin_lock(&fll->lock);
674 	fl->fl_link_cpu = smp_processor_id();
675 	hlist_add_head(&fl->fl_link, &fll->hlist);
676 	spin_unlock(&fll->lock);
677 }
678 
679 /* Must be called with the flc_lock held! */
680 static void locks_delete_global_locks(struct file_lock *fl)
681 {
682 	struct file_lock_list_struct *fll;
683 
684 	percpu_rwsem_assert_held(&file_rwsem);
685 
686 	/*
687 	 * Avoid taking lock if already unhashed. This is safe since this check
688 	 * is done while holding the flc_lock, and new insertions into the list
689 	 * also require that it be held.
690 	 */
691 	if (hlist_unhashed(&fl->fl_link))
692 		return;
693 
694 	fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu);
695 	spin_lock(&fll->lock);
696 	hlist_del_init(&fl->fl_link);
697 	spin_unlock(&fll->lock);
698 }
699 
700 static unsigned long
701 posix_owner_key(struct file_lock *fl)
702 {
703 	if (fl->fl_lmops && fl->fl_lmops->lm_owner_key)
704 		return fl->fl_lmops->lm_owner_key(fl);
705 	return (unsigned long)fl->fl_owner;
706 }
707 
708 static void locks_insert_global_blocked(struct file_lock *waiter)
709 {
710 	lockdep_assert_held(&blocked_lock_lock);
711 
712 	hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter));
713 }
714 
715 static void locks_delete_global_blocked(struct file_lock *waiter)
716 {
717 	lockdep_assert_held(&blocked_lock_lock);
718 
719 	hash_del(&waiter->fl_link);
720 }
721 
722 /* Remove waiter from blocker's block list.
723  * When blocker ends up pointing to itself then the list is empty.
724  *
725  * Must be called with blocked_lock_lock held.
726  */
727 static void __locks_delete_block(struct file_lock *waiter)
728 {
729 	locks_delete_global_blocked(waiter);
730 	list_del_init(&waiter->fl_blocked_member);
731 	waiter->fl_blocker = NULL;
732 }
733 
734 static void __locks_wake_up_blocks(struct file_lock *blocker)
735 {
736 	while (!list_empty(&blocker->fl_blocked_requests)) {
737 		struct file_lock *waiter;
738 
739 		waiter = list_first_entry(&blocker->fl_blocked_requests,
740 					  struct file_lock, fl_blocked_member);
741 		__locks_delete_block(waiter);
742 		if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
743 			waiter->fl_lmops->lm_notify(waiter);
744 		else
745 			wake_up(&waiter->fl_wait);
746 	}
747 }
748 
749 /**
750  *	locks_delete_lock - stop waiting for a file lock
751  *	@waiter: the lock which was waiting
752  *
753  *	lockd/nfsd need to disconnect the lock while working on it.
754  */
755 int locks_delete_block(struct file_lock *waiter)
756 {
757 	int status = -ENOENT;
758 
759 	/*
760 	 * If fl_blocker is NULL, it won't be set again as this thread
761 	 * "owns" the lock and is the only one that might try to claim
762 	 * the lock.  So it is safe to test fl_blocker locklessly.
763 	 * Also if fl_blocker is NULL, this waiter is not listed on
764 	 * fl_blocked_requests for some lock, so no other request can
765 	 * be added to the list of fl_blocked_requests for this
766 	 * request.  So if fl_blocker is NULL, it is safe to
767 	 * locklessly check if fl_blocked_requests is empty.  If both
768 	 * of these checks succeed, there is no need to take the lock.
769 	 */
770 	if (waiter->fl_blocker == NULL &&
771 	    list_empty(&waiter->fl_blocked_requests))
772 		return status;
773 	spin_lock(&blocked_lock_lock);
774 	if (waiter->fl_blocker)
775 		status = 0;
776 	__locks_wake_up_blocks(waiter);
777 	__locks_delete_block(waiter);
778 	spin_unlock(&blocked_lock_lock);
779 	return status;
780 }
781 EXPORT_SYMBOL(locks_delete_block);
782 
783 /* Insert waiter into blocker's block list.
784  * We use a circular list so that processes can be easily woken up in
785  * the order they blocked. The documentation doesn't require this but
786  * it seems like the reasonable thing to do.
787  *
788  * Must be called with both the flc_lock and blocked_lock_lock held. The
789  * fl_blocked_requests list itself is protected by the blocked_lock_lock,
790  * but by ensuring that the flc_lock is also held on insertions we can avoid
791  * taking the blocked_lock_lock in some cases when we see that the
792  * fl_blocked_requests list is empty.
793  *
794  * Rather than just adding to the list, we check for conflicts with any existing
795  * waiters, and add beneath any waiter that blocks the new waiter.
796  * Thus wakeups don't happen until needed.
797  */
798 static void __locks_insert_block(struct file_lock *blocker,
799 				 struct file_lock *waiter,
800 				 bool conflict(struct file_lock *,
801 					       struct file_lock *))
802 {
803 	struct file_lock *fl;
804 	BUG_ON(!list_empty(&waiter->fl_blocked_member));
805 
806 new_blocker:
807 	list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member)
808 		if (conflict(fl, waiter)) {
809 			blocker =  fl;
810 			goto new_blocker;
811 		}
812 	waiter->fl_blocker = blocker;
813 	list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests);
814 	if (IS_POSIX(blocker) && !IS_OFDLCK(blocker))
815 		locks_insert_global_blocked(waiter);
816 
817 	/* The requests in waiter->fl_blocked are known to conflict with
818 	 * waiter, but might not conflict with blocker, or the requests
819 	 * and lock which block it.  So they all need to be woken.
820 	 */
821 	__locks_wake_up_blocks(waiter);
822 }
823 
824 /* Must be called with flc_lock held. */
825 static void locks_insert_block(struct file_lock *blocker,
826 			       struct file_lock *waiter,
827 			       bool conflict(struct file_lock *,
828 					     struct file_lock *))
829 {
830 	spin_lock(&blocked_lock_lock);
831 	__locks_insert_block(blocker, waiter, conflict);
832 	spin_unlock(&blocked_lock_lock);
833 }
834 
835 /*
836  * Wake up processes blocked waiting for blocker.
837  *
838  * Must be called with the inode->flc_lock held!
839  */
840 static void locks_wake_up_blocks(struct file_lock *blocker)
841 {
842 	/*
843 	 * Avoid taking global lock if list is empty. This is safe since new
844 	 * blocked requests are only added to the list under the flc_lock, and
845 	 * the flc_lock is always held here. Note that removal from the
846 	 * fl_blocked_requests list does not require the flc_lock, so we must
847 	 * recheck list_empty() after acquiring the blocked_lock_lock.
848 	 */
849 	if (list_empty(&blocker->fl_blocked_requests))
850 		return;
851 
852 	spin_lock(&blocked_lock_lock);
853 	__locks_wake_up_blocks(blocker);
854 	spin_unlock(&blocked_lock_lock);
855 }
856 
857 static void
858 locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before)
859 {
860 	list_add_tail(&fl->fl_list, before);
861 	locks_insert_global_locks(fl);
862 }
863 
864 static void
865 locks_unlink_lock_ctx(struct file_lock *fl)
866 {
867 	locks_delete_global_locks(fl);
868 	list_del_init(&fl->fl_list);
869 	locks_wake_up_blocks(fl);
870 }
871 
872 static void
873 locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose)
874 {
875 	locks_unlink_lock_ctx(fl);
876 	if (dispose)
877 		list_add(&fl->fl_list, dispose);
878 	else
879 		locks_free_lock(fl);
880 }
881 
882 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
883  * checks for shared/exclusive status of overlapping locks.
884  */
885 static bool locks_conflict(struct file_lock *caller_fl,
886 			   struct file_lock *sys_fl)
887 {
888 	if (sys_fl->fl_type == F_WRLCK)
889 		return true;
890 	if (caller_fl->fl_type == F_WRLCK)
891 		return true;
892 	return false;
893 }
894 
895 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
896  * checking before calling the locks_conflict().
897  */
898 static bool posix_locks_conflict(struct file_lock *caller_fl,
899 				 struct file_lock *sys_fl)
900 {
901 	/* POSIX locks owned by the same process do not conflict with
902 	 * each other.
903 	 */
904 	if (posix_same_owner(caller_fl, sys_fl))
905 		return false;
906 
907 	/* Check whether they overlap */
908 	if (!locks_overlap(caller_fl, sys_fl))
909 		return false;
910 
911 	return locks_conflict(caller_fl, sys_fl);
912 }
913 
914 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
915  * checking before calling the locks_conflict().
916  */
917 static bool flock_locks_conflict(struct file_lock *caller_fl,
918 				 struct file_lock *sys_fl)
919 {
920 	/* FLOCK locks referring to the same filp do not conflict with
921 	 * each other.
922 	 */
923 	if (caller_fl->fl_file == sys_fl->fl_file)
924 		return false;
925 	if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND))
926 		return false;
927 
928 	return locks_conflict(caller_fl, sys_fl);
929 }
930 
931 void
932 posix_test_lock(struct file *filp, struct file_lock *fl)
933 {
934 	struct file_lock *cfl;
935 	struct file_lock_context *ctx;
936 	struct inode *inode = locks_inode(filp);
937 
938 	ctx = smp_load_acquire(&inode->i_flctx);
939 	if (!ctx || list_empty_careful(&ctx->flc_posix)) {
940 		fl->fl_type = F_UNLCK;
941 		return;
942 	}
943 
944 	spin_lock(&ctx->flc_lock);
945 	list_for_each_entry(cfl, &ctx->flc_posix, fl_list) {
946 		if (posix_locks_conflict(fl, cfl)) {
947 			locks_copy_conflock(fl, cfl);
948 			goto out;
949 		}
950 	}
951 	fl->fl_type = F_UNLCK;
952 out:
953 	spin_unlock(&ctx->flc_lock);
954 	return;
955 }
956 EXPORT_SYMBOL(posix_test_lock);
957 
958 /*
959  * Deadlock detection:
960  *
961  * We attempt to detect deadlocks that are due purely to posix file
962  * locks.
