1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/locks.c 4 * 5 * Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls. 6 * Doug Evans (dje@spiff.uucp), August 07, 1992 7 * 8 * Deadlock detection added. 9 * FIXME: one thing isn't handled yet: 10 * - mandatory locks (requires lots of changes elsewhere) 11 * Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994. 12 * 13 * Miscellaneous edits, and a total rewrite of posix_lock_file() code. 14 * Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994 15 * 16 * Converted file_lock_table to a linked list from an array, which eliminates 17 * the limits on how many active file locks are open. 18 * Chad Page (pageone@netcom.com), November 27, 1994 19 * 20 * Removed dependency on file descriptors. dup()'ed file descriptors now 21 * get the same locks as the original file descriptors, and a close() on 22 * any file descriptor removes ALL the locks on the file for the current 23 * process. Since locks still depend on the process id, locks are inherited 24 * after an exec() but not after a fork(). This agrees with POSIX, and both 25 * BSD and SVR4 practice. 26 * Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995 27 * 28 * Scrapped free list which is redundant now that we allocate locks 29 * dynamically with kmalloc()/kfree(). 30 * Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995 31 * 32 * Implemented two lock personalities - FL_FLOCK and FL_POSIX. 33 * 34 * FL_POSIX locks are created with calls to fcntl() and lockf() through the 35 * fcntl() system call. They have the semantics described above. 36 * 37 * FL_FLOCK locks are created with calls to flock(), through the flock() 38 * system call, which is new. Old C libraries implement flock() via fcntl() 39 * and will continue to use the old, broken implementation. 40 * 41 * FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated 42 * with a file pointer (filp). As a result they can be shared by a parent 43 * process and its children after a fork(). They are removed when the last 44 * file descriptor referring to the file pointer is closed (unless explicitly 45 * unlocked). 46 * 47 * FL_FLOCK locks never deadlock, an existing lock is always removed before 48 * upgrading from shared to exclusive (or vice versa). When this happens 49 * any processes blocked by the current lock are woken up and allowed to 50 * run before the new lock is applied. 51 * Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995 52 * 53 * Removed some race conditions in flock_lock_file(), marked other possible 54 * races. Just grep for FIXME to see them. 55 * Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996. 56 * 57 * Addressed Dmitry's concerns. Deadlock checking no longer recursive. 58 * Lock allocation changed to GFP_ATOMIC as we can't afford to sleep 59 * once we've checked for blocking and deadlocking. 60 * Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996. 61 * 62 * Initial implementation of mandatory locks. SunOS turned out to be 63 * a rotten model, so I implemented the "obvious" semantics. 64 * See 'Documentation/filesystems/mandatory-locking.rst' for details. 65 * Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996. 66 * 67 * Don't allow mandatory locks on mmap()'ed files. Added simple functions to 68 * check if a file has mandatory locks, used by mmap(), open() and creat() to 69 * see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference 70 * Manual, Section 2. 71 * Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996. 72 * 73 * Tidied up block list handling. Added '/proc/locks' interface. 74 * Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996. 75 * 76 * Fixed deadlock condition for pathological code that mixes calls to 77 * flock() and fcntl(). 78 * Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996. 79 * 80 * Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use 81 * for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to 82 * guarantee sensible behaviour in the case where file system modules might 83 * be compiled with different options than the kernel itself. 