1 /* 2 * linux/fs/locks.c 3 * 4 * Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls. 5 * Doug Evans (dje@spiff.uucp), August 07, 1992 6 * 7 * Deadlock detection added. 8 * FIXME: one thing isn't handled yet: 9 * - mandatory locks (requires lots of changes elsewhere) 10 * Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994. 11 * 12 * Miscellaneous edits, and a total rewrite of posix_lock_file() code. 13 * Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994 14 * 15 * Converted file_lock_table to a linked list from an array, which eliminates 16 * the limits on how many active file locks are open. 17 * Chad Page (pageone@netcom.com), November 27, 1994 18 * 19 * Removed dependency on file descriptors. dup()'ed file descriptors now 20 * get the same locks as the original file descriptors, and a close() on 21 * any file descriptor removes ALL the locks on the file for the current 22 * process. Since locks still depend on the process id, locks are inherited 23 * after an exec() but not after a fork(). This agrees with POSIX, and both 24 * BSD and SVR4 practice. 25 * Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995 26 * 27 * Scrapped free list which is redundant now that we allocate locks 28 * dynamically with kmalloc()/kfree(). 29 * Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995 30 * 31 * Implemented two lock personalities - FL_FLOCK and FL_POSIX. 32 * 33 * FL_POSIX locks are created with calls to fcntl() and lockf() through the 34 * fcntl() system call. They have the semantics described above. 35 * 36 * FL_FLOCK locks are created with calls to flock(), through the flock() 37 * system call, which is new. Old C libraries implement flock() via fcntl() 38 * and will continue to use the old, broken implementation. 39 * 40 * FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated 41 * with a file pointer (filp). As a result they can be shared by a parent 42 * process and its children after a fork(). They are removed when the last 43 * file descriptor referring to the file pointer is closed (unless explicitly 44 * unlocked). 45 * 46 * FL_FLOCK locks never deadlock, an existing lock is always removed before 47 * upgrading from shared to exclusive (or vice versa). When this happens 48 * any processes blocked by the current lock are woken up and allowed to 49 * run before the new lock is applied. 50 * Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995 51 * 52 * Removed some race conditions in flock_lock_file(), marked other possible 53 * races. Just grep for FIXME to see them. 54 * Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996. 55 * 56 * Addressed Dmitry's concerns. Deadlock checking no longer recursive. 57 * Lock allocation changed to GFP_ATOMIC as we can't afford to sleep 58 * once we've checked for blocking and deadlocking. 59 * Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996. 60 * 61 * Initial implementation of mandatory locks. SunOS turned out to be 62 * a rotten model, so I implemented the "obvious" semantics. 63 * See 'Documentation/filesystems/mandatory-locking.txt' for details. 64 * Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996. 65 * 66 * Don't allow mandatory locks on mmap()'ed files. Added simple functions to 67 * check if a file has mandatory locks, used by mmap(), open() and creat() to 68 * see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference 69 * Manual, Section 2. 70 * Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996. 71 * 72 * Tidied up block list handling. Added '/proc/locks' interface. 73 * Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996. 74 * 75 * Fixed deadlock condition for pathological code that mixes calls to 76 * flock() and fcntl(). 77 * Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996. 78 * 79 * Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use 80 * for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to 81 * guarantee sensible behaviour in the case where file system modules might 82 * be compiled with different options than the kernel itself. 83 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 84 * 85 * Added a couple of missing wake_up() calls. Thanks to Thomas Meckel 86 * (Thomas.Meckel@mni.fh-giessen.de) for spotting this. 87 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 88 * 89 * Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK 90 * locks. Changed process synchronisation to avoid dereferencing locks that 91 * have already been freed. 92 * Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996. 93 * 94 * Made the block list a circular list to minimise searching in the list. 95 * Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996. 96 * 97 * Made mandatory locking a mount option. Default is not to allow mandatory 98 * locking. 99 * Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996. 100 * 101 * Some adaptations for NFS support. 102 * Olaf Kirch (okir@monad.swb.de), Dec 1996, 103 * 104 * Fixed /proc/locks interface so that we can't overrun the buffer we are handed. 105 * Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997. 106 * 107 * Use slab allocator instead of kmalloc/kfree. 108 * Use generic list implementation from <linux/list.h>. 109 * Sped up posix_locks_deadlock by only considering blocked locks. 110 * Matthew Wilcox <willy@debian.org>, March, 2000. 111 * 112 * Leases and LOCK_MAND 113 * Matthew Wilcox <willy@debian.org>, June, 2000. 114 * Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000. 115 * 116 * Locking conflicts and dependencies: 117 * If multiple threads attempt to lock the same byte (or flock the same file) 118 * only one can be granted the lock, and other must wait their turn. 119 * The first lock has been "applied" or "granted", the others are "waiting" 120 * and are "blocked" by the "applied" lock.. 121 * 122 * Waiting and applied locks are all kept in trees whose properties are: 123 * 124 * - the root of a tree may be an applied or waiting lock. 125 * - every other node in the tree is a waiting lock that 126 * conflicts with every ancestor of that node. 127 * 128 * Every such tree begins life as a waiting singleton which obviously 129 * satisfies the above properties. 130 * 131 * The only ways we modify trees preserve these properties: 132 * 133 * 1. We may add a new leaf node, but only after first verifying that it 134 * conflicts with all of its ancestors. 135 * 2. We may remove the root of a tree, creating a new singleton 136 * tree from the root and N new trees rooted in the immediate 137 * children. 138 * 3. If the root of a tree is not currently an applied lock, we may 139 * apply it (if possible). 140 * 4. We may upgrade the root of the tree (either extend its range, 141 * or upgrade its entire range from read to write). 142 * 143 * When an applied lock is modified in a way that reduces or downgrades any 144 * part of its range, we remove all its children (2 above). This particularly 145 * happens when a lock is unlocked. 146 * 147 * For each of those child trees we "wake up" the thread which is 148 * waiting for the lock so it can continue handling as follows: if the 149 * root of the tree applies, we do so (3). If it doesn't, it must 150 * conflict with some applied lock. We remove (wake up) all of its children 151 * (2), and add it is a new leaf to the tree rooted in the applied 152 * lock (1). We then repeat the process recursively with those 153 * children. 154 * 155 */ 156 157 #include <linux/capability.h> 158 #include <linux/file.h> 159 #include <linux/fdtable.h> 160 #include <linux/fs.h> 161 #include <linux/init.h> 162 #include <linux/security.h> 163 #include <linux/slab.h> 164 #include <linux/syscalls.h> 165 #include <linux/time.h> 166 #include <linux/rcupdate.h> 167 #include <linux/pid_namespace.h> 168 #include <linux/hashtable.h> 169 #include <linux/percpu.h> 170 171 #define CREATE_TRACE_POINTS 172 #include <trace/events/filelock.h> 173 174 #include <linux/uaccess.h> 175 176 #define IS_POSIX(fl) (fl->fl_flags & FL_POSIX) 177 #define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK) 178 #define IS_LEASE(fl) (fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) 179 #define IS_OFDLCK(fl) (fl->fl_flags & FL_OFDLCK) 180 #define IS_REMOTELCK(fl) (fl->fl_pid <= 0) 181 182 static bool lease_breaking(struct file_lock *fl) 183 { 184 return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); 185 } 186 187 static int target_leasetype(struct file_lock *fl) 188 { 189 if (fl->fl_flags & FL_UNLOCK_PENDING) 190 return F_UNLCK; 191 if (fl->fl_flags & FL_DOWNGRADE_PENDING) 192 return F_RDLCK; 193 return fl->fl_type; 194 } 195 196 int leases_enable = 1; 197 int lease_break_time = 45; 198 199 /* 200 * The global file_lock_list is only used for displaying /proc/locks, so we 201 * keep a list on each CPU, with each list protected by its own spinlock. 202 * Global serialization is done using file_rwsem. 203 * 204 * Note that alterations to the list also require that the relevant flc_lock is 205 * held. 206 */ 207 struct file_lock_list_struct { 208 spinlock_t lock; 209 struct hlist_head hlist; 210 }; 211 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list); 212 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem); 213 214 /* 215 * The blocked_hash is used to find POSIX lock loops for deadlock detection. 216 * It is protected by blocked_lock_lock. 217 * 218 * We hash locks by lockowner in order to optimize searching for the lock a 219 * particular lockowner is waiting on. 220 * 221 * FIXME: make this value scale via some heuristic? We generally will want more 222 * buckets when we have more lockowners holding locks, but that's a little 223 * difficult to determine without knowing what the workload will look like. 224 */ 225 #define BLOCKED_HASH_BITS 7 226 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS); 227 228 /* 229 * This lock protects the blocked_hash. Generally, if you're accessing it, you 230 * want to be holding this lock. 231 * 232 * In addition, it also protects the fl->fl_blocked_requests list, and the 233 * fl->fl_blocker pointer for file_lock structures that are acting as lock 234 * requests (in contrast to those that are acting as records of acquired locks). 235 * 236 * Note that when we acquire this lock in order to change the above fields, 237 * we often hold the flc_lock as well. In certain cases, when reading the fields 238 * protected by this lock, we can skip acquiring it iff we already hold the 239 * flc_lock. 240 */ 241 static DEFINE_SPINLOCK(blocked_lock_lock); 242 243 static struct kmem_cache *flctx_cache __read_mostly; 244 static struct kmem_cache *filelock_cache __read_mostly; 245 246 static struct file_lock_context * 247 locks_get_lock_context(struct inode *inode, int type) 248 { 249 struct file_lock_context *ctx; 250 251 /* paired with cmpxchg() below */ 252 ctx = smp_load_acquire(&inode->i_flctx); 253 if (likely(ctx) || type == F_UNLCK) 254 goto out; 255 256 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL); 257 if (!ctx) 258 goto out; 259 260 spin_lock_init(&ctx->flc_lock); 261 INIT_LIST_HEAD(&ctx->flc_flock); 262 INIT_LIST_HEAD(&ctx->flc_posix); 263 INIT_LIST_HEAD(&ctx->flc_lease); 264 265 /* 266 * Assign the pointer if it's not already assigned. If it is, then 267 * free the context we just allocated. 