963  *
964  * We assume that a task can be waiting for at most one lock at a time.
965  * So for any acquired lock, the process holding that lock may be
966  * waiting on at most one other lock.  That lock in turns may be held by
967  * someone waiting for at most one other lock.  Given a requested lock
968  * caller_fl which is about to wait for a conflicting lock block_fl, we
969  * follow this chain of waiters to ensure we are not about to create a
970  * cycle.
971  *
972  * Since we do this before we ever put a process to sleep on a lock, we
973  * are ensured that there is never a cycle; that is what guarantees that
974  * the while() loop in posix_locks_deadlock() eventually completes.
975  *
976  * Note: the above assumption may not be true when handling lock
977  * requests from a broken NFS client. It may also fail in the presence
978  * of tasks (such as posix threads) sharing the same open file table.
979  * To handle those cases, we just bail out after a few iterations.
980  *
981  * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
982  * Because the owner is not even nominally tied to a thread of
983  * execution, the deadlock detection below can't reasonably work well. Just
984  * skip it for those.
985  *
986  * In principle, we could do a more limited deadlock detection on FL_OFDLCK
987  * locks that just checks for the case where two tasks are attempting to
988  * upgrade from read to write locks on the same inode.
989  */
990 
991 #define MAX_DEADLK_ITERATIONS 10
992 
993 /* Find a lock that the owner of the given block_fl is blocking on. */
994 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
995 {
996 	struct file_lock *fl;
997 
998 	hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) {
999 		if (posix_same_owner(fl, block_fl)) {
1000 			while (fl->fl_blocker)
1001 				fl = fl->fl_blocker;
1002 			return fl;
1003 		}
1004 	}
1005 	return NULL;
1006 }
1007 
1008 /* Must be called with the blocked_lock_lock held! */
1009 static int posix_locks_deadlock(struct file_lock *caller_fl,
1010 				struct file_lock *block_fl)
1011 {
1012 	int i = 0;
1013 
1014 	lockdep_assert_held(&blocked_lock_lock);
1015 
1016 	/*
1017 	 * This deadlock detector can't reasonably detect deadlocks with
1018 	 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1019 	 */
1020 	if (IS_OFDLCK(caller_fl))
1021 		return 0;
1022 
1023 	while ((block_fl = what_owner_is_waiting_for(block_fl))) {
1024 		if (i++ > MAX_DEADLK_ITERATIONS)
1025 			return 0;
1026 		if (posix_same_owner(caller_fl, block_fl))
1027 			return 1;
1028 	}
1029 	return 0;
1030 }
1031 
1032 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1033  * after any leases, but before any posix locks.
1034  *
1035  * Note that if called with an FL_EXISTS argument, the caller may determine
1036  * whether or not a lock was successfully freed by testing the return
1037  * value for -ENOENT.
1038  */
1039 static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1040 {
1041 	struct file_lock *new_fl = NULL;
1042 	struct file_lock *fl;
1043 	struct file_lock_context *ctx;
1044 	int error = 0;
1045 	bool found = false;
1046 	LIST_HEAD(dispose);
1047 
1048 	ctx = locks_get_lock_context(inode, request->fl_type);
1049 	if (!ctx) {
1050 		if (request->fl_type != F_UNLCK)
1051 			return -ENOMEM;
1052 		return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0;
1053 	}
1054 
1055 	if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
1056 		new_fl = locks_alloc_lock();
1057 		if (!new_fl)
1058 			return -ENOMEM;
1059 	}
1060 
1061 	percpu_down_read(&file_rwsem);
1062 	spin_lock(&ctx->flc_lock);
1063 	if (request->fl_flags & FL_ACCESS)
1064 		goto find_conflict;
1065 
1066 	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1067 		if (request->fl_file != fl->fl_file)
1068 			continue;
1069 		if (request->fl_type == fl->fl_type)
1070 			goto out;
1071 		found = true;
1072 		locks_delete_lock_ctx(fl, &dispose);
1073 		break;
1074 	}
1075 
1076 	if (request->fl_type == F_UNLCK) {
1077 		if ((request->fl_flags & FL_EXISTS) && !found)
1078 			error = -ENOENT;
1079 		goto out;
1080 	}
1081 
1082 find_conflict:
1083 	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1084 		if (!flock_locks_conflict(request, fl))
1085 			continue;
1086 		error = -EAGAIN;
1087 		if (!(request->fl_flags & FL_SLEEP))
1088 			goto out;
1089 		error = FILE_LOCK_DEFERRED;
1090 		locks_insert_block(fl, request, flock_locks_conflict);
1091 		goto out;
1092 	}
1093 	if (request->fl_flags & FL_ACCESS)
1094 		goto out;
1095 	locks_copy_lock(new_fl, request);
1096 	locks_move_blocks(new_fl, request);
1097 	locks_insert_lock_ctx(new_fl, &ctx->flc_flock);
1098 	new_fl = NULL;
1099 	error = 0;
1100 
1101 out:
1102 	spin_unlock(&ctx->flc_lock);
1103 	percpu_up_read(&file_rwsem);
1104 	if (new_fl)
1105 		locks_free_lock(new_fl);
1106 	locks_dispose_list(&dispose);
1107 	trace_flock_lock_inode(inode, request, error);
1108 	return error;
1109 }
1110 
1111 static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1112 			    struct file_lock *conflock)
1113 {
1114 	struct file_lock *fl, *tmp;
1115 	struct file_lock *new_fl = NULL;
1116 	struct file_lock *new_fl2 = NULL;
1117 	struct file_lock *left = NULL;
1118 	struct file_lock *right = NULL;
1119 	struct file_lock_context *ctx;
1120 	int error;
1121 	bool added = false;
1122 	LIST_HEAD(dispose);
1123 
1124 	ctx = locks_get_lock_context(inode, request->fl_type);
1125 	if (!ctx)
1126 		return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM;
1127 
1128 	/*
1129 	 * We may need two file_lock structures for this operation,
1130 	 * so we get them in advance to avoid races.
1131 	 *
1132 	 * In some cases we can be sure, that no new locks will be needed
1133 	 */
1134 	if (!(request->fl_flags & FL_ACCESS) &&
1135 	    (request->fl_type != F_UNLCK ||
1136 	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1137 		new_fl = locks_alloc_lock();
1138 		new_fl2 = locks_alloc_lock();
1139 	}
1140 
1141 	percpu_down_read(&file_rwsem);
1142 	spin_lock(&ctx->flc_lock);
1143 	/*
1144 	 * New lock request. Walk all POSIX locks and look for conflicts. If
1145 	 * there are any, either return error or put the request on the
1146 	 * blocker's list of waiters and the global blocked_hash.
1147 	 */
1148 	if (request->fl_type != F_UNLCK) {
1149 		list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1150 			if (!posix_locks_conflict(request, fl))
1151 				continue;
1152 			if (conflock)
1153 				locks_copy_conflock(conflock, fl);
1154 			error = -EAGAIN;
1155 			if (!(request->fl_flags & FL_SLEEP))
1156 				goto out;
1157 			/*
1158 			 * Deadlock detection and insertion into the blocked
1159 			 * locks list must be done while holding the same lock!
1160 			 */
1161 			error = -EDEADLK;
1162 			spin_lock(&blocked_lock_lock);
1163 			if (likely(!posix_locks_deadlock(request, fl))) {
1164 				error = FILE_LOCK_DEFERRED;
1165 				__locks_insert_block(fl, request,
1166 						     posix_locks_conflict);
1167 			}
1168 			spin_unlock(&blocked_lock_lock);
1169 			goto out;
1170 		}
1171 	}
1172 
1173 	/* If we're just looking for a conflict, we're done. */
1174 	error = 0;
1175 	if (request->fl_flags & FL_ACCESS)
1176 		goto out;
1177 
1178 	/* Find the first old lock with the same owner as the new lock */
1179 	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1180 		if (posix_same_owner(request, fl))
1181 			break;
1182 	}
1183 
1184 	/* Process locks with this owner. */
1185 	list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) {
1186 		if (!posix_same_owner(request, fl))
1187 			break;
1188 
1189 		/* Detect adjacent or overlapping regions (if same lock type) */
1190 		if (request->fl_type == fl->fl_type) {
1191 			/* In all comparisons of start vs end, use
1192 			 * "start - 1" rather than "end + 1". If end
1193 			 * is OFFSET_MAX, end + 1 will become negative.
1194 			 */
1195 			if (fl->fl_end < request->fl_start - 1)
1196 				continue;
1197 			/* If the next lock in the list has entirely bigger
1198 			 * addresses than the new one, insert the lock here.
1199 			 */
1200 			if (fl->fl_start - 1 > request->fl_end)
1201 				break;
1202 
1203 			/* If we come here, the new and old lock are of the
1204 			 * same type and adjacent or overlapping. Make one
1205 			 * lock yielding from the lower start address of both
1206 			 * locks to the higher end address.
1207 			 */
1208 			if (fl->fl_start > request->fl_start)
1209 				fl->fl_start = request->fl_start;
1210 			else
1211 				request->fl_start = fl->fl_start;
1212 			if (fl->fl_end < request->fl_end)
1213 				fl->fl_end = request->fl_end;
1214 			else
1215 				request->fl_end = fl->fl_end;
1216 			if (added) {
1217 				locks_delete_lock_ctx(fl, &dispose);
1218 				continue;
1219 			}
1220 			request = fl;
1221 			added = true;
1222 		} else {
1223 			/* Processing for different lock types is a bit
1224 			 * more complex.