84 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 85 * 86 * Added a couple of missing wake_up() calls. Thanks to Thomas Meckel 87 * (Thomas.Meckel@mni.fh-giessen.de) for spotting this. 88 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 89 * 90 * Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK 91 * locks. Changed process synchronisation to avoid dereferencing locks that 92 * have already been freed. 93 * Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996. 94 * 95 * Made the block list a circular list to minimise searching in the list. 96 * Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996. 97 * 98 * Made mandatory locking a mount option. Default is not to allow mandatory 99 * locking. 100 * Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996. 101 * 102 * Some adaptations for NFS support. 103 * Olaf Kirch (okir@monad.swb.de), Dec 1996, 104 * 105 * Fixed /proc/locks interface so that we can't overrun the buffer we are handed. 106 * Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997. 107 * 108 * Use slab allocator instead of kmalloc/kfree. 109 * Use generic list implementation from <linux/list.h>. 110 * Sped up posix_locks_deadlock by only considering blocked locks. 111 * Matthew Wilcox <willy@debian.org>, March, 2000. 112 * 113 * Leases and LOCK_MAND 114 * Matthew Wilcox <willy@debian.org>, June, 2000. 115 * Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000. 116 * 117 * Locking conflicts and dependencies: 118 * If multiple threads attempt to lock the same byte (or flock the same file) 119 * only one can be granted the lock, and other must wait their turn. 120 * The first lock has been "applied" or "granted", the others are "waiting" 121 * and are "blocked" by the "applied" lock.. 122 * 123 * Waiting and applied locks are all kept in trees whose properties are: 124 * 125 * - the root of a tree may be an applied or waiting lock. 126 * - every other node in the tree is a waiting lock that 127 * conflicts with every ancestor of that node. 128 * 129 * Every such tree begins life as a waiting singleton which obviously 130 * satisfies the above properties. 131 * 132 * The only ways we modify trees preserve these properties: 133 * 134 * 1. We may add a new leaf node, but only after first verifying that it 135 * conflicts with all of its ancestors. 136 * 2. We may remove the root of a tree, creating a new singleton 137 * tree from the root and N new trees rooted in the immediate 138 * children. 139 * 3. If the root of a tree is not currently an applied lock, we may 140 * apply it (if possible). 141 * 4. We may upgrade the root of the tree (either extend its range, 142 * or upgrade its entire range from read to write). 143 * 144 * When an applied lock is modified in a way that reduces or downgrades any 145 * part of its range, we remove all its children (2 above). This particularly 146 * happens when a lock is unlocked. 147 * 148 * For each of those child trees we "wake up" the thread which is 149 * waiting for the lock so it can continue handling as follows: if the 150 * root of the tree applies, we do so (3). If it doesn't, it must 151 * conflict with some applied lock. We remove (wake up) all of its children 152 * (2), and add it is a new leaf to the tree rooted in the applied 153 * lock (1). We then repeat the process recursively with those 154 * children. 155 * 156 */ 157 158 #include <linux/capability.h> 159 #include <linux/file.h> 160 #include <linux/fdtable.h> 161 #include <linux/fs.h> 162 #include <linux/init.h> 163 #include <linux/security.h> 164 #include <linux/slab.h> 165 #include <linux/syscalls.h> 166 #include <linux/time.h> 167 #include <linux/rcupdate.h> 168 #include <linux/pid_namespace.h> 169 #include <linux/hashtable.h> 170 #include <linux/percpu.h> 171 172 #define CREATE_TRACE_POINTS 173 #include <trace/events/filelock.h> 174 175 #include <linux/uaccess.h> 176 177 #define IS_POSIX(fl) (fl->fl_flags & FL_POSIX) 178 #define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK) 179 #define IS_LEASE(fl) (fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) 180 #define IS_OFDLCK(fl) (fl->fl_flags & FL_OFDLCK) 181 #define IS_REMOTELCK(fl) (fl->fl_pid <= 0) 182 183 static bool lease_breaking(struct file_lock *fl) 184 { 185 return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); 186 } 187 188 static int target_leasetype(struct file_lock *fl) 189 { 190 if (fl->fl_flags & FL_UNLOCK_PENDING) 191 return F_UNLCK; 192 if (fl->fl_flags & FL_DOWNGRADE_PENDING) 193 return F_RDLCK; 194 return fl->fl_type; 195 } 196 197 int leases_enable = 1; 198 int lease_break_time = 45; 199 200 /* 201 * The global file_lock_list is only used for displaying /proc/locks, so we 202 * keep a list on each CPU, with each list protected by its own spinlock. 203 * Global serialization is done using file_rwsem. 204 * 205 * Note that alterations to the list also require that the relevant flc_lock is 206 * held. 207 */ 208 struct file_lock_list_struct { 209 spinlock_t lock; 210 struct hlist_head hlist; 211 }; 212 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list); 213 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem); 214 215 216 /* 217 * The blocked_hash is used to find POSIX lock loops for deadlock detection. 218 * It is protected by blocked_lock_lock. 219 * 220 * We hash locks by lockowner in order to optimize searching for the lock a 221 * particular lockowner is waiting on. 222 * 223 * FIXME: make this value scale via some heuristic? We generally will want more 224 * buckets when we have more lockowners holding locks, but that's a little 225 * difficult to determine without knowing what the workload will look like. 226 */ 227 #define BLOCKED_HASH_BITS 7 228 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS); 229 230 /* 231 * This lock protects the blocked_hash. Generally, if you're accessing it, you 232 * want to be holding this lock. 233 * 234 * In addition, it also protects the fl->fl_blocked_requests list, and the 235 * fl->fl_blocker pointer for file_lock structures that are acting as lock 236 * requests (in contrast to those that are acting as records of acquired locks). 237 * 238 * Note that when we acquire this lock in order to change the above fields, 239 * we often hold the flc_lock as well. In certain cases, when reading the fields 240 * protected by this lock, we can skip acquiring it iff we already hold the 241 * flc_lock. 242 */ 243 static DEFINE_SPINLOCK(blocked_lock_lock); 244 245 static struct kmem_cache *flctx_cache __read_mostly; 246 static struct kmem_cache *filelock_cache __read_mostly; 247 248 static struct file_lock_context * 249 locks_get_lock_context(struct inode *inode, int type) 250 { 251 struct file_lock_context *ctx; 252 253 /* paired with cmpxchg() below */ 254 ctx = smp_load_acquire(&inode->i_flctx); 255 if (likely(ctx) || type == F_UNLCK) 256 goto out; 257 258 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL); 259 if (!ctx) 260 goto out; 261 262 spin_lock_init(&ctx->flc_lock); 263 INIT_LIST_HEAD(&ctx->flc_flock); 264 INIT_LIST_HEAD(&ctx->flc_posix); 265 INIT_LIST_HEAD(&ctx->flc_lease); 266 267 /* 268 * Assign the pointer if it's not already assigned. If it is, then 269 * free the context we just allocated. 270 */ 271 if (cmpxchg(&inode->i_flctx, NULL, ctx)) { 272 kmem_cache_free(flctx_cache, ctx); 273 ctx = smp_load_acquire(&inode->i_flctx); 274 } 275 out: 276 trace_locks_get_lock_context(inode, type, ctx); 277 return ctx; 278 } 279 280 static void 281 locks_dump_ctx_list(struct list_head *list, char *list_type) 282 { 283 struct file_lock *fl; 284 285 list_for_each_entry(fl, list, fl_list) { 286 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 287 } 288 } 289 290 static void 291 locks_check_ctx_lists(struct inode *inode) 292 { 293 struct file_lock_context *ctx = inode->i_flctx; 294 295 if (unlikely(!list_empty(&ctx->flc_flock) || 296 !list_empty(&ctx->flc_posix) || 297 !list_empty(&ctx->flc_lease))) { 298 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n", 299 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), 