268 */ 269 if (cmpxchg(&inode->i_flctx, NULL, ctx)) { 270 kmem_cache_free(flctx_cache, ctx); 271 ctx = smp_load_acquire(&inode->i_flctx); 272 } 273 out: 274 trace_locks_get_lock_context(inode, type, ctx); 275 return ctx; 276 } 277 278 static void 279 locks_dump_ctx_list(struct list_head *list, char *list_type) 280 { 281 struct file_lock *fl; 282 283 list_for_each_entry(fl, list, fl_list) { 284 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 285 } 286 } 287 288 static void 289 locks_check_ctx_lists(struct inode *inode) 290 { 291 struct file_lock_context *ctx = inode->i_flctx; 292 293 if (unlikely(!list_empty(&ctx->flc_flock) || 294 !list_empty(&ctx->flc_posix) || 295 !list_empty(&ctx->flc_lease))) { 296 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n", 297 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), 298 inode->i_ino); 299 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK"); 300 locks_dump_ctx_list(&ctx->flc_posix, "POSIX"); 301 locks_dump_ctx_list(&ctx->flc_lease, "LEASE"); 302 } 303 } 304 305 static void 306 locks_check_ctx_file_list(struct file *filp, struct list_head *list, 307 char *list_type) 308 { 309 struct file_lock *fl; 310 struct inode *inode = locks_inode(filp); 311 312 list_for_each_entry(fl, list, fl_list) 313 if (fl->fl_file == filp) 314 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx " 315 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", 316 list_type, MAJOR(inode->i_sb->s_dev), 317 MINOR(inode->i_sb->s_dev), inode->i_ino, 318 fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 319 } 320 321 void 322 locks_free_lock_context(struct inode *inode) 323 { 324 struct file_lock_context *ctx = inode->i_flctx; 325 326 if (unlikely(ctx)) { 327 locks_check_ctx_lists(inode); 328 kmem_cache_free(flctx_cache, ctx); 329 } 330 } 331 332 static void locks_init_lock_heads(struct file_lock *fl) 333 { 334 INIT_HLIST_NODE(&fl->fl_link); 335 INIT_LIST_HEAD(&fl->fl_list); 336 INIT_LIST_HEAD(&fl->fl_blocked_requests); 337 INIT_LIST_HEAD(&fl->fl_blocked_member); 338 init_waitqueue_head(&fl->fl_wait); 339 } 340 341 /* Allocate an empty lock structure. */ 342 struct file_lock *locks_alloc_lock(void) 343 { 344 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); 345 346 if (fl) 347 locks_init_lock_heads(fl); 348 349 return fl; 350 } 351 EXPORT_SYMBOL_GPL(locks_alloc_lock); 352 353 void locks_release_private(struct file_lock *fl) 354 { 355 if (fl->fl_ops) { 356 if (fl->fl_ops->fl_release_private) 357 fl->fl_ops->fl_release_private(fl); 358 fl->fl_ops = NULL; 359 } 360 361 if (fl->fl_lmops) { 362 if (fl->fl_lmops->lm_put_owner) { 363 fl->fl_lmops->lm_put_owner(fl->fl_owner); 364 fl->fl_owner = NULL; 365 } 366 fl->fl_lmops = NULL; 367 } 368 } 369 EXPORT_SYMBOL_GPL(locks_release_private); 370 371 /* Free a lock which is not in use. */ 372 void locks_free_lock(struct file_lock *fl) 373 { 374 BUG_ON(waitqueue_active(&fl->fl_wait)); 375 BUG_ON(!list_empty(&fl->fl_list)); 376 BUG_ON(!list_empty(&fl->fl_blocked_requests)); 377 BUG_ON(!list_empty(&fl->fl_blocked_member)); 378 BUG_ON(!hlist_unhashed(&fl->fl_link)); 379 380 locks_release_private(fl); 381 kmem_cache_free(filelock_cache, fl); 382 } 383 EXPORT_SYMBOL(locks_free_lock); 384 385 static void 386 locks_dispose_list(struct list_head *dispose) 387 { 388 struct file_lock *fl; 389 390 while (!list_empty(dispose)) { 391 fl = list_first_entry(dispose, struct file_lock, fl_list); 392 list_del_init(&fl->fl_list); 393 locks_free_lock(fl); 394 } 395 } 396 397 void locks_init_lock(struct file_lock *fl) 398 { 399 memset(fl, 0, sizeof(struct file_lock)); 400 locks_init_lock_heads(fl); 401 } 402 EXPORT_SYMBOL(locks_init_lock); 403 404 /* 405 * Initialize a new lock from an existing file_lock structure. 406 */ 407 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) 408 { 409 new->fl_owner = fl->fl_owner; 410 new->fl_pid = fl->fl_pid; 411 new->fl_file = NULL; 412 new->fl_flags = fl->fl_flags; 413 new->fl_type = fl->fl_type; 414 new->fl_start = fl->fl_start; 415 new->fl_end = fl->fl_end; 416 new->fl_lmops = fl->fl_lmops; 417 new->fl_ops = NULL; 418 419 if (fl->fl_lmops) { 420 if (fl->fl_lmops->lm_get_owner) 421 fl->fl_lmops->lm_get_owner(fl->fl_owner); 422 } 423 } 424 EXPORT_SYMBOL(locks_copy_conflock); 425 426 void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 427 { 428 /* "new" must be a freshly-initialized lock */ 429 WARN_ON_ONCE(new->fl_ops); 430 431 locks_copy_conflock(new, fl); 432 433 new->fl_file = fl->fl_file; 434 new->fl_ops = fl->fl_ops; 435 436 if (fl->fl_ops) { 437 if (fl->fl_ops->fl_copy_lock) 438 fl->fl_ops->fl_copy_lock(new, fl); 439 } 440 } 441 EXPORT_SYMBOL(locks_copy_lock); 442 443 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl) 444 { 445 struct file_lock *f; 446 447 /* 448 * As ctx->flc_lock is held, new requests cannot be added to 449 * ->fl_blocked_requests, so we don't need a lock to check if it 450 * is empty. 451 */ 452 if (list_empty(&fl->fl_blocked_requests)) 453 return; 454 spin_lock(&blocked_lock_lock); 455 list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests); 456 list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member) 457 f->fl_blocker = new; 458 spin_unlock(&blocked_lock_lock); 459 } 460 461 static inline int flock_translate_cmd(int cmd) { 462 if (cmd & LOCK_MAND) 463 return cmd & (LOCK_MAND | LOCK_RW); 464 switch (cmd) { 465 case LOCK_SH: 466 return F_RDLCK; 467 case LOCK_EX: 468 return F_WRLCK; 469 case LOCK_UN: 470 return F_UNLCK; 471 } 472 return -EINVAL; 473 } 474 475 /* Fill in a file_lock structure with an appropriate FLOCK lock. */ 476 static struct file_lock * 477 flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl) 478 { 479 int type = flock_translate_cmd(cmd); 480 481 if (type < 0) 482 return ERR_PTR(type); 483 484 if (fl == NULL) { 485 fl = locks_alloc_lock(); 486 if (fl == NULL) 487 return ERR_PTR(-ENOMEM); 488 } else { 489 locks_init_lock(fl); 490 } 491 492 fl->fl_file = filp; 493 fl->fl_owner = filp; 494 fl->fl_pid = current->tgid; 495 fl->fl_flags = FL_FLOCK; 496 fl->fl_type = type; 497 fl->fl_end = OFFSET_MAX; 498 499 return fl; 500 } 501 502 static int assign_type(struct file_lock *fl, long type) 503 { 504 switch (type) { 505 case F_RDLCK: 506 case F_WRLCK: 507 case F_UNLCK: 508 fl->fl_type = type; 509 break; 510 default: 511 return -EINVAL; 512 } 513 return 0; 514 } 515 516 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 517 struct flock64 *l) 518 { 519 switch (l->l_whence) { 520 case SEEK_SET: 521 fl->fl_start = 0; 522 break; 523 case SEEK_CUR: 524 fl->fl_start = filp->f_pos; 525 break; 526 case SEEK_END: 527 fl->fl_start = i_size_read(file_inode(filp)); 528 break; 529 default: 530 return -EINVAL; 531 } 532 if (l->l_start > OFFSET_MAX - fl->fl_start) 533 return -EOVERFLOW; 534 fl->fl_start += l->l_start; 535 if (fl->fl_start < 0) 536 return -EINVAL; 537 538 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 539 POSIX-2001 defines it. */ 540 if (l->l_len > 0) { 541 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start) 542 return -EOVERFLOW; 543 fl->fl_end = fl->fl_start + l->l_len - 1; 544 545 } else if (l->l_len < 0) { 546 if (fl->fl_start + l->l_len < 0) 547 return -EINVAL; 548 fl->fl_end = fl->fl_start - 1; 549 fl->fl_start += l->l_len; 550 } else 551 fl->fl_end = OFFSET_MAX; 552 553 fl->fl_owner = current->files; 554 fl->fl_pid = current->tgid; 555 fl->fl_file = filp; 556 fl->fl_flags = FL_POSIX; 557 fl->fl_ops = NULL; 558 fl->fl_lmops = NULL; 559 560 return assign_type(fl, l->l_type); 561 } 562 563 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 564 * style lock. 565 */ 566 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 567 struct flock *l) 568 { 569 struct flock64 ll = { 570 .l_type = l->l_type, 571 .l_whence = l->l_whence, 572 .l_start = l->l_start, 573 .l_len = l->l_len, 574 }; 575 576 return flock64_to_posix_lock(filp, fl, &ll); 577 } 578 579 /* default lease lock manager operations */ 580 static bool 581 lease_break_callback(struct file_lock *fl) 582 { 583 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 584 return false; 585 } 586 587 static void 588 lease_setup(struct file_lock *fl, void **priv) 589 { 590 struct file *filp = fl->fl_file; 591 struct fasync_struct *fa = *priv; 592 593 /* 594 * fasync_insert_entry() returns the old entry if any. If there was no 595 * old entry, then it used "priv" and inserted it into the fasync list. 596 * Clear the pointer to indicate that it shouldn't be freed. 597 */ 598 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa)) 599 *priv = NULL; 600 601 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0); 602 } 603 604 static const struct lock_manager_operations lease_manager_ops = { 605 .lm_break = lease_break_callback, 606 .lm_change = lease_modify, 607 .lm_setup = lease_setup, 608 }; 609 610 /* 611 * Initialize a lease, use the default lock manager operations 612 */ 613 static int lease_init(struct file *filp, long type, struct file_lock *fl) 614 { 615 if (assign_type(fl, type) != 0) 616 return -EINVAL; 617 618 fl->fl_owner = filp; 619 fl->fl_pid = current->tgid; 620 621 fl->fl_file = filp; 622 fl->fl_flags = FL_LEASE; 623 fl->fl_start = 0; 624 fl->fl_end = OFFSET_MAX; 625 fl->fl_ops = NULL; 626 fl->fl_lmops = &lease_manager_ops; 627 return 0; 628 } 629 630 /* Allocate a file_lock initialised to this type of lease */ 631 static struct file_lock *lease_alloc(struct file *filp, long type) 632 { 633 struct file_lock *fl = locks_alloc_lock(); 634 int error = -ENOMEM; 635 636 if (fl == NULL) 637 return ERR_PTR(error); 638 639 error = lease_init(filp, type, fl); 640 if (error) { 641 locks_free_lock(fl); 642 return ERR_PTR(error); 643 } 644 return fl; 645 } 646 647 /* Check if two locks overlap each other. 648 */ 649 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 650 { 651 return ((fl1->fl_end >= fl2->fl_start) && 652 (fl2->fl_end >= fl1->fl_start)); 653 } 654 655 /* 656 * Check whether two locks have the same owner. 