1225 			 */
1226 			if (fl->fl_end < request->fl_start)
1227 				continue;
1228 			if (fl->fl_start > request->fl_end)
1229 				break;
1230 			if (request->fl_type == F_UNLCK)
1231 				added = true;
1232 			if (fl->fl_start < request->fl_start)
1233 				left = fl;
1234 			/* If the next lock in the list has a higher end
1235 			 * address than the new one, insert the new one here.
1236 			 */
1237 			if (fl->fl_end > request->fl_end) {
1238 				right = fl;
1239 				break;
1240 			}
1241 			if (fl->fl_start >= request->fl_start) {
1242 				/* The new lock completely replaces an old
1243 				 * one (This may happen several times).
1244 				 */
1245 				if (added) {
1246 					locks_delete_lock_ctx(fl, &dispose);
1247 					continue;
1248 				}
1249 				/*
1250 				 * Replace the old lock with new_fl, and
1251 				 * remove the old one. It's safe to do the
1252 				 * insert here since we know that we won't be
1253 				 * using new_fl later, and that the lock is
1254 				 * just replacing an existing lock.
1255 				 */
1256 				error = -ENOLCK;
1257 				if (!new_fl)
1258 					goto out;
1259 				locks_copy_lock(new_fl, request);
1260 				request = new_fl;
1261 				new_fl = NULL;
1262 				locks_insert_lock_ctx(request, &fl->fl_list);
1263 				locks_delete_lock_ctx(fl, &dispose);
1264 				added = true;
1265 			}
1266 		}
1267 	}
1268 
1269 	/*
1270 	 * The above code only modifies existing locks in case of merging or
1271 	 * replacing. If new lock(s) need to be inserted all modifications are
1272 	 * done below this, so it's safe yet to bail out.
1273 	 */
1274 	error = -ENOLCK; /* "no luck" */
1275 	if (right && left == right && !new_fl2)
1276 		goto out;
1277 
1278 	error = 0;
1279 	if (!added) {
1280 		if (request->fl_type == F_UNLCK) {
1281 			if (request->fl_flags & FL_EXISTS)
1282 				error = -ENOENT;
1283 			goto out;
1284 		}
1285 
1286 		if (!new_fl) {
1287 			error = -ENOLCK;
1288 			goto out;
1289 		}
1290 		locks_copy_lock(new_fl, request);
1291 		locks_move_blocks(new_fl, request);
1292 		locks_insert_lock_ctx(new_fl, &fl->fl_list);
1293 		fl = new_fl;
1294 		new_fl = NULL;
1295 	}
1296 	if (right) {
1297 		if (left == right) {
1298 			/* The new lock breaks the old one in two pieces,
1299 			 * so we have to use the second new lock.
1300 			 */
1301 			left = new_fl2;
1302 			new_fl2 = NULL;
1303 			locks_copy_lock(left, right);
1304 			locks_insert_lock_ctx(left, &fl->fl_list);
1305 		}
1306 		right->fl_start = request->fl_end + 1;
1307 		locks_wake_up_blocks(right);
1308 	}
1309 	if (left) {
1310 		left->fl_end = request->fl_start - 1;
1311 		locks_wake_up_blocks(left);
1312 	}
1313  out:
1314 	spin_unlock(&ctx->flc_lock);
1315 	percpu_up_read(&file_rwsem);
1316 	/*
1317 	 * Free any unused locks.
1318 	 */
1319 	if (new_fl)
1320 		locks_free_lock(new_fl);
1321 	if (new_fl2)
1322 		locks_free_lock(new_fl2);
1323 	locks_dispose_list(&dispose);
1324 	trace_posix_lock_inode(inode, request, error);
1325 
1326 	return error;
1327 }
1328 
1329 /**
1330  * posix_lock_file - Apply a POSIX-style lock to a file
1331  * @filp: The file to apply the lock to
1332  * @fl: The lock to be applied
1333  * @conflock: Place to return a copy of the conflicting lock, if found.
1334  *
1335  * Add a POSIX style lock to a file.
1336  * We merge adjacent & overlapping locks whenever possible.
1337  * POSIX locks are sorted by owner task, then by starting address
1338  *
1339  * Note that if called with an FL_EXISTS argument, the caller may determine
1340  * whether or not a lock was successfully freed by testing the return
1341  * value for -ENOENT.
1342  */
1343 int posix_lock_file(struct file *filp, struct file_lock *fl,
1344 			struct file_lock *conflock)
1345 {
1346 	return posix_lock_inode(locks_inode(filp), fl, conflock);
1347 }
1348 EXPORT_SYMBOL(posix_lock_file);
1349 
1350 /**
1351  * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1352  * @inode: inode of file to which lock request should be applied
1353  * @fl: The lock to be applied
1354  *
1355  * Apply a POSIX style lock request to an inode.
1356  */
1357 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1358 {
1359 	int error;
1360 	might_sleep ();
1361 	for (;;) {
1362 		error = posix_lock_inode(inode, fl, NULL);
1363 		if (error != FILE_LOCK_DEFERRED)
1364 			break;
1365 		error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker);
1366 		if (error)
1367 			break;
1368 	}
1369 	locks_delete_block(fl);
1370 	return error;
1371 }
1372 
1373 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1374 /**
1375  * locks_mandatory_locked - Check for an active lock
1376  * @file: the file to check
1377  *
1378  * Searches the inode's list of locks to find any POSIX locks which conflict.
1379  * This function is called from locks_verify_locked() only.
1380  */
1381 int locks_mandatory_locked(struct file *file)
1382 {
1383 	int ret;
1384 	struct inode *inode = locks_inode(file);
1385 	struct file_lock_context *ctx;
1386 	struct file_lock *fl;
1387 
1388 	ctx = smp_load_acquire(&inode->i_flctx);
1389 	if (!ctx || list_empty_careful(&ctx->flc_posix))
1390 		return 0;
1391 
1392 	/*
1393 	 * Search the lock list for this inode for any POSIX locks.
1394 	 */
1395 	spin_lock(&ctx->flc_lock);
1396 	ret = 0;
1397 	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1398 		if (fl->fl_owner != current->files &&
1399 		    fl->fl_owner != file) {
1400 			ret = -EAGAIN;
1401 			break;
1402 		}
1403 	}
1404 	spin_unlock(&ctx->flc_lock);
1405 	return ret;
1406 }
1407 
1408 /**
1409  * locks_mandatory_area - Check for a conflicting lock
1410  * @inode:	the file to check
1411  * @filp:       how the file was opened (if it was)
1412  * @start:	first byte in the file to check
1413  * @end:	lastbyte in the file to check
1414  * @type:	%F_WRLCK for a write lock, else %F_RDLCK
1415  *
1416  * Searches the inode's list of locks to find any POSIX locks which conflict.
1417  */
1418 int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start,
1419 			 loff_t end, unsigned char type)
1420 {
1421 	struct file_lock fl;
1422 	int error;
1423 	bool sleep = false;
1424 
1425 	locks_init_lock(&fl);
1426 	fl.fl_pid = current->tgid;
1427 	fl.fl_file = filp;
1428 	fl.fl_flags = FL_POSIX | FL_ACCESS;
1429 	if (filp && !(filp->f_flags & O_NONBLOCK))
1430 		sleep = true;
1431 	fl.fl_type = type;
1432 	fl.fl_start = start;
1433 	fl.fl_end = end;
1434 
1435 	for (;;) {
1436 		if (filp) {
1437 			fl.fl_owner = filp;
1438 			fl.fl_flags &= ~FL_SLEEP;
1439 			error = posix_lock_inode(inode, &fl, NULL);
1440 			if (!error)
1441 				break;
1442 		}
1443 
1444 		if (sleep)
1445 			fl.fl_flags |= FL_SLEEP;
1446 		fl.fl_owner = current->files;
1447 		error = posix_lock_inode(inode, &fl, NULL);
1448 		if (error != FILE_LOCK_DEFERRED)
1449 			break;
1450 		error = wait_event_interruptible(fl.fl_wait, !fl.fl_blocker);
1451 		if (!error) {
1452 			/*
1453 			 * If we've been sleeping someone might have
1454 			 * changed the permissions behind our back.