300 inode->i_ino); 301 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK"); 302 locks_dump_ctx_list(&ctx->flc_posix, "POSIX"); 303 locks_dump_ctx_list(&ctx->flc_lease, "LEASE"); 304 } 305 } 306 307 static void 308 locks_check_ctx_file_list(struct file *filp, struct list_head *list, 309 char *list_type) 310 { 311 struct file_lock *fl; 312 struct inode *inode = locks_inode(filp); 313 314 list_for_each_entry(fl, list, fl_list) 315 if (fl->fl_file == filp) 316 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx " 317 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", 318 list_type, MAJOR(inode->i_sb->s_dev), 319 MINOR(inode->i_sb->s_dev), inode->i_ino, 320 fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 321 } 322 323 void 324 locks_free_lock_context(struct inode *inode) 325 { 326 struct file_lock_context *ctx = inode->i_flctx; 327 328 if (unlikely(ctx)) { 329 locks_check_ctx_lists(inode); 330 kmem_cache_free(flctx_cache, ctx); 331 } 332 } 333 334 static void locks_init_lock_heads(struct file_lock *fl) 335 { 336 INIT_HLIST_NODE(&fl->fl_link); 337 INIT_LIST_HEAD(&fl->fl_list); 338 INIT_LIST_HEAD(&fl->fl_blocked_requests); 339 INIT_LIST_HEAD(&fl->fl_blocked_member); 340 init_waitqueue_head(&fl->fl_wait); 341 } 342 343 /* Allocate an empty lock structure. */ 344 struct file_lock *locks_alloc_lock(void) 345 { 346 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); 347 348 if (fl) 349 locks_init_lock_heads(fl); 350 351 return fl; 352 } 353 EXPORT_SYMBOL_GPL(locks_alloc_lock); 354 355 void locks_release_private(struct file_lock *fl) 356 { 357 BUG_ON(waitqueue_active(&fl->fl_wait)); 358 BUG_ON(!list_empty(&fl->fl_list)); 359 BUG_ON(!list_empty(&fl->fl_blocked_requests)); 360 BUG_ON(!list_empty(&fl->fl_blocked_member)); 361 BUG_ON(!hlist_unhashed(&fl->fl_link)); 362 363 if (fl->fl_ops) { 364 if (fl->fl_ops->fl_release_private) 365 fl->fl_ops->fl_release_private(fl); 366 fl->fl_ops = NULL; 367 } 368 369 if (fl->fl_lmops) { 370 if (fl->fl_lmops->lm_put_owner) { 371 fl->fl_lmops->lm_put_owner(fl->fl_owner); 372 fl->fl_owner = NULL; 373 } 374 fl->fl_lmops = NULL; 375 } 376 } 377 EXPORT_SYMBOL_GPL(locks_release_private); 378 379 /* Free a lock which is not in use. */ 380 void locks_free_lock(struct file_lock *fl) 381 { 382 locks_release_private(fl); 383 kmem_cache_free(filelock_cache, fl); 384 } 385 EXPORT_SYMBOL(locks_free_lock); 386 387 static void 388 locks_dispose_list(struct list_head *dispose) 389 { 390 struct file_lock *fl; 391 392 while (!list_empty(dispose)) { 393 fl = list_first_entry(dispose, struct file_lock, fl_list); 394 list_del_init(&fl->fl_list); 395 locks_free_lock(fl); 396 } 397 } 398 399 void locks_init_lock(struct file_lock *fl) 400 { 401 memset(fl, 0, sizeof(struct file_lock)); 402 locks_init_lock_heads(fl); 403 } 404 EXPORT_SYMBOL(locks_init_lock); 405 406 /* 407 * Initialize a new lock from an existing file_lock structure. 408 */ 409 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) 410 { 411 new->fl_owner = fl->fl_owner; 412 new->fl_pid = fl->fl_pid; 413 new->fl_file = NULL; 414 new->fl_flags = fl->fl_flags; 415 new->fl_type = fl->fl_type; 416 new->fl_start = fl->fl_start; 417 new->fl_end = fl->fl_end; 418 new->fl_lmops = fl->fl_lmops; 419 new->fl_ops = NULL; 420 421 if (fl->fl_lmops) { 422 if (fl->fl_lmops->lm_get_owner) 423 fl->fl_lmops->lm_get_owner(fl->fl_owner); 424 } 425 } 426 EXPORT_SYMBOL(locks_copy_conflock); 427 428 void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 429 { 430 /* "new" must be a freshly-initialized lock */ 431 WARN_ON_ONCE(new->fl_ops); 432 433 locks_copy_conflock(new, fl); 434 435 new->fl_file = fl->fl_file; 436 new->fl_ops = fl->fl_ops; 437 438 if (fl->fl_ops) { 439 if (fl->fl_ops->fl_copy_lock) 440 fl->fl_ops->fl_copy_lock(new, fl); 441 } 442 } 443 EXPORT_SYMBOL(locks_copy_lock); 444 445 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl) 446 { 447 struct file_lock *f; 448 449 /* 450 * As ctx->flc_lock is held, new requests cannot be added to 451 * ->fl_blocked_requests, so we don't need a lock to check if it 452 * is empty. 