657 */ 658 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2) 659 { 660 if (fl1->fl_lmops && fl1->fl_lmops->lm_compare_owner) 661 return fl2->fl_lmops == fl1->fl_lmops && 662 fl1->fl_lmops->lm_compare_owner(fl1, fl2); 663 return fl1->fl_owner == fl2->fl_owner; 664 } 665 666 /* Must be called with the flc_lock held! */ 667 static void locks_insert_global_locks(struct file_lock *fl) 668 { 669 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list); 670 671 percpu_rwsem_assert_held(&file_rwsem); 672 673 spin_lock(&fll->lock); 674 fl->fl_link_cpu = smp_processor_id(); 675 hlist_add_head(&fl->fl_link, &fll->hlist); 676 spin_unlock(&fll->lock); 677 } 678 679 /* Must be called with the flc_lock held! */ 680 static void locks_delete_global_locks(struct file_lock *fl) 681 { 682 struct file_lock_list_struct *fll; 683 684 percpu_rwsem_assert_held(&file_rwsem); 685 686 /* 687 * Avoid taking lock if already unhashed. This is safe since this check 688 * is done while holding the flc_lock, and new insertions into the list 689 * also require that it be held. 690 */ 691 if (hlist_unhashed(&fl->fl_link)) 692 return; 693 694 fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu); 695 spin_lock(&fll->lock); 696 hlist_del_init(&fl->fl_link); 697 spin_unlock(&fll->lock); 698 } 699 700 static unsigned long 701 posix_owner_key(struct file_lock *fl) 702 { 703 if (fl->fl_lmops && fl->fl_lmops->lm_owner_key) 704 return fl->fl_lmops->lm_owner_key(fl); 705 return (unsigned long)fl->fl_owner; 706 } 707 708 static void locks_insert_global_blocked(struct file_lock *waiter) 709 { 710 lockdep_assert_held(&blocked_lock_lock); 711 712 hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter)); 713 } 714 715 static void locks_delete_global_blocked(struct file_lock *waiter) 716 { 717 lockdep_assert_held(&blocked_lock_lock); 718 719 hash_del(&waiter->fl_link); 720 } 721 722 /* Remove waiter from blocker's block list. 723 * When blocker ends up pointing to itself then the list is empty. 724 * 725 * Must be called with blocked_lock_lock held. 726 */ 727 static void __locks_delete_block(struct file_lock *waiter) 728 { 729 locks_delete_global_blocked(waiter); 730 list_del_init(&waiter->fl_blocked_member); 731 waiter->fl_blocker = NULL; 732 } 733 734 static void __locks_wake_up_blocks(struct file_lock *blocker) 735 { 736 while (!list_empty(&blocker->fl_blocked_requests)) { 737 struct file_lock *waiter; 738 739 waiter = list_first_entry(&blocker->fl_blocked_requests, 740 struct file_lock, fl_blocked_member); 741 __locks_delete_block(waiter); 742 if (waiter->fl_lmops && waiter->fl_lmops->lm_notify) 743 waiter->fl_lmops->lm_notify(waiter); 744 else 745 wake_up(&waiter->fl_wait); 746 } 747 } 748 749 /** 750 * locks_delete_lock - stop waiting for a file lock 751 * @waiter: the lock which was waiting 752 * 753 * lockd/nfsd need to disconnect the lock while working on it. 754 */ 755 int locks_delete_block(struct file_lock *waiter) 756 { 757 int status = -ENOENT; 758 759 /* 760 * If fl_blocker is NULL, it won't be set again as this thread 761 * "owns" the lock and is the only one that might try to claim 762 * the lock. So it is safe to test fl_blocker locklessly. 763 * Also if fl_blocker is NULL, this waiter is not listed on 764 * fl_blocked_requests for some lock, so no other request can 765 * be added to the list of fl_blocked_requests for this 766 * request. So if fl_blocker is NULL, it is safe to 767 * locklessly check if fl_blocked_requests is empty. If both 768 * of these checks succeed, there is no need to take the lock. 769 */ 770 if (waiter->fl_blocker == NULL && 771 list_empty(&waiter->fl_blocked_requests)) 772 return status; 773 spin_lock(&blocked_lock_lock); 774 if (waiter->fl_blocker) 775 status = 0; 776 __locks_wake_up_blocks(waiter); 777 __locks_delete_block(waiter); 778 spin_unlock(&blocked_lock_lock); 779 return status; 780 } 781 EXPORT_SYMBOL(locks_delete_block); 782 783 /* Insert waiter into blocker's block list. 784 * We use a circular list so that processes can be easily woken up in 785 * the order they blocked. The documentation doesn't require this but 786 * it seems like the reasonable thing to do. 787 * 788 * Must be called with both the flc_lock and blocked_lock_lock held. The 789 * fl_blocked_requests list itself is protected by the blocked_lock_lock, 790 * but by ensuring that the flc_lock is also held on insertions we can avoid 791 * taking the blocked_lock_lock in some cases when we see that the 792 * fl_blocked_requests list is empty. 793 * 794 * Rather than just adding to the list, we check for conflicts with any existing 795 * waiters, and add beneath any waiter that blocks the new waiter. 796 * Thus wakeups don't happen until needed. 797 */ 798 static void __locks_insert_block(struct file_lock *blocker, 799 struct file_lock *waiter, 800 bool conflict(struct file_lock *, 801 struct file_lock *)) 802 { 803 struct file_lock *fl; 804 BUG_ON(!list_empty(&waiter->fl_blocked_member)); 805 806 new_blocker: 807 list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member) 808 if (conflict(fl, waiter)) { 809 blocker = fl; 810 goto new_blocker; 811 } 812 waiter->fl_blocker = blocker; 813 list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests); 814 if (IS_POSIX(blocker) && !IS_OFDLCK(blocker)) 815 locks_insert_global_blocked(waiter); 816 817 /* The requests in waiter->fl_blocked are known to conflict with 818 * waiter, but might not conflict with blocker, or the requests 819 * and lock which block it. So they all need to be woken. 820 */ 821 __locks_wake_up_blocks(waiter); 822 } 823 824 /* Must be called with flc_lock held. */ 825 static void locks_insert_block(struct file_lock *blocker, 826 struct file_lock *waiter, 827 bool conflict(struct file_lock *, 828 struct file_lock *)) 829 { 830 spin_lock(&blocked_lock_lock); 831 __locks_insert_block(blocker, waiter, conflict); 832 spin_unlock(&blocked_lock_lock); 833 } 834 835 /* 836 * Wake up processes blocked waiting for blocker. 837 * 838 * Must be called with the inode->flc_lock held! 839 */ 840 static void locks_wake_up_blocks(struct file_lock *blocker) 841 { 842 /* 843 * Avoid taking global lock if list is empty. This is safe since new 844 * blocked requests are only added to the list under the flc_lock, and 845 * the flc_lock is always held here. Note that removal from the 846 * fl_blocked_requests list does not require the flc_lock, so we must 847 * recheck list_empty() after acquiring the blocked_lock_lock. 848 */ 849 if (list_empty(&blocker->fl_blocked_requests)) 850 return; 851 852 spin_lock(&blocked_lock_lock); 853 __locks_wake_up_blocks(blocker); 854 spin_unlock(&blocked_lock_lock); 855 } 856 857 static void 858 locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before) 859 { 860 list_add_tail(&fl->fl_list, before); 861 locks_insert_global_locks(fl); 862 } 863 864 static void 865 locks_unlink_lock_ctx(struct file_lock *fl) 866 { 867 locks_delete_global_locks(fl); 868 list_del_init(&fl->fl_list); 869 locks_wake_up_blocks(fl); 870 } 871 872 static void 873 locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose) 874 { 875 locks_unlink_lock_ctx(fl); 876 if (dispose) 877 list_add(&fl->fl_list, dispose); 878 else 879 locks_free_lock(fl); 880 } 881 882 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality 883 * checks for shared/exclusive status of overlapping locks. 884 */ 885 static bool locks_conflict(struct file_lock *caller_fl, 886 struct file_lock *sys_fl) 887 { 888 if (sys_fl->fl_type == F_WRLCK) 889 return true; 890 if (caller_fl->fl_type == F_WRLCK) 891 return true; 892 return false; 893 } 894 895 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 896 * checking before calling the locks_conflict(). 897 */ 898 static bool posix_locks_conflict(struct file_lock *caller_fl, 899 struct file_lock *sys_fl) 900 { 901 /* POSIX locks owned by the same process do not conflict with 902 * each other. 903 */ 904 if (posix_same_owner(caller_fl, sys_fl)) 905 return false; 906 907 /* Check whether they overlap */ 908 if (!locks_overlap(caller_fl, sys_fl)) 909 return false; 910 911 return locks_conflict(caller_fl, sys_fl); 912 } 913 914 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 915 * checking before calling the locks_conflict(). 916 */ 917 static bool flock_locks_conflict(struct file_lock *caller_fl, 918 struct file_lock *sys_fl) 919 { 920 /* FLOCK locks referring to the same filp do not conflict with 921 * each other. 922 */ 923 if (caller_fl->fl_file == sys_fl->fl_file) 924 return false; 925 if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND)) 926 return false; 927 928 return locks_conflict(caller_fl, sys_fl); 929 } 930 931 void 932 posix_test_lock(struct file *filp, struct file_lock *fl) 933 { 934 struct file_lock *cfl; 935 struct file_lock_context *ctx; 936 struct inode *inode = locks_inode(filp); 937 938 ctx = smp_load_acquire(&inode->i_flctx); 939 if (!ctx || list_empty_careful(&ctx->flc_posix)) { 940 fl->fl_type = F_UNLCK; 941 return; 942 } 943 944 spin_lock(&ctx->flc_lock); 945 list_for_each_entry(cfl, &ctx->flc_posix, fl_list) { 946 if (posix_locks_conflict(fl, cfl)) { 947 locks_copy_conflock(fl, cfl); 948 goto out; 949 } 950 } 951 fl->fl_type = F_UNLCK; 952 out: 953 spin_unlock(&ctx->flc_lock); 954 return; 955 } 956 EXPORT_SYMBOL(posix_test_lock); 957 958 /* 959 * Deadlock detection: 960 * 961 * We attempt to detect deadlocks that are due purely to posix file 962 * locks. 963 * 964 * We assume that a task can be waiting for at most one lock at a time. 965 * So for any acquired lock, the process holding that lock may be 966 * waiting on at most one other lock. That lock in turns may be held by 967 * someone waiting for at most one other lock. Given a requested lock 968 * caller_fl which is about to wait for a conflicting lock block_fl, we 969 * follow this chain of waiters to ensure we are not about to create a 970 * cycle. 971 * 972 * Since we do this before we ever put a process to sleep on a lock, we 973 * are ensured that there is never a cycle; that is what guarantees that 974 * the while() loop in posix_locks_deadlock() eventually completes. 975 * 976 * Note: the above assumption may not be true when handling lock 977 * requests from a broken NFS client. It may also fail in the presence 978 * of tasks (such as posix threads) sharing the same open file table. 979 * To handle those cases, we just bail out after a few iterations. 980 * 981 * For FL_OFDLCK locks, the owner is the filp, not the files_struct. 982 * Because the owner is not even nominally tied to a thread of 983 * execution, the deadlock detection below can't reasonably work well. Just 984 * skip it for those. 985 * 986 * In principle, we could do a more limited deadlock detection on FL_OFDLCK 987 * locks that just checks for the case where two tasks are attempting to 988 * upgrade from read to write locks on the same inode. 989 */ 990 991 #define MAX_DEADLK_ITERATIONS 10 992 993 /* Find a lock that the owner of the given block_fl is blocking on. */ 994 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl) 995 { 996 struct file_lock *fl; 997 998 hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) { 999 if (posix_same_owner(fl, block_fl)) { 1000 while (fl->fl_blocker) 1001 fl = fl->fl_blocker; 1002 return fl; 1003 } 1004 } 1005 return NULL; 1006 } 1007 1008 /* Must be called with the blocked_lock_lock held! */ 1009 static int posix_locks_deadlock(struct file_lock *caller_fl, 1010 struct file_lock *block_fl) 1011 { 1012 int i = 0; 1013 1014 lockdep_assert_held(&blocked_lock_lock); 1015 1016 /* 1017 * This deadlock detector can't reasonably detect deadlocks with 1018 * FL_OFDLCK locks, since they aren't owned by a process, per-se. 1019 */ 1020 if (IS_OFDLCK(caller_fl)) 1021 return 0; 1022 1023 while ((block_fl = what_owner_is_waiting_for(block_fl))) { 1024 if (i++ > MAX_DEADLK_ITERATIONS) 1025 return 0; 1026 if (posix_same_owner(caller_fl, block_fl)) 1027 return 1; 1028 } 1029 return 0; 1030 } 1031 1032 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 1033 * after any leases, but before any posix locks. 