1455 			 */
1456 			if (__mandatory_lock(inode))
1457 				continue;
1458 		}
1459 
1460 		break;
1461 	}
1462 	locks_delete_block(&fl);
1463 
1464 	return error;
1465 }
1466 EXPORT_SYMBOL(locks_mandatory_area);
1467 #endif /* CONFIG_MANDATORY_FILE_LOCKING */
1468 
1469 static void lease_clear_pending(struct file_lock *fl, int arg)
1470 {
1471 	switch (arg) {
1472 	case F_UNLCK:
1473 		fl->fl_flags &= ~FL_UNLOCK_PENDING;
1474 		/* fall through: */
1475 	case F_RDLCK:
1476 		fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1477 	}
1478 }
1479 
1480 /* We already had a lease on this file; just change its type */
1481 int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose)
1482 {
1483 	int error = assign_type(fl, arg);
1484 
1485 	if (error)
1486 		return error;
1487 	lease_clear_pending(fl, arg);
1488 	locks_wake_up_blocks(fl);
1489 	if (arg == F_UNLCK) {
1490 		struct file *filp = fl->fl_file;
1491 
1492 		f_delown(filp);
1493 		filp->f_owner.signum = 0;
1494 		fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1495 		if (fl->fl_fasync != NULL) {
1496 			printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1497 			fl->fl_fasync = NULL;
1498 		}
1499 		locks_delete_lock_ctx(fl, dispose);
1500 	}
1501 	return 0;
1502 }
1503 EXPORT_SYMBOL(lease_modify);
1504 
1505 static bool past_time(unsigned long then)
1506 {
1507 	if (!then)
1508 		/* 0 is a special value meaning "this never expires": */
1509 		return false;
1510 	return time_after(jiffies, then);
1511 }
1512 
1513 static void time_out_leases(struct inode *inode, struct list_head *dispose)
1514 {
1515 	struct file_lock_context *ctx = inode->i_flctx;
1516 	struct file_lock *fl, *tmp;
1517 
1518 	lockdep_assert_held(&ctx->flc_lock);
1519 
1520 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1521 		trace_time_out_leases(inode, fl);
1522 		if (past_time(fl->fl_downgrade_time))
1523 			lease_modify(fl, F_RDLCK, dispose);
1524 		if (past_time(fl->fl_break_time))
1525 			lease_modify(fl, F_UNLCK, dispose);
1526 	}
1527 }
1528 
1529 static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker)
1530 {
1531 	if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT))
1532 		return false;
1533 	if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE))
1534 		return false;
1535 	return locks_conflict(breaker, lease);
1536 }
1537 
1538 static bool
1539 any_leases_conflict(struct inode *inode, struct file_lock *breaker)
1540 {
1541 	struct file_lock_context *ctx = inode->i_flctx;
1542 	struct file_lock *fl;
1543 
1544 	lockdep_assert_held(&ctx->flc_lock);
1545 
1546 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1547 		if (leases_conflict(fl, breaker))
1548 			return true;
1549 	}
1550 	return false;
1551 }
1552 
1553 /**
1554  *	__break_lease	-	revoke all outstanding leases on file
1555  *	@inode: the inode of the file to return
1556  *	@mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1557  *	    break all leases
1558  *	@type: FL_LEASE: break leases and delegations; FL_DELEG: break
1559  *	    only delegations
1560  *
1561  *	break_lease (inlined for speed) has checked there already is at least
1562  *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1563  *	a call to open() or truncate().  This function can sleep unless you
1564  *	specified %O_NONBLOCK to your open().
1565  */
1566 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1567 {
1568 	int error = 0;
1569 	struct file_lock_context *ctx;
1570 	struct file_lock *new_fl, *fl, *tmp;
1571 	unsigned long break_time;
1572 	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1573 	LIST_HEAD(dispose);
1574 
1575 	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1576 	if (IS_ERR(new_fl))
1577 		return PTR_ERR(new_fl);
1578 	new_fl->fl_flags = type;
1579 
1580 	/* typically we will check that ctx is non-NULL before calling */
1581 	ctx = smp_load_acquire(&inode->i_flctx);
1582 	if (!ctx) {
1583 		WARN_ON_ONCE(1);
1584 		return error;
1585 	}
1586 
1587 	percpu_down_read(&file_rwsem);
1588 	spin_lock(&ctx->flc_lock);
1589 
1590 	time_out_leases(inode, &dispose);
1591 
1592 	if (!any_leases_conflict(inode, new_fl))
1593 		goto out;
1594 
1595 	break_time = 0;
1596 	if (lease_break_time > 0) {
1597 		break_time = jiffies + lease_break_time * HZ;
1598 		if (break_time == 0)
1599 			break_time++;	/* so that 0 means no break time */
1600 	}
1601 
1602 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1603 		if (!leases_conflict(fl, new_fl))
1604 			continue;
1605 		if (want_write) {
1606 			if (fl->fl_flags & FL_UNLOCK_PENDING)
1607 				continue;
1608 			fl->fl_flags |= FL_UNLOCK_PENDING;
1609 			fl->fl_break_time = break_time;
1610 		} else {
1611 			if (lease_breaking(fl))
1612 				continue;
1613 			fl->fl_flags |= FL_DOWNGRADE_PENDING;
1614 			fl->fl_downgrade_time = break_time;
1615 		}
1616 		if (fl->fl_lmops->lm_break(fl))
1617 			locks_delete_lock_ctx(fl, &dispose);
1618 	}
1619 
1620 	if (list_empty(&ctx->flc_lease))
1621 		goto out;
1622 
1623 	if (mode & O_NONBLOCK) {
1624 		trace_break_lease_noblock(inode, new_fl);
1625 		error = -EWOULDBLOCK;
1626 		goto out;
1627 	}
1628 
1629 restart:
1630 	fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list);
1631 	break_time = fl->fl_break_time;
1632 	if (break_time != 0)
1633 		break_time -= jiffies;
1634 	if (break_time == 0)
1635 		break_time++;
1636 	locks_insert_block(fl, new_fl, leases_conflict);
1637 	trace_break_lease_block(inode, new_fl);
1638 	spin_unlock(&ctx->flc_lock);
1639 	percpu_up_read(&file_rwsem);
1640 
1641 	locks_dispose_list(&dispose);
1642 	error = wait_event_interruptible_timeout(new_fl->fl_wait,
1643 						!new_fl->fl_blocker, break_time);
1644 
1645 	percpu_down_read(&file_rwsem);
1646 	spin_lock(&ctx->flc_lock);
1647 	trace_break_lease_unblock(inode, new_fl);
1648 	locks_delete_block(new_fl);
1649 	if (error >= 0) {
1650 		/*
1651 		 * Wait for the next conflicting lease that has not been
1652 		 * broken yet
1653 		 */
1654 		if (error == 0)
1655 			time_out_leases(inode, &dispose);
1656 		if (any_leases_conflict(inode, new_fl))
1657 			goto restart;
1658 		error = 0;
1659 	}
1660 out:
1661 	spin_unlock(&ctx->flc_lock);
1662 	percpu_up_read(&file_rwsem);
1663 	locks_dispose_list(&dispose);
1664 	locks_free_lock(new_fl);
1665 	return error;
1666 }
1667 EXPORT_SYMBOL(__break_lease);
1668 
1669 /**
1670  *	lease_get_mtime - update modified time of an inode with exclusive lease
1671  *	@inode: the inode
1672  *      @time:  pointer to a timespec which contains the last modified time
1673  *
1674  * This is to force NFS clients to flush their caches for files with
1675  * exclusive leases.  The justification is that if someone has an
1676  * exclusive lease, then they could be modifying it.
1677  */
1678 void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1679 {
1680 	bool has_lease = false;
1681 	struct file_lock_context *ctx;
1682 	struct file_lock *fl;
1683 
1684 	ctx = smp_load_acquire(&inode->i_flctx);
1685 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1686 		spin_lock(&ctx->flc_lock);
1687 		fl = list_first_entry_or_null(&ctx->flc_lease,
1688 					      struct file_lock, fl_list);
1689 		if (fl && (fl->fl_type == F_WRLCK))
1690 			has_lease = true;
1691 		spin_unlock(&ctx->flc_lock);
1692 	}
1693 
1694 	if (has_lease)
1695 		*time = current_time(inode);
1696 }
1697 EXPORT_SYMBOL(lease_get_mtime);
1698 
1699 /**
1700  *	fcntl_getlease - Enquire what lease is currently active
1701  *	@filp: the file
1702  *
1703  *	The value returned by this function will be one of
1704  *	(if no lease break is pending):
1705  *
1706  *	%F_RDLCK to indicate a shared lease is held.
1707  *
1708  *	%F_WRLCK to indicate an exclusive lease is held.
1709  *
1710  *	%F_UNLCK to indicate no lease is held.
1711  *
1712  *	(if a lease break is pending):
1713  *
1714  *	%F_RDLCK to indicate an exclusive lease needs to be
1715  *		changed to a shared lease (or removed).
1716  *
1717  *	%F_UNLCK to indicate the lease needs to be removed.
1718  *
1719  *	XXX: sfr & willy disagree over whether F_INPROGRESS
1720  *	should be returned to userspace.
1721  */
1722 int fcntl_getlease(struct file *filp)
1723 {
1724 	struct file_lock *fl;
1725 	struct inode *inode = locks_inode(filp);
1726 	struct file_lock_context *ctx;
1727 	int type = F_UNLCK;
1728 	LIST_HEAD(dispose);
1729 
1730 	ctx = smp_load_acquire(&inode->i_flctx);
1731 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1732 		percpu_down_read(&file_rwsem);
1733 		spin_lock(&ctx->flc_lock);
1734 		time_out_leases(inode, &dispose);
1735 		list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1736 			if (fl->fl_file != filp)
1737 				continue;
1738 			type = target_leasetype(fl);
1739 			break;
1740 		}
1741 		spin_unlock(&ctx->flc_lock);
1742 		percpu_up_read(&file_rwsem);
1743 
1744 		locks_dispose_list(&dispose);
1745 	}
1746 	return type;
1747 }
1748 
1749 /**
1750  * check_conflicting_open - see if the given dentry points to a file that has
1751  *			    an existing open that would conflict with the
1752  *			    desired lease.
1753  * @dentry:	dentry to check
1754  * @arg:	type of lease that we're trying to acquire
1755  * @flags:	current lock flags
1756  *
1757  * Check to see if there's an existing open fd on this file that would
1758  * conflict with the lease we're trying to set.