453 */ 454 if (list_empty(&fl->fl_blocked_requests)) 455 return; 456 spin_lock(&blocked_lock_lock); 457 list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests); 458 list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member) 459 f->fl_blocker = new; 460 spin_unlock(&blocked_lock_lock); 461 } 462 463 static inline int flock_translate_cmd(int cmd) { 464 if (cmd & LOCK_MAND) 465 return cmd & (LOCK_MAND | LOCK_RW); 466 switch (cmd) { 467 case LOCK_SH: 468 return F_RDLCK; 469 case LOCK_EX: 470 return F_WRLCK; 471 case LOCK_UN: 472 return F_UNLCK; 473 } 474 return -EINVAL; 475 } 476 477 /* Fill in a file_lock structure with an appropriate FLOCK lock. */ 478 static struct file_lock * 479 flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl) 480 { 481 int type = flock_translate_cmd(cmd); 482 483 if (type < 0) 484 return ERR_PTR(type); 485 486 if (fl == NULL) { 487 fl = locks_alloc_lock(); 488 if (fl == NULL) 489 return ERR_PTR(-ENOMEM); 490 } else { 491 locks_init_lock(fl); 492 } 493 494 fl->fl_file = filp; 495 fl->fl_owner = filp; 496 fl->fl_pid = current->tgid; 497 fl->fl_flags = FL_FLOCK; 498 fl->fl_type = type; 499 fl->fl_end = OFFSET_MAX; 500 501 return fl; 502 } 503 504 static int assign_type(struct file_lock *fl, long type) 505 { 506 switch (type) { 507 case F_RDLCK: 508 case F_WRLCK: 509 case F_UNLCK: 510 fl->fl_type = type; 511 break; 512 default: 513 return -EINVAL; 514 } 515 return 0; 516 } 517 518 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 519 struct flock64 *l) 520 { 521 switch (l->l_whence) { 522 case SEEK_SET: 523 fl->fl_start = 0; 524 break; 525 case SEEK_CUR: 526 fl->fl_start = filp->f_pos; 527 break; 528 case SEEK_END: 529 fl->fl_start = i_size_read(file_inode(filp)); 530 break; 531 default: 532 return -EINVAL; 533 } 534 if (l->l_start > OFFSET_MAX - fl->fl_start) 535 return -EOVERFLOW; 536 fl->fl_start += l->l_start; 537 if (fl->fl_start < 0) 538 return -EINVAL; 539 540 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 541 POSIX-2001 defines it. */ 542 if (l->l_len > 0) { 543 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start) 544 return -EOVERFLOW; 545 fl->fl_end = fl->fl_start + l->l_len - 1; 546 547 } else if (l->l_len < 0) { 548 if (fl->fl_start + l->l_len < 0) 549 return -EINVAL; 550 fl->fl_end = fl->fl_start - 1; 551 fl->fl_start += l->l_len; 552 } else 553 fl->fl_end = OFFSET_MAX; 554 555 fl->fl_owner = current->files; 556 fl->fl_pid = current->tgid; 557 fl->fl_file = filp; 558 fl->fl_flags = FL_POSIX; 559 fl->fl_ops = NULL; 560 fl->fl_lmops = NULL; 561 562 return assign_type(fl, l->l_type); 563 } 564 565 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 566 * style lock. 567 */ 568 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 569 struct flock *l) 570 { 571 struct flock64 ll = { 572 .l_type = l->l_type, 573 .l_whence = l->l_whence, 574 .l_start = l->l_start, 575 .l_len = l->l_len, 576 }; 577 578 return flock64_to_posix_lock(filp, fl, &ll); 579 } 580 581 /* default lease lock manager operations */ 582 static bool 583 lease_break_callback(struct file_lock *fl) 584 { 585 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 586 return false; 587 } 588 589 static void 590 lease_setup(struct file_lock *fl, void **priv) 591 { 592 struct file *filp = fl->fl_file; 593 struct fasync_struct *fa = *priv; 594 595 /* 596 * fasync_insert_entry() returns the old entry if any. If there was no 597 * old entry, then it used "priv" and inserted it into the fasync list. 598 * Clear the pointer to indicate that it shouldn't be freed. 