1034 * 1035 * Note that if called with an FL_EXISTS argument, the caller may determine 1036 * whether or not a lock was successfully freed by testing the return 1037 * value for -ENOENT. 1038 */ 1039 static int flock_lock_inode(struct inode *inode, struct file_lock *request) 1040 { 1041 struct file_lock *new_fl = NULL; 1042 struct file_lock *fl; 1043 struct file_lock_context *ctx; 1044 int error = 0; 1045 bool found = false; 1046 LIST_HEAD(dispose); 1047 1048 ctx = locks_get_lock_context(inode, request->fl_type); 1049 if (!ctx) { 1050 if (request->fl_type != F_UNLCK) 1051 return -ENOMEM; 1052 return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0; 1053 } 1054 1055 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) { 1056 new_fl = locks_alloc_lock(); 1057 if (!new_fl) 1058 return -ENOMEM; 1059 } 1060 1061 percpu_down_read_preempt_disable(&file_rwsem); 1062 spin_lock(&ctx->flc_lock); 1063 if (request->fl_flags & FL_ACCESS) 1064 goto find_conflict; 1065 1066 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1067 if (request->fl_file != fl->fl_file) 1068 continue; 1069 if (request->fl_type == fl->fl_type) 1070 goto out; 1071 found = true; 1072 locks_delete_lock_ctx(fl, &dispose); 1073 break; 1074 } 1075 1076 if (request->fl_type == F_UNLCK) { 1077 if ((request->fl_flags & FL_EXISTS) && !found) 1078 error = -ENOENT; 1079 goto out; 1080 } 1081 1082 find_conflict: 1083 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1084 if (!flock_locks_conflict(request, fl)) 1085 continue; 1086 error = -EAGAIN; 1087 if (!(request->fl_flags & FL_SLEEP)) 1088 goto out; 1089 error = FILE_LOCK_DEFERRED; 1090 locks_insert_block(fl, request, flock_locks_conflict); 1091 goto out; 1092 } 1093 if (request->fl_flags & FL_ACCESS) 1094 goto out; 1095 locks_copy_lock(new_fl, request); 1096 locks_move_blocks(new_fl, request); 1097 locks_insert_lock_ctx(new_fl, &ctx->flc_flock); 1098 new_fl = NULL; 1099 error = 0; 1100 1101 out: 1102 spin_unlock(&ctx->flc_lock); 1103 percpu_up_read_preempt_enable(&file_rwsem); 1104 if (new_fl) 1105 locks_free_lock(new_fl); 1106 locks_dispose_list(&dispose); 1107 trace_flock_lock_inode(inode, request, error); 1108 return error; 1109 } 1110 1111 static int posix_lock_inode(struct inode *inode, struct file_lock *request, 1112 struct file_lock *conflock) 1113 { 1114 struct file_lock *fl, *tmp; 1115 struct file_lock *new_fl = NULL; 1116 struct file_lock *new_fl2 = NULL; 1117 struct file_lock *left = NULL; 1118 struct file_lock *right = NULL; 1119 struct file_lock_context *ctx; 1120 int error; 1121 bool added = false; 1122 LIST_HEAD(dispose); 1123 1124 ctx = locks_get_lock_context(inode, request->fl_type); 1125 if (!ctx) 1126 return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM; 1127 1128 /* 1129 * We may need two file_lock structures for this operation, 1130 * so we get them in advance to avoid races. 1131 * 1132 * In some cases we can be sure, that no new locks will be needed 1133 */ 1134 if (!(request->fl_flags & FL_ACCESS) && 1135 (request->fl_type != F_UNLCK || 1136 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 1137 new_fl = locks_alloc_lock(); 1138 new_fl2 = locks_alloc_lock(); 1139 } 1140 1141 percpu_down_read_preempt_disable(&file_rwsem); 1142 spin_lock(&ctx->flc_lock); 1143 /* 1144 * New lock request. Walk all POSIX locks and look for conflicts. If 1145 * there are any, either return error or put the request on the 1146 * blocker's list of waiters and the global blocked_hash. 1147 */ 1148 if (request->fl_type != F_UNLCK) { 1149 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1150 if (!posix_locks_conflict(request, fl)) 1151 continue; 1152 if (conflock) 1153 locks_copy_conflock(conflock, fl); 1154 error = -EAGAIN; 1155 if (!(request->fl_flags & FL_SLEEP)) 1156 goto out; 1157 /* 1158 * Deadlock detection and insertion into the blocked 1159 * locks list must be done while holding the same lock! 1160 */ 1161 error = -EDEADLK; 1162 spin_lock(&blocked_lock_lock); 1163 if (likely(!posix_locks_deadlock(request, fl))) { 1164 error = FILE_LOCK_DEFERRED; 1165 __locks_insert_block(fl, request, 1166 posix_locks_conflict); 1167 } 1168 spin_unlock(&blocked_lock_lock); 1169 goto out; 1170 } 1171 } 1172 1173 /* If we're just looking for a conflict, we're done. */ 1174 error = 0; 1175 if (request->fl_flags & FL_ACCESS) 1176 goto out; 1177 1178 /* Find the first old lock with the same owner as the new lock */ 1179 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1180 if (posix_same_owner(request, fl)) 1181 break; 1182 } 1183 1184 /* Process locks with this owner. */ 1185 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) { 1186 if (!posix_same_owner(request, fl)) 1187 break; 1188 1189 /* Detect adjacent or overlapping regions (if same lock type) */ 1190 if (request->fl_type == fl->fl_type) { 1191 /* In all comparisons of start vs end, use 1192 * "start - 1" rather than "end + 1". If end 1193 * is OFFSET_MAX, end + 1 will become negative. 1194 */ 1195 if (fl->fl_end < request->fl_start - 1) 1196 continue; 1197 /* If the next lock in the list has entirely bigger 1198 * addresses than the new one, insert the lock here. 1199 */ 1200 if (fl->fl_start - 1 > request->fl_end) 1201 break; 1202 1203 /* If we come here, the new and old lock are of the 1204 * same type and adjacent or overlapping. Make one 1205 * lock yielding from the lower start address of both 1206 * locks to the higher end address. 1207 */ 1208 if (fl->fl_start > request->fl_start) 1209 fl->fl_start = request->fl_start; 1210 else 1211 request->fl_start = fl->fl_start; 1212 if (fl->fl_end < request->fl_end) 1213 fl->fl_end = request->fl_end; 1214 else 1215 request->fl_end = fl->fl_end; 1216 if (added) { 1217 locks_delete_lock_ctx(fl, &dispose); 1218 continue; 1219 } 1220 request = fl; 1221 added = true; 1222 } else { 1223 /* Processing for different lock types is a bit 1224 * more complex. 1225 */ 1226 if (fl->fl_end < request->fl_start) 1227 continue; 1228 if (fl->fl_start > request->fl_end) 1229 break; 1230 if (request->fl_type == F_UNLCK) 1231 added = true; 1232 if (fl->fl_start < request->fl_start) 1233 left = fl; 1234 /* If the next lock in the list has a higher end 1235 * address than the new one, insert the new one here. 1236 */ 1237 if (fl->fl_end > request->fl_end) { 1238 right = fl; 1239 break; 1240 } 1241 if (fl->fl_start >= request->fl_start) { 1242 /* The new lock completely replaces an old 1243 * one (This may happen several times). 1244 */ 1245 if (added) { 1246 locks_delete_lock_ctx(fl, &dispose); 1247 continue; 1248 } 1249 /* 1250 * Replace the old lock with new_fl, and 1251 * remove the old one. It's safe to do the 1252 * insert here since we know that we won't be 1253 * using new_fl later, and that the lock is 1254 * just replacing an existing lock. 1255 */ 1256 error = -ENOLCK; 1257 if (!new_fl) 1258 goto out; 1259 locks_copy_lock(new_fl, request); 1260 request = new_fl; 1261 new_fl = NULL; 1262 locks_insert_lock_ctx(request, &fl->fl_list); 1263 locks_delete_lock_ctx(fl, &dispose); 1264 added = true; 1265 } 1266 } 1267 } 1268 1269 /* 1270 * The above code only modifies existing locks in case of merging or 1271 * replacing. If new lock(s) need to be inserted all modifications are 1272 * done below this, so it's safe yet to bail out. 1273 */ 1274 error = -ENOLCK; /* "no luck" */ 1275 if (right && left == right && !new_fl2) 1276 goto out; 1277 1278 error = 0; 1279 if (!added) { 1280 if (request->fl_type == F_UNLCK) { 1281 if (request->fl_flags & FL_EXISTS) 1282 error = -ENOENT; 1283 goto out; 1284 } 1285 1286 if (!new_fl) { 1287 error = -ENOLCK; 1288 goto out; 1289 } 1290 locks_copy_lock(new_fl, request); 1291 locks_move_blocks(new_fl, request); 1292 locks_insert_lock_ctx(new_fl, &fl->fl_list); 1293 fl = new_fl; 1294 new_fl = NULL; 1295 } 1296 if (right) { 1297 if (left == right) { 1298 /* The new lock breaks the old one in two pieces, 1299 * so we have to use the second new lock. 1300 */ 1301 left = new_fl2; 1302 new_fl2 = NULL; 1303 locks_copy_lock(left, right); 1304 locks_insert_lock_ctx(left, &fl->fl_list); 1305 } 1306 right->fl_start = request->fl_end + 1; 1307 locks_wake_up_blocks(right); 1308 } 1309 if (left) { 1310 left->fl_end = request->fl_start - 1; 1311 locks_wake_up_blocks(left); 1312 } 1313 out: 1314 spin_unlock(&ctx->flc_lock); 1315 percpu_up_read_preempt_enable(&file_rwsem); 1316 /* 1317 * Free any unused locks. 1318 */ 1319 if (new_fl) 1320 locks_free_lock(new_fl); 1321 if (new_fl2) 1322 locks_free_lock(new_fl2); 1323 locks_dispose_list(&dispose); 1324 trace_posix_lock_inode(inode, request, error); 1325 1326 return error; 1327 } 1328 1329 /** 1330 * posix_lock_file - Apply a POSIX-style lock to a file 1331 * @filp: The file to apply the lock to 1332 * @fl: The lock to be applied 1333 * @conflock: Place to return a copy of the conflicting lock, if found. 1334 * 1335 * Add a POSIX style lock to a file. 1336 * We merge adjacent & overlapping locks whenever possible. 1337 * POSIX locks are sorted by owner task, then by starting address 1338 * 1339 * Note that if called with an FL_EXISTS argument, the caller may determine 1340 * whether or not a lock was successfully freed by testing the return 1341 * value for -ENOENT. 1342 */ 1343 int posix_lock_file(struct file *filp, struct file_lock *fl, 1344 struct file_lock *conflock) 1345 { 1346 return posix_lock_inode(locks_inode(filp), fl, conflock); 1347 } 1348 EXPORT_SYMBOL(posix_lock_file); 1349 1350 /** 1351 * posix_lock_inode_wait - Apply a POSIX-style lock to a file 1352 * @inode: inode of file to which lock request should be applied 1353 * @fl: The lock to be applied 1354 * 1355 * Apply a POSIX style lock request to an inode. 1356 */ 1357 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl) 1358 { 1359 int error; 1360 might_sleep (); 1361 for (;;) { 1362 error = posix_lock_inode(inode, fl, NULL); 1363 if (error != FILE_LOCK_DEFERRED) 1364 break; 1365 error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker); 1366 if (error) 1367 break; 1368 } 1369 locks_delete_block(fl); 1370 return error; 1371 } 1372 1373 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1374 /** 1375 * locks_mandatory_locked - Check for an active lock 1376 * @file: the file to check 1377 * 1378 * Searches the inode's list of locks to find any POSIX locks which conflict. 