1759  */
1760 static int
1761 check_conflicting_open(const struct dentry *dentry, const long arg, int flags)
1762 {
1763 	int ret = 0;
1764 	struct inode *inode = dentry->d_inode;
1765 
1766 	if (flags & FL_LAYOUT)
1767 		return 0;
1768 
1769 	if ((arg == F_RDLCK) && inode_is_open_for_write(inode))
1770 		return -EAGAIN;
1771 
1772 	if ((arg == F_WRLCK) && ((d_count(dentry) > 1) ||
1773 	    (atomic_read(&inode->i_count) > 1)))
1774 		ret = -EAGAIN;
1775 
1776 	return ret;
1777 }
1778 
1779 static int
1780 generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv)
1781 {
1782 	struct file_lock *fl, *my_fl = NULL, *lease;
1783 	struct dentry *dentry = filp->f_path.dentry;
1784 	struct inode *inode = dentry->d_inode;
1785 	struct file_lock_context *ctx;
1786 	bool is_deleg = (*flp)->fl_flags & FL_DELEG;
1787 	int error;
1788 	LIST_HEAD(dispose);
1789 
1790 	lease = *flp;
1791 	trace_generic_add_lease(inode, lease);
1792 
1793 	/* Note that arg is never F_UNLCK here */
1794 	ctx = locks_get_lock_context(inode, arg);
1795 	if (!ctx)
1796 		return -ENOMEM;
1797 
1798 	/*
1799 	 * In the delegation case we need mutual exclusion with
1800 	 * a number of operations that take the i_mutex.  We trylock
1801 	 * because delegations are an optional optimization, and if
1802 	 * there's some chance of a conflict--we'd rather not
1803 	 * bother, maybe that's a sign this just isn't a good file to
1804 	 * hand out a delegation on.
1805 	 */
1806 	if (is_deleg && !inode_trylock(inode))
1807 		return -EAGAIN;
1808 
1809 	if (is_deleg && arg == F_WRLCK) {
1810 		/* Write delegations are not currently supported: */
1811 		inode_unlock(inode);
1812 		WARN_ON_ONCE(1);
1813 		return -EINVAL;
1814 	}
1815 
1816 	percpu_down_read(&file_rwsem);
1817 	spin_lock(&ctx->flc_lock);
1818 	time_out_leases(inode, &dispose);
1819 	error = check_conflicting_open(dentry, arg, lease->fl_flags);
1820 	if (error)
1821 		goto out;
1822 
1823 	/*
1824 	 * At this point, we know that if there is an exclusive
1825 	 * lease on this file, then we hold it on this filp
1826 	 * (otherwise our open of this file would have blocked).
1827 	 * And if we are trying to acquire an exclusive lease,
1828 	 * then the file is not open by anyone (including us)
1829 	 * except for this filp.
1830 	 */
1831 	error = -EAGAIN;
1832 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1833 		if (fl->fl_file == filp &&
1834 		    fl->fl_owner == lease->fl_owner) {
1835 			my_fl = fl;
1836 			continue;
1837 		}
1838 
1839 		/*
1840 		 * No exclusive leases if someone else has a lease on
1841 		 * this file:
1842 		 */
1843 		if (arg == F_WRLCK)
1844 			goto out;
1845 		/*
1846 		 * Modifying our existing lease is OK, but no getting a
1847 		 * new lease if someone else is opening for write:
1848 		 */
1849 		if (fl->fl_flags & FL_UNLOCK_PENDING)
1850 			goto out;
1851 	}
1852 
1853 	if (my_fl != NULL) {
1854 		lease = my_fl;
1855 		error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1856 		if (error)
1857 			goto out;
1858 		goto out_setup;
1859 	}
1860 
1861 	error = -EINVAL;
1862 	if (!leases_enable)
1863 		goto out;
1864 
1865 	locks_insert_lock_ctx(lease, &ctx->flc_lease);
1866 	/*
1867 	 * The check in break_lease() is lockless. It's possible for another
1868 	 * open to race in after we did the earlier check for a conflicting
1869 	 * open but before the lease was inserted. Check again for a
1870 	 * conflicting open and cancel the lease if there is one.
1871 	 *
1872 	 * We also add a barrier here to ensure that the insertion of the lock
1873 	 * precedes these checks.
1874 	 */
1875 	smp_mb();
1876 	error = check_conflicting_open(dentry, arg, lease->fl_flags);
1877 	if (error) {
1878 		locks_unlink_lock_ctx(lease);
1879 		goto out;
1880 	}
1881 
1882 out_setup:
1883 	if (lease->fl_lmops->lm_setup)
1884 		lease->fl_lmops->lm_setup(lease, priv);
1885 out:
1886 	spin_unlock(&ctx->flc_lock);
1887 	percpu_up_read(&file_rwsem);
1888 	locks_dispose_list(&dispose);
1889 	if (is_deleg)
1890 		inode_unlock(inode);
1891 	if (!error && !my_fl)
1892 		*flp = NULL;
1893 	return error;
1894 }
1895 
1896 static int generic_delete_lease(struct file *filp, void *owner)
1897 {
1898 	int error = -EAGAIN;
1899 	struct file_lock *fl, *victim = NULL;
1900 	struct inode *inode = locks_inode(filp);
1901 	struct file_lock_context *ctx;
1902 	LIST_HEAD(dispose);
1903 
1904 	ctx = smp_load_acquire(&inode->i_flctx);
1905 	if (!ctx) {
1906 		trace_generic_delete_lease(inode, NULL);
1907 		return error;
1908 	}
1909 
1910 	percpu_down_read(&file_rwsem);
1911 	spin_lock(&ctx->flc_lock);
1912 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1913 		if (fl->fl_file == filp &&
1914 		    fl->fl_owner == owner) {
1915 			victim = fl;
1916 			break;
1917 		}
1918 	}
1919 	trace_generic_delete_lease(inode, victim);
1920 	if (victim)
1921 		error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1922 	spin_unlock(&ctx->flc_lock);
1923 	percpu_up_read(&file_rwsem);
1924 	locks_dispose_list(&dispose);
1925 	return error;
1926 }
1927 
1928 /**
1929  *	generic_setlease	-	sets a lease on an open file
1930  *	@filp:	file pointer
1931  *	@arg:	type of lease to obtain
1932  *	@flp:	input - file_lock to use, output - file_lock inserted
1933  *	@priv:	private data for lm_setup (may be NULL if lm_setup
1934  *		doesn't require it)
1935  *
1936  *	The (input) flp->fl_lmops->lm_break function is required
1937  *	by break_lease().
1938  */
1939 int generic_setlease(struct file *filp, long arg, struct file_lock **flp,
1940 			void **priv)
1941 {
1942 	struct inode *inode = locks_inode(filp);
1943 	int error;
1944 
1945 	if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE))
1946 		return -EACCES;
1947 	if (!S_ISREG(inode->i_mode))
1948 		return -EINVAL;
1949 	error = security_file_lock(filp, arg);
1950 	if (error)
1951 		return error;
1952 
1953 	switch (arg) {
1954 	case F_UNLCK:
1955 		return generic_delete_lease(filp, *priv);
1956 	case F_RDLCK:
1957 	case F_WRLCK:
1958 		if (!(*flp)->fl_lmops->lm_break) {
1959 			WARN_ON_ONCE(1);
1960 			return -ENOLCK;
1961 		}
1962 
1963 		return generic_add_lease(filp, arg, flp, priv);
1964 	default:
1965 		return -EINVAL;
1966 	}
1967 }
1968 EXPORT_SYMBOL(generic_setlease);
1969 
1970 /**
1971  * vfs_setlease        -       sets a lease on an open file
1972  * @filp:	file pointer
1973  * @arg:	type of lease to obtain
1974  * @lease:	file_lock to use when adding a lease
1975  * @priv:	private info for lm_setup when adding a lease (may be
1976  *		NULL if lm_setup doesn't require it)
1977  *
1978  * Call this to establish a lease on the file. The "lease" argument is not
1979  * used for F_UNLCK requests and may be NULL. For commands that set or alter
1980  * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
1981  * set; if not, this function will return -ENOLCK (and generate a scary-looking
1982  * stack trace).
1983  *
1984  * The "priv" pointer is passed directly to the lm_setup function as-is. It
1985  * may be NULL if the lm_setup operation doesn't require it.
1986  */
1987 int
1988 vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv)
1989 {
1990 	if (filp->f_op->setlease)
1991 		return filp->f_op->setlease(filp, arg, lease, priv);
1992 	else
1993 		return generic_setlease(filp, arg, lease, priv);
1994 }
1995 EXPORT_SYMBOL_GPL(vfs_setlease);
1996 
1997 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg)
1998 {
1999 	struct file_lock *fl;
2000 	struct fasync_struct *new;
2001 	int error;
2002 
2003 	fl = lease_alloc(filp, arg);
2004 	if (IS_ERR(fl))
2005 		return PTR_ERR(fl);
2006 
2007 	new = fasync_alloc();
2008 	if (!new) {
2009 		locks_free_lock(fl);
2010 		return -ENOMEM;
2011 	}
2012 	new->fa_fd = fd;
2013 
2014 	error = vfs_setlease(filp, arg, &fl, (void **)&new);
2015 	if (fl)
2016 		locks_free_lock(fl);
2017 	if (new)
2018 		fasync_free(new);
2019 	return error;
2020 }
2021 
2022 /**
2023  *	fcntl_setlease	-	sets a lease on an open file
2024  *	@fd: open file descriptor
2025  *	@filp: file pointer
2026  *	@arg: type of lease to obtain
2027  *
2028  *	Call this fcntl to establish a lease on the file.
2029  *	Note that you also need to call %F_SETSIG to
2030  *	receive a signal when the lease is broken.
2031  */
2032 int fcntl_setlease(unsigned int fd, struct file *filp, long arg)
2033 {
2034 	if (arg == F_UNLCK)
2035 		return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2036 	return do_fcntl_add_lease(fd, filp, arg);
2037 }
2038 
2039 /**
2040  * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2041  * @inode: inode of the file to apply to
2042  * @fl: The lock to be applied
2043  *
2044  * Apply a FLOCK style lock request to an inode.