599 */ 600 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa)) 601 *priv = NULL; 602 603 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0); 604 } 605 606 static const struct lock_manager_operations lease_manager_ops = { 607 .lm_break = lease_break_callback, 608 .lm_change = lease_modify, 609 .lm_setup = lease_setup, 610 }; 611 612 /* 613 * Initialize a lease, use the default lock manager operations 614 */ 615 static int lease_init(struct file *filp, long type, struct file_lock *fl) 616 { 617 if (assign_type(fl, type) != 0) 618 return -EINVAL; 619 620 fl->fl_owner = filp; 621 fl->fl_pid = current->tgid; 622 623 fl->fl_file = filp; 624 fl->fl_flags = FL_LEASE; 625 fl->fl_start = 0; 626 fl->fl_end = OFFSET_MAX; 627 fl->fl_ops = NULL; 628 fl->fl_lmops = &lease_manager_ops; 629 return 0; 630 } 631 632 /* Allocate a file_lock initialised to this type of lease */ 633 static struct file_lock *lease_alloc(struct file *filp, long type) 634 { 635 struct file_lock *fl = locks_alloc_lock(); 636 int error = -ENOMEM; 637 638 if (fl == NULL) 639 return ERR_PTR(error); 640 641 error = lease_init(filp, type, fl); 642 if (error) { 643 locks_free_lock(fl); 644 return ERR_PTR(error); 645 } 646 return fl; 647 } 648 649 /* Check if two locks overlap each other. 650 */ 651 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 652 { 653 return ((fl1->fl_end >= fl2->fl_start) && 654 (fl2->fl_end >= fl1->fl_start)); 655 } 656 657 /* 658 * Check whether two locks have the same owner. 659 */ 660 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2) 661 { 662 return fl1->fl_owner == fl2->fl_owner; 663 } 664 665 /* Must be called with the flc_lock held! */ 666 static void locks_insert_global_locks(struct file_lock *fl) 667 { 668 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list); 669 670 percpu_rwsem_assert_held(&file_rwsem); 671 672 spin_lock(&fll->lock); 673 fl->fl_link_cpu = smp_processor_id(); 674 hlist_add_head(&fl->fl_link, &fll->hlist); 675 spin_unlock(&fll->lock); 676 } 677 678 /* Must be called with the flc_lock held! */ 679 static void locks_delete_global_locks(struct file_lock *fl) 680 { 681 struct file_lock_list_struct *fll; 682 683 percpu_rwsem_assert_held(&file_rwsem); 684 685 /* 686 * Avoid taking lock if already unhashed. This is safe since this check 687 * is done while holding the flc_lock, and new insertions into the list 688 * also require that it be held. 689 */ 690 if (hlist_unhashed(&fl->fl_link)) 691 return; 692 693 fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu); 694 spin_lock(&fll->lock); 695 hlist_del_init(&fl->fl_link); 696 spin_unlock(&fll->lock); 697 } 698 699 static unsigned long 700 posix_owner_key(struct file_lock *fl) 701 { 702 return (unsigned long)fl->fl_owner; 703 } 704 705 static void locks_insert_global_blocked(struct file_lock *waiter) 706 { 707 lockdep_assert_held(&blocked_lock_lock); 708 709 hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter)); 710 } 711 712 static void locks_delete_global_blocked(struct file_lock *waiter) 713 { 714 lockdep_assert_held(&blocked_lock_lock); 715 716 hash_del(&waiter->fl_link); 717 } 718 719 /* Remove waiter from blocker's block list. 720 * When blocker ends up pointing to itself then the list is empty. 721 * 722 * Must be called with blocked_lock_lock held. 723 */ 724 static void __locks_delete_block(struct file_lock *waiter) 725 { 726 locks_delete_global_blocked(waiter); 727 list_del_init(&waiter->fl_blocked_member); 728 } 729 730 static void __locks_wake_up_blocks(struct file_lock *blocker) 731 { 732 while (!list_empty(&blocker->fl_blocked_requests)) { 733 struct file_lock *waiter; 734 735 waiter = list_first_entry(&blocker->fl_blocked_requests, 736 struct file_lock, fl_blocked_member); 737 __locks_delete_block(waiter); 738 if (waiter->fl_lmops && waiter->fl_lmops->lm_notify) 739 waiter->fl_lmops->lm_notify(waiter); 740 else 741 wake_up(&waiter->fl_wait); 742 743 /* 744 * The setting of fl_blocker to NULL marks the "done" 745 * point in deleting a block. Paired with acquire at the top 746 * of locks_delete_block(). 747 */ 748 smp_store_release(&waiter->fl_blocker, NULL); 749 } 750 } 751 752 /** 753 * locks_delete_lock - stop waiting for a file lock 754 * @waiter: the lock which was waiting 755 * 756 * lockd/nfsd need to disconnect the lock while working on it. 757 */ 758 int locks_delete_block(struct file_lock *waiter) 759 { 760 int status = -ENOENT; 761 762 /* 763 * If fl_blocker is NULL, it won't be set again as this thread "owns" 764 * the lock and is the only one that might try to claim the lock. 765 * 766 * We use acquire/release to manage fl_blocker so that we can 767 * optimize away taking the blocked_lock_lock in many cases. 