1379 * This function is called from locks_verify_locked() only. 1380 */ 1381 int locks_mandatory_locked(struct file *file) 1382 { 1383 int ret; 1384 struct inode *inode = locks_inode(file); 1385 struct file_lock_context *ctx; 1386 struct file_lock *fl; 1387 1388 ctx = smp_load_acquire(&inode->i_flctx); 1389 if (!ctx || list_empty_careful(&ctx->flc_posix)) 1390 return 0; 1391 1392 /* 1393 * Search the lock list for this inode for any POSIX locks. 1394 */ 1395 spin_lock(&ctx->flc_lock); 1396 ret = 0; 1397 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1398 if (fl->fl_owner != current->files && 1399 fl->fl_owner != file) { 1400 ret = -EAGAIN; 1401 break; 1402 } 1403 } 1404 spin_unlock(&ctx->flc_lock); 1405 return ret; 1406 } 1407 1408 /** 1409 * locks_mandatory_area - Check for a conflicting lock 1410 * @inode: the file to check 1411 * @filp: how the file was opened (if it was) 1412 * @start: first byte in the file to check 1413 * @end: lastbyte in the file to check 1414 * @type: %F_WRLCK for a write lock, else %F_RDLCK 1415 * 1416 * Searches the inode's list of locks to find any POSIX locks which conflict. 1417 */ 1418 int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start, 1419 loff_t end, unsigned char type) 1420 { 1421 struct file_lock fl; 1422 int error; 1423 bool sleep = false; 1424 1425 locks_init_lock(&fl); 1426 fl.fl_pid = current->tgid; 1427 fl.fl_file = filp; 1428 fl.fl_flags = FL_POSIX | FL_ACCESS; 1429 if (filp && !(filp->f_flags & O_NONBLOCK)) 1430 sleep = true; 1431 fl.fl_type = type; 1432 fl.fl_start = start; 1433 fl.fl_end = end; 1434 1435 for (;;) { 1436 if (filp) { 1437 fl.fl_owner = filp; 1438 fl.fl_flags &= ~FL_SLEEP; 1439 error = posix_lock_inode(inode, &fl, NULL); 1440 if (!error) 1441 break; 1442 } 1443 1444 if (sleep) 1445 fl.fl_flags |= FL_SLEEP; 1446 fl.fl_owner = current->files; 1447 error = posix_lock_inode(inode, &fl, NULL); 1448 if (error != FILE_LOCK_DEFERRED) 1449 break; 1450 error = wait_event_interruptible(fl.fl_wait, !fl.fl_blocker); 1451 if (!error) { 1452 /* 1453 * If we've been sleeping someone might have 1454 * changed the permissions behind our back. 1455 */ 1456 if (__mandatory_lock(inode)) 1457 continue; 1458 } 1459 1460 break; 1461 } 1462 locks_delete_block(&fl); 1463 1464 return error; 1465 } 1466 EXPORT_SYMBOL(locks_mandatory_area); 1467 #endif /* CONFIG_MANDATORY_FILE_LOCKING */ 1468 1469 static void lease_clear_pending(struct file_lock *fl, int arg) 1470 { 1471 switch (arg) { 1472 case F_UNLCK: 1473 fl->fl_flags &= ~FL_UNLOCK_PENDING; 1474 /* fall through: */ 1475 case F_RDLCK: 1476 fl->fl_flags &= ~FL_DOWNGRADE_PENDING; 1477 } 1478 } 1479 1480 /* We already had a lease on this file; just change its type */ 1481 int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose) 1482 { 1483 int error = assign_type(fl, arg); 1484 1485 if (error) 1486 return error; 1487 lease_clear_pending(fl, arg); 1488 locks_wake_up_blocks(fl); 1489 if (arg == F_UNLCK) { 1490 struct file *filp = fl->fl_file; 1491 1492 f_delown(filp); 1493 filp->f_owner.signum = 0; 1494 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync); 1495 if (fl->fl_fasync != NULL) { 1496 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 1497 fl->fl_fasync = NULL; 1498 } 1499 locks_delete_lock_ctx(fl, dispose); 1500 } 1501 return 0; 1502 } 1503 EXPORT_SYMBOL(lease_modify); 1504 1505 static bool past_time(unsigned long then) 1506 { 1507 if (!then) 1508 /* 0 is a special value meaning "this never expires": */ 1509 return false; 1510 return time_after(jiffies, then); 1511 } 1512 1513 static void time_out_leases(struct inode *inode, struct list_head *dispose) 1514 { 1515 struct file_lock_context *ctx = inode->i_flctx; 1516 struct file_lock *fl, *tmp; 1517 1518 lockdep_assert_held(&ctx->flc_lock); 1519 1520 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1521 trace_time_out_leases(inode, fl); 1522 if (past_time(fl->fl_downgrade_time)) 1523 lease_modify(fl, F_RDLCK, dispose); 1524 if (past_time(fl->fl_break_time)) 1525 lease_modify(fl, F_UNLCK, dispose); 1526 } 1527 } 1528 1529 static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker) 1530 { 1531 if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) 1532 return false; 1533 if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) 1534 return false; 1535 return locks_conflict(breaker, lease); 1536 } 1537 1538 static bool 1539 any_leases_conflict(struct inode *inode, struct file_lock *breaker) 1540 { 1541 struct file_lock_context *ctx = inode->i_flctx; 1542 struct file_lock *fl; 1543 1544 lockdep_assert_held(&ctx->flc_lock); 1545 1546 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1547 if (leases_conflict(fl, breaker)) 1548 return true; 1549 } 1550 return false; 1551 } 1552 1553 /** 1554 * __break_lease - revoke all outstanding leases on file 1555 * @inode: the inode of the file to return 1556 * @mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR: 1557 * break all leases 1558 * @type: FL_LEASE: break leases and delegations; FL_DELEG: break 1559 * only delegations 1560 * 1561 * break_lease (inlined for speed) has checked there already is at least 1562 * some kind of lock (maybe a lease) on this file. Leases are broken on 1563 * a call to open() or truncate(). This function can sleep unless you 1564 * specified %O_NONBLOCK to your open(). 1565 */ 1566 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) 1567 { 1568 int error = 0; 1569 struct file_lock_context *ctx; 1570 struct file_lock *new_fl, *fl, *tmp; 1571 unsigned long break_time; 1572 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1573 LIST_HEAD(dispose); 1574 1575 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1576 if (IS_ERR(new_fl)) 1577 return PTR_ERR(new_fl); 1578 new_fl->fl_flags = type; 1579 1580 /* typically we will check that ctx is non-NULL before calling */ 1581 ctx = smp_load_acquire(&inode->i_flctx); 1582 if (!ctx) { 1583 WARN_ON_ONCE(1); 1584 return error; 1585 } 1586 1587 percpu_down_read_preempt_disable(&file_rwsem); 1588 spin_lock(&ctx->flc_lock); 1589 1590 time_out_leases(inode, &dispose); 1591 1592 if (!any_leases_conflict(inode, new_fl)) 1593 goto out; 1594 1595 break_time = 0; 1596 if (lease_break_time > 0) { 1597 break_time = jiffies + lease_break_time * HZ; 1598 if (break_time == 0) 1599 break_time++; /* so that 0 means no break time */ 1600 } 1601 1602 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1603 if (!leases_conflict(fl, new_fl)) 1604 continue; 1605 if (want_write) { 1606 if (fl->fl_flags & FL_UNLOCK_PENDING) 1607 continue; 1608 fl->fl_flags |= FL_UNLOCK_PENDING; 1609 fl->fl_break_time = break_time; 1610 } else { 1611 if (lease_breaking(fl)) 1612 continue; 1613 fl->fl_flags |= FL_DOWNGRADE_PENDING; 1614 fl->fl_downgrade_time = break_time; 1615 } 1616 if (fl->fl_lmops->lm_break(fl)) 1617 locks_delete_lock_ctx(fl, &dispose); 1618 } 1619 1620 if (list_empty(&ctx->flc_lease)) 1621 goto out; 1622 1623 if (mode & O_NONBLOCK) { 1624 trace_break_lease_noblock(inode, new_fl); 1625 error = -EWOULDBLOCK; 1626 goto out; 1627 } 1628 1629 restart: 1630 fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list); 1631 break_time = fl->fl_break_time; 1632 if (break_time != 0) 1633 break_time -= jiffies; 1634 if (break_time == 0) 1635 break_time++; 1636 locks_insert_block(fl, new_fl, leases_conflict); 1637 trace_break_lease_block(inode, new_fl); 1638 spin_unlock(&ctx->flc_lock); 1639 percpu_up_read_preempt_enable(&file_rwsem); 1640 1641 locks_dispose_list(&dispose); 1642 error = wait_event_interruptible_timeout(new_fl->fl_wait, 1643 !new_fl->fl_blocker, break_time); 1644 1645 percpu_down_read_preempt_disable(&file_rwsem); 1646 spin_lock(&ctx->flc_lock); 1647 trace_break_lease_unblock(inode, new_fl); 1648 locks_delete_block(new_fl); 1649 if (error >= 0) { 1650 /* 1651 * Wait for the next conflicting lease that has not been 1652 * broken yet 1653 */ 1654 if (error == 0) 1655 time_out_leases(inode, &dispose); 1656 if (any_leases_conflict(inode, new_fl)) 1657 goto restart; 1658 error = 0; 1659 } 1660 out: 1661 spin_unlock(&ctx->flc_lock); 1662 percpu_up_read_preempt_enable(&file_rwsem); 1663 locks_dispose_list(&dispose); 1664 locks_free_lock(new_fl); 1665 return error; 1666 } 1667 EXPORT_SYMBOL(__break_lease); 1668 1669 /** 1670 * lease_get_mtime - update modified time of an inode with exclusive lease 1671 * @inode: the inode 1672 * @time: pointer to a timespec which contains the last modified time 1673 * 1674 * This is to force NFS clients to flush their caches for files with 1675 * exclusive leases. The justification is that if someone has an 1676 * exclusive lease, then they could be modifying it. 1677 */ 1678 void lease_get_mtime(struct inode *inode, struct timespec64 *time) 1679 { 1680 bool has_lease = false; 1681 struct file_lock_context *ctx; 1682 struct file_lock *fl; 1683 1684 ctx = smp_load_acquire(&inode->i_flctx); 1685 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1686 spin_lock(&ctx->flc_lock); 1687 fl = list_first_entry_or_null(&ctx->flc_lease, 1688 struct file_lock, fl_list); 1689 if (fl && (fl->fl_type == F_WRLCK)) 1690 has_lease = true; 1691 spin_unlock(&ctx->flc_lock); 1692 } 1693 1694 if (has_lease) 1695 *time = current_time(inode); 1696 } 1697 EXPORT_SYMBOL(lease_get_mtime); 1698 1699 /** 1700 * fcntl_getlease - Enquire what lease is currently active 1701 * @filp: the file 1702 * 1703 * The value returned by this function will be one of 1704 * (if no lease break is pending): 1705 * 1706 * %F_RDLCK to indicate a shared lease is held. 1707 * 1708 * %F_WRLCK to indicate an exclusive lease is held. 1709 * 1710 * %F_UNLCK to indicate no lease is held. 1711 * 1712 * (if a lease break is pending): 1713 * 1714 * %F_RDLCK to indicate an exclusive lease needs to be 1715 * changed to a shared lease (or removed). 1716 * 1717 * %F_UNLCK to indicate the lease needs to be removed. 1718 * 1719 * XXX: sfr & willy disagree over whether F_INPROGRESS 1720 * should be returned to userspace. 1721 */ 1722 int fcntl_getlease(struct file *filp) 1723 { 1724 struct file_lock *fl; 1725 struct inode *inode = locks_inode(filp); 1726 struct file_lock_context *ctx; 1727 int type = F_UNLCK; 1728 LIST_HEAD(dispose); 1729 1730 ctx = smp_load_acquire(&inode->i_flctx); 1731 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1732 percpu_down_read_preempt_disable(&file_rwsem); 1733 spin_lock(&ctx->flc_lock); 1734 time_out_leases(inode, &dispose); 1735 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1736 if (fl->fl_file != filp) 1737 continue; 1738 type = target_leasetype(fl); 1739 break; 1740 } 1741 spin_unlock(&ctx->flc_lock); 1742 percpu_up_read_preempt_enable(&file_rwsem); 1743 1744 locks_dispose_list(&dispose); 1745 } 1746 return type; 1747 } 1748 1749 /** 1750 * check_conflicting_open - see if the given dentry points to a file that has 1751 * an existing open that would conflict with the 1752 * desired lease. 