2045  */
2046 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2047 {
2048 	int error;
2049 	might_sleep();
2050 	for (;;) {
2051 		error = flock_lock_inode(inode, fl);
2052 		if (error != FILE_LOCK_DEFERRED)
2053 			break;
2054 		error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker);
2055 		if (error)
2056 			break;
2057 	}
2058 	locks_delete_block(fl);
2059 	return error;
2060 }
2061 
2062 /**
2063  * locks_lock_inode_wait - Apply a lock to an inode
2064  * @inode: inode of the file to apply to
2065  * @fl: The lock to be applied
2066  *
2067  * Apply a POSIX or FLOCK style lock request to an inode.
2068  */
2069 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2070 {
2071 	int res = 0;
2072 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
2073 		case FL_POSIX:
2074 			res = posix_lock_inode_wait(inode, fl);
2075 			break;
2076 		case FL_FLOCK:
2077 			res = flock_lock_inode_wait(inode, fl);
2078 			break;
2079 		default:
2080 			BUG();
2081 	}
2082 	return res;
2083 }
2084 EXPORT_SYMBOL(locks_lock_inode_wait);
2085 
2086 /**
2087  *	sys_flock: - flock() system call.
2088  *	@fd: the file descriptor to lock.
2089  *	@cmd: the type of lock to apply.
2090  *
2091  *	Apply a %FL_FLOCK style lock to an open file descriptor.
2092  *	The @cmd can be one of:
2093  *
2094  *	- %LOCK_SH -- a shared lock.
2095  *	- %LOCK_EX -- an exclusive lock.
2096  *	- %LOCK_UN -- remove an existing lock.
2097  *	- %LOCK_MAND -- a 'mandatory' flock.
2098  *	  This exists to emulate Windows Share Modes.
2099  *
2100  *	%LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other
2101  *	processes read and write access respectively.
2102  */
2103 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2104 {
2105 	struct fd f = fdget(fd);
2106 	struct file_lock *lock;
2107 	int can_sleep, unlock;
2108 	int error;
2109 
2110 	error = -EBADF;
2111 	if (!f.file)
2112 		goto out;
2113 
2114 	can_sleep = !(cmd & LOCK_NB);
2115 	cmd &= ~LOCK_NB;
2116 	unlock = (cmd == LOCK_UN);
2117 
2118 	if (!unlock && !(cmd & LOCK_MAND) &&
2119 	    !(f.file->f_mode & (FMODE_READ|FMODE_WRITE)))
2120 		goto out_putf;
2121 
2122 	lock = flock_make_lock(f.file, cmd, NULL);
2123 	if (IS_ERR(lock)) {
2124 		error = PTR_ERR(lock);
2125 		goto out_putf;
2126 	}
2127 
2128 	if (can_sleep)
2129 		lock->fl_flags |= FL_SLEEP;
2130 
2131 	error = security_file_lock(f.file, lock->fl_type);
2132 	if (error)
2133 		goto out_free;
2134 
2135 	if (f.file->f_op->flock)
2136 		error = f.file->f_op->flock(f.file,
2137 					  (can_sleep) ? F_SETLKW : F_SETLK,
2138 					  lock);
2139 	else
2140 		error = locks_lock_file_wait(f.file, lock);
2141 
2142  out_free:
2143 	locks_free_lock(lock);
2144 
2145  out_putf:
2146 	fdput(f);
2147  out:
2148 	return error;
2149 }
2150 
2151 /**
2152  * vfs_test_lock - test file byte range lock
2153  * @filp: The file to test lock for
2154  * @fl: The lock to test; also used to hold result
2155  *
2156  * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
2157  * setting conf->fl_type to something other than F_UNLCK.
2158  */
2159 int vfs_test_lock(struct file *filp, struct file_lock *fl)
2160 {
2161 	if (filp->f_op->lock)
2162 		return filp->f_op->lock(filp, F_GETLK, fl);
2163 	posix_test_lock(filp, fl);
2164 	return 0;
2165 }
2166 EXPORT_SYMBOL_GPL(vfs_test_lock);
2167 
2168 /**
2169  * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2170  * @fl: The file_lock who's fl_pid should be translated
2171  * @ns: The namespace into which the pid should be translated
2172  *
2173  * Used to tranlate a fl_pid into a namespace virtual pid number
2174  */
2175 static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns)
2176 {
2177 	pid_t vnr;
2178 	struct pid *pid;
2179 
2180 	if (IS_OFDLCK(fl))
2181 		return -1;
2182 	if (IS_REMOTELCK(fl))
2183 		return fl->fl_pid;
2184 	/*
2185 	 * If the flock owner process is dead and its pid has been already
2186 	 * freed, the translation below won't work, but we still want to show
2187 	 * flock owner pid number in init pidns.
2188 	 */
2189 	if (ns == &init_pid_ns)
2190 		return (pid_t)fl->fl_pid;
2191 
2192 	rcu_read_lock();
2193 	pid = find_pid_ns(fl->fl_pid, &init_pid_ns);
2194 	vnr = pid_nr_ns(pid, ns);
2195 	rcu_read_unlock();
2196 	return vnr;
2197 }
2198 
2199 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2200 {
2201 	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2202 #if BITS_PER_LONG == 32
2203 	/*
2204 	 * Make sure we can represent the posix lock via
2205 	 * legacy 32bit flock.
2206 	 */
2207 	if (fl->fl_start > OFFT_OFFSET_MAX)
2208 		return -EOVERFLOW;
2209 	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2210 		return -EOVERFLOW;
2211 #endif
2212 	flock->l_start = fl->fl_start;
2213 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2214 		fl->fl_end - fl->fl_start + 1;
2215 	flock->l_whence = 0;
2216 	flock->l_type = fl->fl_type;
2217 	return 0;
2218 }
2219 
2220 #if BITS_PER_LONG == 32
2221 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2222 {
2223 	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2224 	flock->l_start = fl->fl_start;
2225 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2226 		fl->fl_end - fl->fl_start + 1;
2227 	flock->l_whence = 0;
2228 	flock->l_type = fl->fl_type;
2229 }
2230 #endif
2231 
2232 /* Report the first existing lock that would conflict with l.
2233  * This implements the F_GETLK command of fcntl().
2234  */
2235 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2236 {
2237 	struct file_lock *fl;
2238 	int error;
2239 
2240 	fl = locks_alloc_lock();
2241 	if (fl == NULL)
2242 		return -ENOMEM;
2243 	error = -EINVAL;
2244 	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2245 		goto out;
2246 
2247 	error = flock_to_posix_lock(filp, fl, flock);
2248 	if (error)
2249 		goto out;
2250 
2251 	if (cmd == F_OFD_GETLK) {
2252 		error = -EINVAL;
2253 		if (flock->l_pid != 0)
2254 			goto out;
2255 
2256 		cmd = F_GETLK;
2257 		fl->fl_flags |= FL_OFDLCK;
2258 		fl->fl_owner = filp;
2259 	}
2260 
2261 	error = vfs_test_lock(filp, fl);
2262 	if (error)
2263 		goto out;
2264 
2265 	flock->l_type = fl->fl_type;
2266 	if (fl->fl_type != F_UNLCK) {
2267 		error = posix_lock_to_flock(flock, fl);
2268 		if (error)
2269 			goto out;
2270 	}
2271 out:
2272 	locks_free_lock(fl);
2273 	return error;
2274 }
2275 
2276 /**
2277  * vfs_lock_file - file byte range lock
2278  * @filp: The file to apply the lock to
2279  * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2280  * @fl: The lock to be applied
2281  * @conf: Place to return a copy of the conflicting lock, if found.
2282  *
2283  * A caller that doesn't care about the conflicting lock may pass NULL
2284  * as the final argument.
2285  *
2286  * If the filesystem defines a private ->lock() method, then @conf will
2287  * be left unchanged; so a caller that cares should initialize it to
2288  * some acceptable default.
2289  *
2290  * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2291  * locks, the ->lock() interface may return asynchronously, before the lock has
2292  * been granted or denied by the underlying filesystem, if (and only if)
2293  * lm_grant is set. Callers expecting ->lock() to return asynchronously
2294  * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if)
2295  * the request is for a blocking lock. When ->lock() does return asynchronously,
2296  * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock
2297  * request completes.
2298  * If the request is for non-blocking lock the file system should return
2299  * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2300  * with the result. If the request timed out the callback routine will return a
2301  * nonzero return code and the file system should release the lock. The file
2302  * system is also responsible to keep a corresponding posix lock when it
2303  * grants a lock so the VFS can find out which locks are locally held and do
2304  * the correct lock cleanup when required.
2305  * The underlying filesystem must not drop the kernel lock or call
2306  * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2307  * return code.
2308  */
2309 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2310 {
2311 	if (filp->f_op->lock)
2312 		return filp->f_op->lock(filp, cmd, fl);
2313 	else
2314 		return posix_lock_file(filp, fl, conf);
2315 }
2316 EXPORT_SYMBOL_GPL(vfs_lock_file);
2317 
2318 static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2319 			     struct file_lock *fl)
2320 {
2321 	int error;
2322 
2323 	error = security_file_lock(filp, fl->fl_type);
2324 	if (error)
2325 		return error;
2326 
2327 	for (;;) {
2328 		error = vfs_lock_file(filp, cmd, fl, NULL);
2329 		if (error != FILE_LOCK_DEFERRED)
2330 			break;
2331 		error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker);
2332 		if (error)
2333 			break;
2334 	}
2335 	locks_delete_block(fl);
2336 
2337 	return error;
2338 }
2339 
2340 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2341 static int
2342 check_fmode_for_setlk(struct file_lock *fl)
2343 {
2344 	switch (fl->fl_type) {
2345 	case F_RDLCK:
2346 		if (!(fl->fl_file->f_mode & FMODE_READ))
2347 			return -EBADF;
2348 		break;
2349 	case F_WRLCK:
2350 		if (!(fl->fl_file->f_mode & FMODE_WRITE))
2351 			return -EBADF;
2352 	}
2353 	return 0;
2354 }
2355 
2356 /* Apply the lock described by l to an open file descriptor.