768 * 769 * The smp_load_acquire guarantees two things: 770 * 771 * 1/ that fl_blocked_requests can be tested locklessly. If something 772 * was recently added to that list it must have been in a locked region 773 * *before* the locked region when fl_blocker was set to NULL. 774 * 775 * 2/ that no other thread is accessing 'waiter', so it is safe to free 776 * it. __locks_wake_up_blocks is careful not to touch waiter after 777 * fl_blocker is released. 778 * 779 * If a lockless check of fl_blocker shows it to be NULL, we know that 780 * no new locks can be inserted into its fl_blocked_requests list, and 781 * can avoid doing anything further if the list is empty. 782 */ 783 if (!smp_load_acquire(&waiter->fl_blocker) && 784 list_empty(&waiter->fl_blocked_requests)) 785 return status; 786 787 spin_lock(&blocked_lock_lock); 788 if (waiter->fl_blocker) 789 status = 0; 790 __locks_wake_up_blocks(waiter); 791 __locks_delete_block(waiter); 792 793 /* 794 * The setting of fl_blocker to NULL marks the "done" point in deleting 795 * a block. Paired with acquire at the top of this function. 796 */ 797 smp_store_release(&waiter->fl_blocker, NULL); 798 spin_unlock(&blocked_lock_lock); 799 return status; 800 } 801 EXPORT_SYMBOL(locks_delete_block); 802 803 /* Insert waiter into blocker's block list. 804 * We use a circular list so that processes can be easily woken up in 805 * the order they blocked. The documentation doesn't require this but 806 * it seems like the reasonable thing to do. 807 * 808 * Must be called with both the flc_lock and blocked_lock_lock held. The 809 * fl_blocked_requests list itself is protected by the blocked_lock_lock, 810 * but by ensuring that the flc_lock is also held on insertions we can avoid 811 * taking the blocked_lock_lock in some cases when we see that the 812 * fl_blocked_requests list is empty. 813 * 814 * Rather than just adding to the list, we check for conflicts with any existing 815 * waiters, and add beneath any waiter that blocks the new waiter. 816 * Thus wakeups don't happen until needed. 817 */ 818 static void __locks_insert_block(struct file_lock *blocker, 819 struct file_lock *waiter, 820 bool conflict(struct file_lock *, 821 struct file_lock *)) 822 { 823 struct file_lock *fl; 824 BUG_ON(!list_empty(&waiter->fl_blocked_member)); 825 826 new_blocker: 827 list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member) 828 if (conflict(fl, waiter)) { 829 blocker = fl; 830 goto new_blocker; 831 } 832 waiter->fl_blocker = blocker; 833 list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests); 834 if (IS_POSIX(blocker) && !IS_OFDLCK(blocker)) 835 locks_insert_global_blocked(waiter); 836 837 /* The requests in waiter->fl_blocked are known to conflict with 838 * waiter, but might not conflict with blocker, or the requests 839 * and lock which block it. So they all need to be woken. 840 */ 841 __locks_wake_up_blocks(waiter); 842 } 843 844 /* Must be called with flc_lock held. */ 845 static void locks_insert_block(struct file_lock *blocker, 846 struct file_lock *waiter, 847 bool conflict(struct file_lock *, 848 struct file_lock *)) 849 { 850 spin_lock(&blocked_lock_lock); 851 __locks_insert_block(blocker, waiter, conflict); 852 spin_unlock(&blocked_lock_lock); 853 } 854 855 /* 856 * Wake up processes blocked waiting for blocker. 