1753 * @dentry: dentry to check 1754 * @arg: type of lease that we're trying to acquire 1755 * @flags: current lock flags 1756 * 1757 * Check to see if there's an existing open fd on this file that would 1758 * conflict with the lease we're trying to set. 1759 */ 1760 static int 1761 check_conflicting_open(const struct dentry *dentry, const long arg, int flags) 1762 { 1763 int ret = 0; 1764 struct inode *inode = dentry->d_inode; 1765 1766 if (flags & FL_LAYOUT) 1767 return 0; 1768 1769 if ((arg == F_RDLCK) && inode_is_open_for_write(inode)) 1770 return -EAGAIN; 1771 1772 if ((arg == F_WRLCK) && ((d_count(dentry) > 1) || 1773 (atomic_read(&inode->i_count) > 1))) 1774 ret = -EAGAIN; 1775 1776 return ret; 1777 } 1778 1779 static int 1780 generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv) 1781 { 1782 struct file_lock *fl, *my_fl = NULL, *lease; 1783 struct dentry *dentry = filp->f_path.dentry; 1784 struct inode *inode = dentry->d_inode; 1785 struct file_lock_context *ctx; 1786 bool is_deleg = (*flp)->fl_flags & FL_DELEG; 1787 int error; 1788 LIST_HEAD(dispose); 1789 1790 lease = *flp; 1791 trace_generic_add_lease(inode, lease); 1792 1793 /* Note that arg is never F_UNLCK here */ 1794 ctx = locks_get_lock_context(inode, arg); 1795 if (!ctx) 1796 return -ENOMEM; 1797 1798 /* 1799 * In the delegation case we need mutual exclusion with 1800 * a number of operations that take the i_mutex. We trylock 1801 * because delegations are an optional optimization, and if 1802 * there's some chance of a conflict--we'd rather not 1803 * bother, maybe that's a sign this just isn't a good file to 1804 * hand out a delegation on. 1805 */ 1806 if (is_deleg && !inode_trylock(inode)) 1807 return -EAGAIN; 1808 1809 if (is_deleg && arg == F_WRLCK) { 1810 /* Write delegations are not currently supported: */ 1811 inode_unlock(inode); 1812 WARN_ON_ONCE(1); 1813 return -EINVAL; 1814 } 1815 1816 percpu_down_read_preempt_disable(&file_rwsem); 1817 spin_lock(&ctx->flc_lock); 1818 time_out_leases(inode, &dispose); 1819 error = check_conflicting_open(dentry, arg, lease->fl_flags); 1820 if (error) 1821 goto out; 1822 1823 /* 1824 * At this point, we know that if there is an exclusive 1825 * lease on this file, then we hold it on this filp 1826 * (otherwise our open of this file would have blocked). 1827 * And if we are trying to acquire an exclusive lease, 1828 * then the file is not open by anyone (including us) 1829 * except for this filp. 1830 */ 1831 error = -EAGAIN; 1832 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1833 if (fl->fl_file == filp && 1834 fl->fl_owner == lease->fl_owner) { 1835 my_fl = fl; 1836 continue; 1837 } 1838 1839 /* 1840 * No exclusive leases if someone else has a lease on 1841 * this file: 1842 */ 1843 if (arg == F_WRLCK) 1844 goto out; 1845 /* 1846 * Modifying our existing lease is OK, but no getting a 1847 * new lease if someone else is opening for write: 1848 */ 1849 if (fl->fl_flags & FL_UNLOCK_PENDING) 1850 goto out; 1851 } 1852 1853 if (my_fl != NULL) { 1854 lease = my_fl; 1855 error = lease->fl_lmops->lm_change(lease, arg, &dispose); 1856 if (error) 1857 goto out; 1858 goto out_setup; 1859 } 1860 1861 error = -EINVAL; 1862 if (!leases_enable) 1863 goto out; 1864 1865 locks_insert_lock_ctx(lease, &ctx->flc_lease); 1866 /* 1867 * The check in break_lease() is lockless. It's possible for another 1868 * open to race in after we did the earlier check for a conflicting 1869 * open but before the lease was inserted. Check again for a 1870 * conflicting open and cancel the lease if there is one. 1871 * 1872 * We also add a barrier here to ensure that the insertion of the lock 1873 * precedes these checks. 1874 */ 1875 smp_mb(); 1876 error = check_conflicting_open(dentry, arg, lease->fl_flags); 1877 if (error) { 1878 locks_unlink_lock_ctx(lease); 1879 goto out; 1880 } 1881 1882 out_setup: 1883 if (lease->fl_lmops->lm_setup) 1884 lease->fl_lmops->lm_setup(lease, priv); 1885 out: 1886 spin_unlock(&ctx->flc_lock); 1887 percpu_up_read_preempt_enable(&file_rwsem); 1888 locks_dispose_list(&dispose); 1889 if (is_deleg) 1890 inode_unlock(inode); 1891 if (!error && !my_fl) 1892 *flp = NULL; 1893 return error; 1894 } 1895 1896 static int generic_delete_lease(struct file *filp, void *owner) 1897 { 1898 int error = -EAGAIN; 1899 struct file_lock *fl, *victim = NULL; 1900 struct inode *inode = locks_inode(filp); 1901 struct file_lock_context *ctx; 1902 LIST_HEAD(dispose); 1903 1904 ctx = smp_load_acquire(&inode->i_flctx); 1905 if (!ctx) { 1906 trace_generic_delete_lease(inode, NULL); 1907 return error; 1908 } 1909 1910 percpu_down_read_preempt_disable(&file_rwsem); 1911 spin_lock(&ctx->flc_lock); 1912 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1913 if (fl->fl_file == filp && 1914 fl->fl_owner == owner) { 1915 victim = fl; 1916 break; 1917 } 1918 } 1919 trace_generic_delete_lease(inode, victim); 1920 if (victim) 1921 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose); 1922 spin_unlock(&ctx->flc_lock); 1923 percpu_up_read_preempt_enable(&file_rwsem); 1924 locks_dispose_list(&dispose); 1925 return error; 1926 } 1927 1928 /** 1929 * generic_setlease - sets a lease on an open file 1930 * @filp: file pointer 1931 * @arg: type of lease to obtain 1932 * @flp: input - file_lock to use, output - file_lock inserted 1933 * @priv: private data for lm_setup (may be NULL if lm_setup 1934 * doesn't require it) 1935 * 1936 * The (input) flp->fl_lmops->lm_break function is required 1937 * by break_lease(). 1938 */ 1939 int generic_setlease(struct file *filp, long arg, struct file_lock **flp, 1940 void **priv) 1941 { 1942 struct inode *inode = locks_inode(filp); 1943 int error; 1944 1945 if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE)) 1946 return -EACCES; 1947 if (!S_ISREG(inode->i_mode)) 1948 return -EINVAL; 1949 error = security_file_lock(filp, arg); 1950 if (error) 1951 return error; 1952 1953 switch (arg) { 1954 case F_UNLCK: 1955 return generic_delete_lease(filp, *priv); 1956 case F_RDLCK: 1957 case F_WRLCK: 1958 if (!(*flp)->fl_lmops->lm_break) { 1959 WARN_ON_ONCE(1); 1960 return -ENOLCK; 1961 } 1962 1963 return generic_add_lease(filp, arg, flp, priv); 1964 default: 1965 return -EINVAL; 1966 } 1967 } 1968 EXPORT_SYMBOL(generic_setlease); 1969 1970 /** 1971 * vfs_setlease - sets a lease on an open file 1972 * @filp: file pointer 1973 * @arg: type of lease to obtain 1974 * @lease: file_lock to use when adding a lease 1975 * @priv: private info for lm_setup when adding a lease (may be 1976 * NULL if lm_setup doesn't require it) 1977 * 1978 * Call this to establish a lease on the file. The "lease" argument is not 1979 * used for F_UNLCK requests and may be NULL. For commands that set or alter 1980 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be 1981 * set; if not, this function will return -ENOLCK (and generate a scary-looking 1982 * stack trace). 1983 * 1984 * The "priv" pointer is passed directly to the lm_setup function as-is. It 1985 * may be NULL if the lm_setup operation doesn't require it. 1986 */ 1987 int 1988 vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) 1989 { 1990 if (filp->f_op->setlease) 1991 return filp->f_op->setlease(filp, arg, lease, priv); 1992 else 1993 return generic_setlease(filp, arg, lease, priv); 1994 } 1995 EXPORT_SYMBOL_GPL(vfs_setlease); 1996 1997 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg) 1998 { 1999 struct file_lock *fl; 2000 struct fasync_struct *new; 2001 int error; 2002 2003 fl = lease_alloc(filp, arg); 2004 if (IS_ERR(fl)) 2005 return PTR_ERR(fl); 2006 2007 new = fasync_alloc(); 2008 if (!new) { 2009 locks_free_lock(fl); 2010 return -ENOMEM; 2011 } 2012 new->fa_fd = fd; 2013 2014 error = vfs_setlease(filp, arg, &fl, (void **)&new); 2015 if (fl) 2016 locks_free_lock(fl); 2017 if (new) 2018 fasync_free(new); 2019 return error; 2020 } 2021 2022 /** 2023 * fcntl_setlease - sets a lease on an open file 2024 * @fd: open file descriptor 2025 * @filp: file pointer 2026 * @arg: type of lease to obtain 2027 * 2028 * Call this fcntl to establish a lease on the file. 2029 * Note that you also need to call %F_SETSIG to 2030 * receive a signal when the lease is broken. 2031 */ 2032 int fcntl_setlease(unsigned int fd, struct file *filp, long arg) 2033 { 2034 if (arg == F_UNLCK) 2035 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp); 2036 return do_fcntl_add_lease(fd, filp, arg); 2037 } 2038 2039 /** 2040 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file 2041 * @inode: inode of the file to apply to 2042 * @fl: The lock to be applied 2043 * 2044 * Apply a FLOCK style lock request to an inode. 2045 */ 2046 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2047 { 2048 int error; 2049 might_sleep(); 2050 for (;;) { 2051 error = flock_lock_inode(inode, fl); 2052 if (error != FILE_LOCK_DEFERRED) 2053 break; 2054 error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker); 2055 if (error) 2056 break; 2057 } 2058 locks_delete_block(fl); 2059 return error; 2060 } 2061 2062 /** 2063 * locks_lock_inode_wait - Apply a lock to an inode 2064 * @inode: inode of the file to apply to 2065 * @fl: The lock to be applied 2066 * 2067 * Apply a POSIX or FLOCK style lock request to an inode. 2068 */ 2069 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2070 { 2071 int res = 0; 2072 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 2073 case FL_POSIX: 2074 res = posix_lock_inode_wait(inode, fl); 2075 break; 2076 case FL_FLOCK: 2077 res = flock_lock_inode_wait(inode, fl); 2078 break; 2079 default: 2080 BUG(); 2081 } 2082 return res; 2083 } 2084 EXPORT_SYMBOL(locks_lock_inode_wait); 2085 2086 /** 2087 * sys_flock: - flock() system call. 2088 * @fd: the file descriptor to lock. 2089 * @cmd: the type of lock to apply. 2090 * 2091 * Apply a %FL_FLOCK style lock to an open file descriptor. 2092 * The @cmd can be one of: 2093 * 2094 * - %LOCK_SH -- a shared lock. 2095 * - %LOCK_EX -- an exclusive lock. 2096 * - %LOCK_UN -- remove an existing lock. 2097 * - %LOCK_MAND -- a 'mandatory' flock. 2098 * This exists to emulate Windows Share Modes. 2099 * 2100 * %LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other 2101 * processes read and write access respectively. 2102 */ 2103 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 2104 { 2105 struct fd f = fdget(fd); 2106 struct file_lock *lock; 2107 int can_sleep, unlock; 2108 int error; 2109 2110 error = -EBADF; 2111 if (!f.file) 2112 goto out; 2113 2114 can_sleep = !(cmd & LOCK_NB); 2115 cmd &= ~LOCK_NB; 2116 unlock = (cmd == LOCK_UN); 2117 2118 if (!unlock && !(cmd & LOCK_MAND) && 2119 !