2357  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2358  */
2359 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2360 		struct flock *flock)
2361 {
2362 	struct file_lock *file_lock = locks_alloc_lock();
2363 	struct inode *inode = locks_inode(filp);
2364 	struct file *f;
2365 	int error;
2366 
2367 	if (file_lock == NULL)
2368 		return -ENOLCK;
2369 
2370 	/* Don't allow mandatory locks on files that may be memory mapped
2371 	 * and shared.
2372 	 */
2373 	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2374 		error = -EAGAIN;
2375 		goto out;
2376 	}
2377 
2378 	error = flock_to_posix_lock(filp, file_lock, flock);
2379 	if (error)
2380 		goto out;
2381 
2382 	error = check_fmode_for_setlk(file_lock);
2383 	if (error)
2384 		goto out;
2385 
2386 	/*
2387 	 * If the cmd is requesting file-private locks, then set the
2388 	 * FL_OFDLCK flag and override the owner.
2389 	 */
2390 	switch (cmd) {
2391 	case F_OFD_SETLK:
2392 		error = -EINVAL;
2393 		if (flock->l_pid != 0)
2394 			goto out;
2395 
2396 		cmd = F_SETLK;
2397 		file_lock->fl_flags |= FL_OFDLCK;
2398 		file_lock->fl_owner = filp;
2399 		break;
2400 	case F_OFD_SETLKW:
2401 		error = -EINVAL;
2402 		if (flock->l_pid != 0)
2403 			goto out;
2404 
2405 		cmd = F_SETLKW;
2406 		file_lock->fl_flags |= FL_OFDLCK;
2407 		file_lock->fl_owner = filp;
2408 		/* Fallthrough */
2409 	case F_SETLKW:
2410 		file_lock->fl_flags |= FL_SLEEP;
2411 	}
2412 
2413 	error = do_lock_file_wait(filp, cmd, file_lock);
2414 
2415 	/*
2416 	 * Attempt to detect a close/fcntl race and recover by releasing the
2417 	 * lock that was just acquired. There is no need to do that when we're
2418 	 * unlocking though, or for OFD locks.
2419 	 */
2420 	if (!error && file_lock->fl_type != F_UNLCK &&
2421 	    !(file_lock->fl_flags & FL_OFDLCK)) {
2422 		/*
2423 		 * We need that spin_lock here - it prevents reordering between
2424 		 * update of i_flctx->flc_posix and check for it done in
2425 		 * close(). rcu_read_lock() wouldn't do.
2426 		 */
2427 		spin_lock(&current->files->file_lock);
2428 		f = fcheck(fd);
2429 		spin_unlock(&current->files->file_lock);
2430 		if (f != filp) {
2431 			file_lock->fl_type = F_UNLCK;
2432 			error = do_lock_file_wait(filp, cmd, file_lock);
2433 			WARN_ON_ONCE(error);
2434 			error = -EBADF;
2435 		}
2436 	}
2437 out:
2438 	trace_fcntl_setlk(inode, file_lock, error);
2439 	locks_free_lock(file_lock);
2440 	return error;
2441 }
2442 
2443 #if BITS_PER_LONG == 32
2444 /* Report the first existing lock that would conflict with l.
2445  * This implements the F_GETLK command of fcntl().
2446  */
2447 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2448 {
2449 	struct file_lock *fl;
2450 	int error;
2451 
2452 	fl = locks_alloc_lock();
2453 	if (fl == NULL)
2454 		return -ENOMEM;
2455 
2456 	error = -EINVAL;
2457 	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2458 		goto out;
2459 
2460 	error = flock64_to_posix_lock(filp, fl, flock);
2461 	if (error)
2462 		goto out;
2463 
2464 	if (cmd == F_OFD_GETLK) {
2465 		error = -EINVAL;
2466 		if (flock->l_pid != 0)
2467 			goto out;
2468 
2469 		cmd = F_GETLK64;
2470 		fl->fl_flags |= FL_OFDLCK;
2471 		fl->fl_owner = filp;
2472 	}
2473 
2474 	error = vfs_test_lock(filp, fl);
2475 	if (error)
2476 		goto out;
2477 
2478 	flock->l_type = fl->fl_type;
2479 	if (fl->fl_type != F_UNLCK)
2480 		posix_lock_to_flock64(flock, fl);
2481 
2482 out:
2483 	locks_free_lock(fl);
2484 	return error;
2485 }
2486 
2487 /* Apply the lock described by l to an open file descriptor.
2488  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2489  */
2490 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2491 		struct flock64 *flock)
2492 {
2493 	struct file_lock *file_lock = locks_alloc_lock();
2494 	struct inode *inode = locks_inode(filp);
2495 	struct file *f;
2496 	int error;
2497 
2498 	if (file_lock == NULL)
2499 		return -ENOLCK;
2500 
2501 	/* Don't allow mandatory locks on files that may be memory mapped
2502 	 * and shared.
2503 	 */
2504 	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2505 		error = -EAGAIN;
2506 		goto out;
2507 	}
2508 
2509 	error = flock64_to_posix_lock(filp, file_lock, flock);
2510 	if (error)
2511 		goto out;
2512 
2513 	error = check_fmode_for_setlk(file_lock);
2514 	if (error)
2515 		goto out;
2516 
2517 	/*
2518 	 * If the cmd is requesting file-private locks, then set the
2519 	 * FL_OFDLCK flag and override the owner.
2520 	 */
2521 	switch (cmd) {
2522 	case F_OFD_SETLK:
2523 		error = -EINVAL;
2524 		if (flock->l_pid != 0)
2525 			goto out;
2526 
2527 		cmd = F_SETLK64;
2528 		file_lock->fl_flags |= FL_OFDLCK;
2529 		file_lock->fl_owner = filp;
2530 		break;
2531 	case F_OFD_SETLKW:
2532 		error = -EINVAL;
2533 		if (flock->l_pid != 0)
2534 			goto out;
2535 
2536 		cmd = F_SETLKW64;
2537 		file_lock->fl_flags |= FL_OFDLCK;
2538 		file_lock->fl_owner = filp;
2539 		/* Fallthrough */
2540 	case F_SETLKW64:
2541 		file_lock->fl_flags |= FL_SLEEP;
2542 	}
2543 
2544 	error = do_lock_file_wait(filp, cmd, file_lock);
2545 
2546 	/*
2547 	 * Attempt to detect a close/fcntl race and recover by releasing the
2548 	 * lock that was just acquired. There is no need to do that when we're
2549 	 * unlocking though, or for OFD locks.
2550 	 */
2551 	if (!error && file_lock->fl_type != F_UNLCK &&
2552 	    !(file_lock->fl_flags & FL_OFDLCK)) {
2553 		/*
2554 		 * We need that spin_lock here - it prevents reordering between
2555 		 * update of i_flctx->flc_posix and check for it done in
2556 		 * close(). rcu_read_lock() wouldn't do.
2557 		 */
2558 		spin_lock(&current->files->file_lock);
2559 		f = fcheck(fd);
2560 		spin_unlock(&current->files->file_lock);
2561 		if (f != filp) {
2562 			file_lock->fl_type = F_UNLCK;
2563 			error = do_lock_file_wait(filp, cmd, file_lock);
2564 			WARN_ON_ONCE(error);
2565 			error = -EBADF;
2566 		}
2567 	}
2568 out:
2569 	locks_free_lock(file_lock);
2570 	return error;
2571 }
2572 #endif /* BITS_PER_LONG == 32 */
2573 
2574 /*
2575  * This function is called when the file is being removed
2576  * from the task's fd array.  POSIX locks belonging to this task
2577  * are deleted at this time.
2578  */
2579 void locks_remove_posix(struct file *filp, fl_owner_t owner)
2580 {
2581 	int error;
2582 	struct inode *inode = locks_inode(filp);
2583 	struct file_lock lock;
2584 	struct file_lock_context *ctx;
2585 
2586 	/*
2587 	 * If there are no locks held on this file, we don't need to call
2588 	 * posix_lock_file().  Another process could be setting a lock on this
2589 	 * file at the same time, but we wouldn't remove that lock anyway.
2590 	 */
2591 	ctx =  smp_load_acquire(&inode->i_flctx);
2592 	if (!ctx || list_empty(&ctx->flc_posix))
2593 		return;
2594 
2595 	locks_init_lock(&lock);
2596 	lock.fl_type = F_UNLCK;
2597 	lock.fl_flags = FL_POSIX | FL_CLOSE;
2598 	lock.fl_start = 0;
2599 	lock.fl_end = OFFSET_MAX;
2600 	lock.fl_owner = owner;
2601 	lock.fl_pid = current->tgid;
2602 	lock.fl_file = filp;
2603 	lock.fl_ops = NULL;
2604 	lock.fl_lmops = NULL;
2605 
2606 	error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2607 
2608 	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2609 		lock.fl_ops->fl_release_private(&lock);
2610 	trace_locks_remove_posix(inode, &lock, error);
2611 }
2612 EXPORT_SYMBOL(locks_remove_posix);
2613 
2614 /* The i_flctx must be valid when calling into here */
2615 static void
2616 locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2617 {
2618 	struct file_lock fl;
2619 	struct inode *inode = locks_inode(filp);
2620 
2621 	if (list_empty(&flctx->flc_flock))
2622 		return;
2623 
2624 	flock_make_lock(filp, LOCK_UN, &fl);
2625 	fl.fl_flags |= FL_CLOSE;
2626 
2627 	if (filp->f_op->flock)
2628 		filp->f_op->flock(filp, F_SETLKW, &fl);
2629 	else
2630 		flock_lock_inode(inode, &fl);
2631 
2632 	if (fl.fl_ops && fl.fl_ops->fl_release_private)
2633 		fl.fl_ops->fl_release_private(&fl);
2634 }
2635 
2636 /* The i_flctx must be valid when calling into here */
2637 static void
2638 locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2639 {
2640 	struct file_lock *fl, *tmp;
2641 	LIST_HEAD(dispose);
2642 
2643 	if (list_empty(&ctx->flc_lease))
2644 		return;
2645 
2646 	percpu_down_read(&file_rwsem);
2647 	spin_lock(&ctx->flc_lock);
2648 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list)
2649 		if (filp == fl->fl_file)
2650 			lease_modify(fl, F_UNLCK, &dispose);
2651 	spin_unlock(&ctx->flc_lock);
2652 	percpu_up_read(&file_rwsem);
2653 
2654 	locks_dispose_list(&dispose);
2655 }
2656 
2657 /*
2658  * This function is called on the last close of an open file.