(f.file->f_mode & (FMODE_READ|FMODE_WRITE))) 2120 goto out_putf; 2121 2122 lock = flock_make_lock(f.file, cmd, NULL); 2123 if (IS_ERR(lock)) { 2124 error = PTR_ERR(lock); 2125 goto out_putf; 2126 } 2127 2128 if (can_sleep) 2129 lock->fl_flags |= FL_SLEEP; 2130 2131 error = security_file_lock(f.file, lock->fl_type); 2132 if (error) 2133 goto out_free; 2134 2135 if (f.file->f_op->flock) 2136 error = f.file->f_op->flock(f.file, 2137 (can_sleep) ? F_SETLKW : F_SETLK, 2138 lock); 2139 else 2140 error = locks_lock_file_wait(f.file, lock); 2141 2142 out_free: 2143 locks_free_lock(lock); 2144 2145 out_putf: 2146 fdput(f); 2147 out: 2148 return error; 2149 } 2150 2151 /** 2152 * vfs_test_lock - test file byte range lock 2153 * @filp: The file to test lock for 2154 * @fl: The lock to test; also used to hold result 2155 * 2156 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 2157 * setting conf->fl_type to something other than F_UNLCK. 2158 */ 2159 int vfs_test_lock(struct file *filp, struct file_lock *fl) 2160 { 2161 if (filp->f_op->lock) 2162 return filp->f_op->lock(filp, F_GETLK, fl); 2163 posix_test_lock(filp, fl); 2164 return 0; 2165 } 2166 EXPORT_SYMBOL_GPL(vfs_test_lock); 2167 2168 /** 2169 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace 2170 * @fl: The file_lock who's fl_pid should be translated 2171 * @ns: The namespace into which the pid should be translated 2172 * 2173 * Used to tranlate a fl_pid into a namespace virtual pid number 2174 */ 2175 static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns) 2176 { 2177 pid_t vnr; 2178 struct pid *pid; 2179 2180 if (IS_OFDLCK(fl)) 2181 return -1; 2182 if (IS_REMOTELCK(fl)) 2183 return fl->fl_pid; 2184 /* 2185 * If the flock owner process is dead and its pid has been already 2186 * freed, the translation below won't work, but we still want to show 2187 * flock owner pid number in init pidns. 2188 */ 2189 if (ns == &init_pid_ns) 2190 return (pid_t)fl->fl_pid; 2191 2192 rcu_read_lock(); 2193 pid = find_pid_ns(fl->fl_pid, &init_pid_ns); 2194 vnr = pid_nr_ns(pid, ns); 2195 rcu_read_unlock(); 2196 return vnr; 2197 } 2198 2199 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 2200 { 2201 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2202 #if BITS_PER_LONG == 32 2203 /* 2204 * Make sure we can represent the posix lock via 2205 * legacy 32bit flock. 2206 */ 2207 if (fl->fl_start > OFFT_OFFSET_MAX) 2208 return -EOVERFLOW; 2209 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 2210 return -EOVERFLOW; 2211 #endif 2212 flock->l_start = fl->fl_start; 2213 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2214 fl->fl_end - fl->fl_start + 1; 2215 flock->l_whence = 0; 2216 flock->l_type = fl->fl_type; 2217 return 0; 2218 } 2219 2220 #if BITS_PER_LONG == 32 2221 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 2222 { 2223 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2224 flock->l_start = fl->fl_start; 2225 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2226 fl->fl_end - fl->fl_start + 1; 2227 flock->l_whence = 0; 2228 flock->l_type = fl->fl_type; 2229 } 2230 #endif 2231 2232 /* Report the first existing lock that would conflict with l. 2233 * This implements the F_GETLK command of fcntl(). 2234 */ 2235 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock) 2236 { 2237 struct file_lock *fl; 2238 int error; 2239 2240 fl = locks_alloc_lock(); 2241 if (fl == NULL) 2242 return -ENOMEM; 2243 error = -EINVAL; 2244 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2245 goto out; 2246 2247 error = flock_to_posix_lock(filp, fl, flock); 2248 if (error) 2249 goto out; 2250 2251 if (cmd == F_OFD_GETLK) { 2252 error = -EINVAL; 2253 if (flock->l_pid != 0) 2254 goto out; 2255 2256 cmd = F_GETLK; 2257 fl->fl_flags |= FL_OFDLCK; 2258 fl->fl_owner = filp; 2259 } 2260 2261 error = vfs_test_lock(filp, fl); 2262 if (error) 2263 goto out; 2264 2265 flock->l_type = fl->fl_type; 2266 if (fl->fl_type != F_UNLCK) { 2267 error = posix_lock_to_flock(flock, fl); 2268 if (error) 2269 goto out; 2270 } 2271 out: 2272 locks_free_lock(fl); 2273 return error; 2274 } 2275 2276 /** 2277 * vfs_lock_file - file byte range lock 2278 * @filp: The file to apply the lock to 2279 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 2280 * @fl: The lock to be applied 2281 * @conf: Place to return a copy of the conflicting lock, if found. 2282 * 2283 * A caller that doesn't care about the conflicting lock may pass NULL 2284 * as the final argument. 2285 * 2286 * If the filesystem defines a private ->lock() method, then @conf will 2287 * be left unchanged; so a caller that cares should initialize it to 2288 * some acceptable default. 2289 * 2290 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 2291 * locks, the ->lock() interface may return asynchronously, before the lock has 2292 * been granted or denied by the underlying filesystem, if (and only if) 2293 * lm_grant is set. Callers expecting ->lock() to return asynchronously 2294 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if) 2295 * the request is for a blocking lock. When ->lock() does return asynchronously, 2296 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock 2297 * request completes. 2298 * If the request is for non-blocking lock the file system should return 2299 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 2300 * with the result. If the request timed out the callback routine will return a 2301 * nonzero return code and the file system should release the lock. The file 2302 * system is also responsible to keep a corresponding posix lock when it 2303 * grants a lock so the VFS can find out which locks are locally held and do 2304 * the correct lock cleanup when required. 2305 * The underlying filesystem must not drop the kernel lock or call 2306 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED 2307 * return code. 2308 */ 2309 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 2310 { 2311 if (filp->f_op->lock) 2312 return filp->f_op->lock(filp, cmd, fl); 2313 else 2314 return posix_lock_file(filp, fl, conf); 2315 } 2316 EXPORT_SYMBOL_GPL(vfs_lock_file); 2317 2318 static int do_lock_file_wait(struct file *filp, unsigned int cmd, 2319 struct file_lock *fl) 2320 { 2321 int error; 2322 2323 error = security_file_lock(filp, fl->fl_type); 2324 if (error) 2325 return error; 2326 2327 for (;;) { 2328 error = vfs_lock_file(filp, cmd, fl, NULL); 2329 if (error != FILE_LOCK_DEFERRED) 2330 break; 2331 error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker); 2332 if (error) 2333 break; 2334 } 2335 locks_delete_block(fl); 2336 2337 return error; 2338 } 2339 2340 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */ 2341 static int 2342 check_fmode_for_setlk(struct file_lock *fl) 2343 { 2344 switch (fl->fl_type) { 2345 case F_RDLCK: 2346 if (!(fl->fl_file->f_mode & FMODE_READ)) 2347 return -EBADF; 2348 break; 2349 case F_WRLCK: 2350 if (!(fl->fl_file->f_mode & FMODE_WRITE)) 2351 return -EBADF; 2352 } 2353 return 0; 2354 } 2355 2356 /* Apply the lock described by l to an open file descriptor. 2357 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2358 */ 2359 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 2360 struct flock *flock) 2361 { 2362 struct file_lock *file_lock = locks_alloc_lock(); 2363 struct inode *inode = locks_inode(filp); 2364 struct file *f; 2365 int error; 2366 2367 if (file_lock == NULL) 2368 return -ENOLCK; 2369 2370 /* Don't allow mandatory locks on files that may be memory mapped 2371 * and shared. 2372 */ 2373 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 2374 error = -EAGAIN; 2375 goto out; 2376 } 2377 2378 error = flock_to_posix_lock(filp, file_lock, flock); 2379 if (error) 2380 goto out; 2381 2382 error = check_fmode_for_setlk(file_lock); 2383 if (error) 2384 goto out; 2385 2386 /* 2387 * If the cmd is requesting file-private locks, then set the 2388 * FL_OFDLCK flag and override the owner. 2389 */ 2390 switch (cmd) { 2391 case F_OFD_SETLK: 2392 error = -EINVAL; 2393 if (flock->l_pid != 0) 2394 goto out; 2395 2396 cmd = F_SETLK; 2397 file_lock->fl_flags |= FL_OFDLCK; 2398 file_lock->fl_owner = filp; 2399 break; 2400 case F_OFD_SETLKW: 2401 error = -EINVAL; 2402 if (flock->l_pid != 0) 2403 goto out; 2404 2405 cmd = F_SETLKW; 2406 file_lock->fl_flags |= FL_OFDLCK; 2407 file_lock->fl_owner = filp; 2408 /* Fallthrough */ 2409 case F_SETLKW: 2410 file_lock->fl_flags |= FL_SLEEP; 2411 } 2412 2413 error = do_lock_file_wait(filp, cmd, file_lock); 2414 2415 /* 2416 * Attempt to detect a close/fcntl race and recover by releasing the 2417 * lock that was just acquired. There is no need to do that when we're 2418 * unlocking though, or for OFD locks. 2419 */ 2420 if (!error && file_lock->fl_type != F_UNLCK && 2421 !(file_lock->fl_flags & FL_OFDLCK)) { 2422 /* 2423 * We need that spin_lock here - it prevents reordering between 2424 * update of i_flctx->flc_posix and check for it done in 2425 * close(). rcu_read_lock() wouldn't do. 2426 */ 2427 spin_lock(¤t->files->file_lock); 2428 f = fcheck(fd); 2429 spin_unlock(¤t->files->file_lock); 2430 if (f != filp) { 2431 file_lock->fl_type = F_UNLCK; 2432 error = do_lock_file_wait(filp, cmd, file_lock); 2433 WARN_ON_ONCE(error); 2434 error = -EBADF; 2435 } 2436 } 2437 out: 2438 trace_fcntl_setlk(inode, file_lock, error); 2439 locks_free_lock(file_lock); 2440 return error; 2441 } 2442 2443 #if BITS_PER_LONG == 32 2444 /* Report the first existing lock that would conflict with l. 2445 * This implements the F_GETLK command of fcntl(). 2446 */ 2447 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock) 2448 { 2449 struct file_lock *fl; 2450 int error; 2451 2452 fl = locks_alloc_lock(); 2453 if (fl == NULL) 2454 return -ENOMEM; 2455 2456 error = -EINVAL; 2457 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2458 goto out; 2459 2460 error = flock64_to_posix_lock(filp, fl, flock); 2461 if (error) 2462 goto out; 2463 2464 if (cmd == F_OFD_GETLK) { 2465 error = -EINVAL; 2466 if (flock->l_pid != 0) 2467 goto out; 2468 2469 cmd = F_GETLK64; 2470 fl->fl_flags |= FL_OFDLCK; 2471 fl->fl_owner = filp; 2472 } 2473 2474 error = vfs_test_lock(filp, fl); 2475 if (error) 2476 goto out; 2477 2478 flock->l_type = fl->fl_type; 2479 if (fl->fl_type != F_UNLCK) 2480 posix_lock_to_flock64(flock, fl); 2481 2482 out: 2483 locks_free_lock(fl); 2484 return error; 2485 } 2486 2487 /* Apply the lock described by l to an open file descriptor. 2488 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2489 */ 2490 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 2491 struct flock64 *flock) 2492 { 2493 struct file_lock *file_lock = locks_alloc_lock(); 2494 struct inode *inode = locks_inode(filp); 2495 struct file *f; 2496 int error; 2497 2498 if (file_lock == NULL) 2499 return -ENOLCK; 2500 2501 /* Don't allow mandatory locks on files that may be memory mapped 2502 * and shared. 2503 */ 2504 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 2505 error = -EAGAIN; 2506 goto out; 2507 } 2508 2509 error = flock64_to_posix_lock(filp, file_lock, flock); 2510 if (error) 2511 goto out; 2512 2513 error = check_fmode_for_setlk(file_lock); 2514 if (error) 2515 goto out; 2516 2517 /* 2518 * If the cmd is requesting file-private locks, then set the 2519 * FL_OFDLCK flag and override the owner. 2520 */ 2521 switch (cmd) { 2522 case F_OFD_SETLK: 2523 error = -EINVAL; 2524 if (flock->l_pid != 0) 2525 goto out; 2526 2527 cmd = F_SETLK64; 2528 file_lock->fl_flags |= FL_OFDLCK; 2529 file_lock->fl_owner = filp; 2530 break; 2531 case F_OFD_SETLKW: 2532 error = -EINVAL; 2533 if (flock->l_pid != 0) 2534 goto out; 2535 2536 cmd = F_SETLKW64; 2537 file_lock->fl_flags |= FL_OFDLCK; 2538 file_lock->fl_owner = filp; 2539 /* Fallthrough */ 2540 case F_SETLKW64: 2541 file_lock->fl_flags |= FL_SLEEP; 2542 } 2543 2544 error = do_lock_file_wait(filp, cmd, file_lock); 2545 2546 /* 2547 * Attempt to detect a close/fcntl race and recover by releasing the 2548 * lock that was just acquired. There is no need to do that when we're 2549 * unlocking though, or for OFD locks. 2550 */ 2551 if (!error && file_lock->fl_type != F_UNLCK && 2552 !(file_lock->fl_flags & FL_OFDLCK)) { 2553 /* 2554 * We need that spin_lock here - it prevents reordering between 2555 * update of i_flctx->flc_posix and check for it done in 2556 * close(). rcu_read_lock() wouldn't do. 2557 */ 2558 spin_lock(¤t->files->file_lock); 2559 f = fcheck(fd); 2560 spin_unlock(¤t->files->file_lock); 2561 if (f != filp) { 2562 file_lock->fl_type = F_UNLCK; 2563 error = do_lock_file_wait(filp, cmd, file_lock); 2564 WARN_ON_ONCE(error); 2565 error = -EBADF; 2566 } 2567 } 2568 out: 2569 locks_free_lock(file_lock); 2570 return error; 2571 } 2572 #endif /* BITS_PER_LONG == 32 */ 2573 2574 /* 2575 * This function is called when the file is being removed 2576 * from the task's fd array. POSIX locks belonging to this task 2577 * are deleted at this time. 2578 */ 2579 void locks_remove_posix(struct file *filp, fl_owner_t owner) 2580 { 2581 int error; 2582 struct inode *inode = locks_inode(filp); 2583 struct file_lock lock; 2584 struct file_lock_context *ctx; 2585 2586 /* 2587 * If there are no locks held on this file, we don't need to call 2588 * posix_lock_file(). Another process could be setting a lock on this 2589 * file at the same time, but we wouldn't remove that lock anyway. 2590 */ 2591 ctx = smp_load_acquire(&inode->i_flctx); 2592 if (!ctx || list_empty(&ctx->flc_posix)) 2593 return; 2594 2595 locks_init_lock(&lock); 2596 lock.fl_type = F_UNLCK; 2597 lock.fl_flags = FL_POSIX | FL_CLOSE; 2598 lock.fl_start = 0; 2599 lock.fl_end = OFFSET_MAX; 2600 lock.fl_owner = owner; 2601 lock.fl_pid = current->tgid; 2602 lock.fl_file = filp; 2603 lock.fl_ops = NULL; 2604 lock.fl_lmops = NULL; 2605 2606 error = vfs_lock_file(filp, F_SETLK, &lock, NULL); 2607 2608 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2609 lock.fl_ops->fl_release_private(&lock); 2610 trace_locks_remove_posix(inode, &lock, error); 2611 } 2612 EXPORT_SYMBOL(locks_remove_posix); 2613 2614 /* The i_flctx must be valid when calling into here */ 2615 static void 2616 locks_remove_flock(struct file *filp, struct file_lock_context *flctx) 2617 { 2618 struct file_lock fl; 2619 struct inode *inode = locks_inode(filp); 2620 2621 if (list_empty(&flctx->flc_flock)) 2622 return; 2623 2624 flock_make_lock(filp, LOCK_UN, &fl); 2625 fl.fl_flags |= FL_CLOSE; 2626 2627 if (filp->f_op->flock) 2628 filp->f_op->flock(filp, F_SETLKW, &fl); 2629 else 2630 flock_lock_inode(inode, &fl); 2631 2632 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2633 fl.fl_ops->fl_release_private(&fl); 2634 } 2635 2636 /* The i_flctx must be valid when calling into here */ 2637 static void 2638 locks_remove_lease(struct file *filp, struct file_lock_context *ctx) 2639 { 2640 struct file_lock *fl, *tmp; 2641 LIST_HEAD(dispose); 2642 2643 if (list_empty(&ctx->flc_lease)) 2644 return; 2645 2646 percpu_down_read_preempt_disable(&file_rwsem); 2647 spin_lock(&ctx->flc_lock); 2648 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) 2649 if (filp == fl->fl_file) 2650 lease_modify(fl, F_UNLCK, &dispose); 2651 spin_unlock(&ctx->flc_lock); 2652 percpu_up_read_preempt_enable(&file_rwsem); 2653 2654 locks_dispose_list(&dispose); 2655 } 2656 2657 /* 2658 * This function is called on the last close of an open file. 2659 */ 2660 void locks_remove_file(struct file *filp) 2661 { 2662 struct file_lock_context *ctx; 2663 2664 ctx = smp_load_acquire(&locks_inode(filp)->i_flctx); 2665 if (!ctx) 2666 return; 2667 2668 /* remove any OFD locks */ 2669 locks_remove_posix(filp, filp); 2670 2671 /* remove flock locks */ 2672 locks_remove_flock(filp, ctx); 2673 2674 /* remove any leases */ 2675 locks_remove_lease(filp, ctx); 2676 2677 spin_lock(&ctx->flc_lock); 2678 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX"); 2679 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK"); 2680 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE"); 2681 spin_unlock(&ctx->flc_lock); 2682 } 2683 2684 /** 2685 * vfs_cancel_lock - file byte range unblock lock 2686 * @filp: The file to apply the unblock to 2687 * @fl: The lock to be unblocked 2688 * 2689 * Used by lock managers to cancel blocked requests 2690 */ 2691 int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2692 { 2693 if (filp->f_op->lock) 2694 return filp->f_op->lock(filp, F_CANCELLK, fl); 2695 return 0; 2696 } 2697 EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2698 2699 #ifdef CONFIG_PROC_FS 2700 #include <linux/proc_fs.h> 2701 #include <linux/seq_file.h> 2702 2703 struct locks_iterator { 2704 int li_cpu; 2705 loff_t li_pos; 2706 }; 2707 2708 static void lock_get_status(struct seq_file *f, struct file_lock *fl, 2709 loff_t id, char *pfx) 2710 { 2711 struct inode *inode = NULL; 2712 unsigned int fl_pid; 2713 struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info; 2714 2715 fl_pid = locks_translate_pid(fl, proc_pidns); 2716 /* 2717 * If lock owner is dead (and pid is freed) or not visible in current 2718 * pidns, zero is shown as a pid value. Check lock info from 2719 * init_pid_ns to get saved lock pid value. 2720 */ 2721 2722 if (fl->fl_file != NULL) 2723 inode = locks_inode(fl->fl_file); 2724 2725 seq_printf(f, "%lld:%s ", id, pfx); 2726 if (IS_POSIX(fl)) { 2727 if (fl->fl_flags & FL_ACCESS) 2728 seq_puts(f, "ACCESS"); 2729 else if (IS_OFDLCK(fl)) 2730 seq_puts(f, "OFDLCK"); 2731 else 2732 seq_puts(f, "POSIX "); 2733 2734 seq_printf(f, " %s ", 2735 (inode == NULL) ? "*NOINODE*" : 2736 mandatory_lock(inode) ? "MANDATORY" : "ADVISORY "); 2737 } else if (IS_FLOCK(fl)) { 2738 if (fl->fl_type & LOCK_MAND) { 2739 seq_puts(f, "FLOCK MSNFS "); 2740 } else { 2741 seq_puts(f, "FLOCK ADVISORY "); 2742 } 2743 } else if (IS_LEASE(fl)) { 2744 if (fl->fl_flags & FL_DELEG) 2745 seq_puts(f, "DELEG "); 2746 else 2747 seq_puts(f, "LEASE "); 2748 2749 if (lease_breaking(fl)) 2750 seq_puts(f, "BREAKING "); 2751 else if (fl->fl_file) 2752 seq_puts(f, "ACTIVE "); 2753 else 2754 seq_puts(f, "BREAKER "); 2755 } else { 2756 seq_puts(f, "UNKNOWN UNKNOWN "); 2757 } 2758 if (fl->fl_type & LOCK_MAND) { 2759 seq_printf(f, "%s ", 2760 (fl->fl_type & LOCK_READ) 2761 ? (fl->fl_type & LOCK_WRITE) ? "RW " : "READ " 2762 : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE "); 2763 } else { 2764 seq_printf(f, "%s ", 2765 (lease_breaking(fl)) 2766 ? (fl->fl_type == F_UNLCK) ? "UNLCK" : "READ " 2767 : (fl->fl_type == F_WRLCK) ? "WRITE" : "READ "); 2768 } 2769 if (inode) { 2770 /* userspace relies on this representation of dev_t */ 2771 seq_printf(f, "%d %02x:%02x:%ld ", fl_pid, 2772 MAJOR(inode->i_sb->s_dev), 2773 MINOR(inode->i_sb->s_dev), inode->i_ino); 2774 } else { 2775 seq_printf(f, "%d <none>:0 ", fl_pid); 2776 } 2777 if (IS_POSIX(fl)) { 2778 if (fl->fl_end == OFFSET_MAX) 2779 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2780 else 2781 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2782 } else { 2783 seq_puts(f, "0 EOF\n"); 2784 } 2785 } 2786 2787 static int locks_show(struct seq_file *f, void *v) 2788 { 2789 struct locks_iterator *iter = f->private; 2790 struct file_lock *fl, *bfl; 2791 struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info; 2792 2793 fl = hlist_entry(v, struct file_lock, fl_link); 2794 2795 if (locks_translate_pid(fl, proc_pidns) == 0) 2796 return 0; 2797 2798 lock_get_status(f, fl, iter->li_pos, ""); 2799 2800 list_for_each_entry(bfl, &fl->fl_blocked_requests, fl_blocked_member) 2801 lock_get_status(f, bfl, iter->li_pos, " ->"); 2802 2803 return 0; 2804 } 2805 2806 static void __show_fd_locks(struct seq_file *f, 2807 struct list_head *head, int *id, 2808 struct file *filp, struct files_struct *files) 2809 { 2810 struct file_lock *fl; 2811 2812 list_for_each_entry(fl, head, fl_list) { 2813 2814 if (filp != fl->fl_file) 2815 continue; 2816 if (fl->fl_owner != files && 2817 fl->fl_owner != filp) 2818 continue; 2819 2820 (*id)++; 2821 seq_puts(f, "lock:\t"); 2822 lock_get_status(f, fl, *id, ""); 2823 } 2824 } 2825 2826 void show_fd_locks(struct seq_file *f, 2827 struct file *filp, struct files_struct *files) 2828 { 2829 struct inode *inode = locks_inode(filp); 2830 struct file_lock_context *ctx; 2831 int id = 0; 2832 2833 ctx = smp_load_acquire(&inode->i_flctx); 2834 if (!ctx) 2835 return; 2836 2837 spin_lock(&ctx->flc_lock); 2838 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files); 2839 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files); 2840 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files); 2841 spin_unlock(&ctx->flc_lock); 2842 } 2843 2844 static void *locks_start(struct seq_file *f, loff_t *pos) 2845 __acquires(&blocked_lock_lock) 2846 { 2847 struct locks_iterator *iter = f->private; 2848 2849 iter->li_pos = *pos + 1; 2850 percpu_down_write(&file_rwsem); 2851 spin_lock(&blocked_lock_lock); 2852 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos); 2853 } 2854 2855 static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 2856 { 2857 struct locks_iterator *iter = f->private; 2858 2859 ++iter->li_pos; 2860 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos); 2861 } 2862 2863 static void locks_stop(struct seq_file *f, void *v) 2864 __releases(&blocked_lock_lock) 2865 { 2866 spin_unlock(&blocked_lock_lock); 2867 percpu_up_write(&file_rwsem); 2868 } 2869 2870 static const struct seq_operations locks_seq_operations = { 2871 .start = locks_start, 2872 .next = locks_next, 2873 .stop = locks_stop, 2874 .show = locks_show, 2875 }; 2876 2877 static int __init proc_locks_init(void) 2878 { 2879 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations, 2880 sizeof(struct locks_iterator), NULL); 2881 return 0; 2882 } 2883 fs_initcall(proc_locks_init); 2884 #endif 2885 2886 static int __init filelock_init(void) 2887 { 2888 int i; 2889 2890 flctx_cache = kmem_cache_create("file_lock_ctx", 2891 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL); 2892 2893 filelock_cache = kmem_cache_create("file_lock_cache", 2894 sizeof(struct file_lock), 0, SLAB_PANIC, NULL); 2895 2896 for_each_possible_cpu(i) { 2897 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i); 2898 2899 spin_lock_init(&fll->lock); 2900 INIT_HLIST_HEAD(&fll->hlist); 2901 } 2902 2903 return 0; 2904 } 2905 core_initcall(filelock_init); 2906