2659  */
2660 void locks_remove_file(struct file *filp)
2661 {
2662 	struct file_lock_context *ctx;
2663 
2664 	ctx = smp_load_acquire(&locks_inode(filp)->i_flctx);
2665 	if (!ctx)
2666 		return;
2667 
2668 	/* remove any OFD locks */
2669 	locks_remove_posix(filp, filp);
2670 
2671 	/* remove flock locks */
2672 	locks_remove_flock(filp, ctx);
2673 
2674 	/* remove any leases */
2675 	locks_remove_lease(filp, ctx);
2676 
2677 	spin_lock(&ctx->flc_lock);
2678 	locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2679 	locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2680 	locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2681 	spin_unlock(&ctx->flc_lock);
2682 }
2683 
2684 /**
2685  * vfs_cancel_lock - file byte range unblock lock
2686  * @filp: The file to apply the unblock to
2687  * @fl: The lock to be unblocked
2688  *
2689  * Used by lock managers to cancel blocked requests
2690  */
2691 int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2692 {
2693 	if (filp->f_op->lock)
2694 		return filp->f_op->lock(filp, F_CANCELLK, fl);
2695 	return 0;
2696 }
2697 EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2698 
2699 #ifdef CONFIG_PROC_FS
2700 #include <linux/proc_fs.h>
2701 #include <linux/seq_file.h>
2702 
2703 struct locks_iterator {
2704 	int	li_cpu;
2705 	loff_t	li_pos;
2706 };
2707 
2708 static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2709 			    loff_t id, char *pfx)
2710 {
2711 	struct inode *inode = NULL;
2712 	unsigned int fl_pid;
2713 	struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info;
2714 
2715 	fl_pid = locks_translate_pid(fl, proc_pidns);
2716 	/*
2717 	 * If lock owner is dead (and pid is freed) or not visible in current
2718 	 * pidns, zero is shown as a pid value. Check lock info from
2719 	 * init_pid_ns to get saved lock pid value.
2720 	 */
2721 
2722 	if (fl->fl_file != NULL)
2723 		inode = locks_inode(fl->fl_file);
2724 
2725 	seq_printf(f, "%lld:%s ", id, pfx);
2726 	if (IS_POSIX(fl)) {
2727 		if (fl->fl_flags & FL_ACCESS)
2728 			seq_puts(f, "ACCESS");
2729 		else if (IS_OFDLCK(fl))
2730 			seq_puts(f, "OFDLCK");
2731 		else
2732 			seq_puts(f, "POSIX ");
2733 
2734 		seq_printf(f, " %s ",
2735 			     (inode == NULL) ? "*NOINODE*" :
2736 			     mandatory_lock(inode) ? "MANDATORY" : "ADVISORY ");
2737 	} else if (IS_FLOCK(fl)) {
2738 		if (fl->fl_type & LOCK_MAND) {
2739 			seq_puts(f, "FLOCK  MSNFS     ");
2740 		} else {
2741 			seq_puts(f, "FLOCK  ADVISORY  ");
2742 		}
2743 	} else if (IS_LEASE(fl)) {
2744 		if (fl->fl_flags & FL_DELEG)
2745 			seq_puts(f, "DELEG  ");
2746 		else
2747 			seq_puts(f, "LEASE  ");
2748 
2749 		if (lease_breaking(fl))
2750 			seq_puts(f, "BREAKING  ");
2751 		else if (fl->fl_file)
2752 			seq_puts(f, "ACTIVE    ");
2753 		else
2754 			seq_puts(f, "BREAKER   ");
2755 	} else {
2756 		seq_puts(f, "UNKNOWN UNKNOWN  ");
2757 	}
2758 	if (fl->fl_type & LOCK_MAND) {
2759 		seq_printf(f, "%s ",
2760 			       (fl->fl_type & LOCK_READ)
2761 			       ? (fl->fl_type & LOCK_WRITE) ? "RW   " : "READ "
2762 			       : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE ");
2763 	} else {
2764 		seq_printf(f, "%s ",
2765 			       (lease_breaking(fl))
2766 			       ? (fl->fl_type == F_UNLCK) ? "UNLCK" : "READ "
2767 			       : (fl->fl_type == F_WRLCK) ? "WRITE" : "READ ");
2768 	}
2769 	if (inode) {
2770 		/* userspace relies on this representation of dev_t */
2771 		seq_printf(f, "%d %02x:%02x:%ld ", fl_pid,
2772 				MAJOR(inode->i_sb->s_dev),
2773 				MINOR(inode->i_sb->s_dev), inode->i_ino);
2774 	} else {
2775 		seq_printf(f, "%d <none>:0 ", fl_pid);
2776 	}
2777 	if (IS_POSIX(fl)) {
2778 		if (fl->fl_end == OFFSET_MAX)
2779 			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2780 		else
2781 			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2782 	} else {
2783 		seq_puts(f, "0 EOF\n");
2784 	}
2785 }
2786 
2787 static int locks_show(struct seq_file *f, void *v)
2788 {
2789 	struct locks_iterator *iter = f->private;
2790 	struct file_lock *fl, *bfl;
2791 	struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info;
2792 
2793 	fl = hlist_entry(v, struct file_lock, fl_link);
2794 
2795 	if (locks_translate_pid(fl, proc_pidns) == 0)
2796 		return 0;
2797 
2798 	lock_get_status(f, fl, iter->li_pos, "");
2799 
2800 	list_for_each_entry(bfl, &fl->fl_blocked_requests, fl_blocked_member)
2801 		lock_get_status(f, bfl, iter->li_pos, " ->");
2802 
2803 	return 0;
2804 }
2805 
2806 static void __show_fd_locks(struct seq_file *f,
2807 			struct list_head *head, int *id,
2808 			struct file *filp, struct files_struct *files)
2809 {
2810 	struct file_lock *fl;
2811 
2812 	list_for_each_entry(fl, head, fl_list) {
2813 
2814 		if (filp != fl->fl_file)
2815 			continue;
2816 		if (fl->fl_owner != files &&
2817 		    fl->fl_owner != filp)
2818 			continue;
2819 
2820 		(*id)++;
2821 		seq_puts(f, "lock:\t");
2822 		lock_get_status(f, fl, *id, "");
2823 	}
2824 }
2825 
2826 void show_fd_locks(struct seq_file *f,
2827 		  struct file *filp, struct files_struct *files)
2828 {
2829 	struct inode *inode = locks_inode(filp);
2830 	struct file_lock_context *ctx;
2831 	int id = 0;
2832 
2833 	ctx = smp_load_acquire(&inode->i_flctx);
2834 	if (!ctx)
2835 		return;
2836 
2837 	spin_lock(&ctx->flc_lock);
2838 	__show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2839 	__show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2840 	__show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2841 	spin_unlock(&ctx->flc_lock);
2842 }
2843 
2844 static void *locks_start(struct seq_file *f, loff_t *pos)
2845 	__acquires(&blocked_lock_lock)
2846 {
2847 	struct locks_iterator *iter = f->private;
2848 
2849 	iter->li_pos = *pos + 1;
2850 	percpu_down_write(&file_rwsem);
2851 	spin_lock(&blocked_lock_lock);
2852 	return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2853 }
2854 
2855 static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2856 {
2857 	struct locks_iterator *iter = f->private;
2858 
2859 	++iter->li_pos;
2860 	return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2861 }
2862 
2863 static void locks_stop(struct seq_file *f, void *v)
2864 	__releases(&blocked_lock_lock)
2865 {
2866 	spin_unlock(&blocked_lock_lock);
2867 	percpu_up_write(&file_rwsem);
2868 }
2869 
2870 static const struct seq_operations locks_seq_operations = {
2871 	.start	= locks_start,
2872 	.next	= locks_next,
2873 	.stop	= locks_stop,
2874 	.show	= locks_show,
2875 };
2876 
2877 static int __init proc_locks_init(void)
2878 {
2879 	proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
2880 			sizeof(struct locks_iterator), NULL);
2881 	return 0;
2882 }
2883 fs_initcall(proc_locks_init);
2884 #endif
2885 
2886 static int __init filelock_init(void)
2887 {
2888 	int i;
2889 
2890 	flctx_cache = kmem_cache_create("file_lock_ctx",
2891 			sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
2892 
2893 	filelock_cache = kmem_cache_create("file_lock_cache",
2894 			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
2895 
2896 	for_each_possible_cpu(i) {
2897 		struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
2898 
2899 		spin_lock_init(&fll->lock);
2900 		INIT_HLIST_HEAD(&fll->hlist);
2901 	}
2902 
2903 	return 0;
2904 }
2905 core_initcall(filelock_init);
2906