857 * 858 * Must be called with the inode->flc_lock held! 859 */ 860 static void locks_wake_up_blocks(struct file_lock *blocker) 861 { 862 /* 863 * Avoid taking global lock if list is empty. This is safe since new 864 * blocked requests are only added to the list under the flc_lock, and 865 * the flc_lock is always held here. Note that removal from the 866 * fl_blocked_requests list does not require the flc_lock, so we must 867 * recheck list_empty() after acquiring the blocked_lock_lock. 868 */ 869 if (list_empty(&blocker->fl_blocked_requests)) 870 return; 871 872 spin_lock(&blocked_lock_lock); 873 __locks_wake_up_blocks(blocker); 874 spin_unlock(&blocked_lock_lock); 875 } 876 877 static void 878 locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before) 879 { 880 list_add_tail(&fl->fl_list, before); 881 locks_insert_global_locks(fl); 882 } 883 884 static void 885 locks_unlink_lock_ctx(struct file_lock *fl) 886 { 887 locks_delete_global_locks(fl); 888 list_del_init(&fl->fl_list); 889 locks_wake_up_blocks(fl); 890 } 891 892 static void 893 locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose) 894 { 895 locks_unlink_lock_ctx(fl); 896 if (dispose) 897 list_add(&fl->fl_list, dispose); 898 else 899 locks_free_lock(fl); 900 } 901 902 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality 903 * checks for shared/exclusive status of overlapping locks. 904 */ 905 static bool locks_conflict(struct file_lock *caller_fl, 906 struct file_lock *sys_fl) 907 { 908 if (sys_fl->fl_type == F_WRLCK) 909 return true; 910 if (caller_fl->fl_type == F_WRLCK) 911 return true; 912 return false; 913 } 914 915 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 916 * checking before calling the locks_conflict(). 917 */ 918 static bool posix_locks_conflict(struct file_lock *caller_fl, 919 struct file_lock *sys_fl) 920 { 921 /* POSIX locks owned by the same process do not conflict with 922 * each other. 923 */ 924 if (posix_same_owner(caller_fl, sys_fl)) 925 return false; 926 927 /* Check whether they overlap */ 928 if (!locks_overlap(caller_fl, sys_fl)) 929 return false; 930 931 return locks_conflict(caller_fl, sys_fl); 932 } 933 934 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 935 * checking before calling the locks_conflict(). 936 */ 937 static bool flock_locks_conflict(struct file_lock *caller_fl, 938 struct file_lock *sys_fl) 939 { 940 /* FLOCK locks referring to the same filp do not conflict with 941 * each other. 942 */ 943 if (caller_fl->fl_file == sys_fl->fl_file) 944 return false; 945 if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND)) 946 return false; 947 948 return locks_conflict(caller_fl, sys_fl); 949 } 950 951 void 952 posix_test_lock(struct file *filp, struct file_lock *fl) 953 { 954 struct file_lock *cfl; 955 struct file_lock_context *ctx; 956 struct inode *inode = locks_inode(filp); 957 958 ctx = smp_load_acquire(&inode->i_flctx); 959 if (!ctx || list_empty_careful(&ctx->flc_posix)) { 960 fl->fl_type = F_UNLCK; 961 return; 962 } 963 964 spin_lock(&ctx->flc_lock); 965 list_for_each_entry(cfl, &ctx->flc_posix, fl_list) { 966 if (posix_locks_conflict(fl, cfl)) { 967 locks_copy_conflock(fl, cfl); 968 goto out; 969 } 970 } 971 fl->fl_type = F_UNLCK; 972 out: 973 spin_unlock(&ctx->flc_lock); 974 return; 975 } 976 EXPORT_SYMBOL(posix_test_lock); 977 978 /* 979 * Deadlock detection: 980 * 981 * We attempt to detect deadlocks that are due purely to posix file 982 * locks. 983 * 984 * We assume that a task can be waiting for at most one lock at a time. 985 * So for any acquired lock, the process holding that lock may be 986 * waiting on at most one other lock. That lock in turns may be held by 987 * someone waiting for at most one other lock. Given a requested lock 988 * caller_fl which is about to wait for a conflicting lock block_fl, we 989 * follow this chain of waiters to ensure we are not about to create a 990 * cycle. 991 * 992 * Since we do this before we ever put a process to sleep on a lock, we 993 * are ensured that there is never a cycle; that is what guarantees that 994 * the while() loop in posix_locks_deadlock() eventually completes. 995 * 996 * Note: the above assumption may not be true when handling lock 997 * requests from a broken NFS client. It may also fail in the presence 998 * of tasks (such as posix threads) sharing the same open file table. 999 * To handle those cases, we just bail out after a few iterations. 1000 * 1001 * For FL_OFDLCK locks, the owner is the filp, not the files_struct. 1002 * Because the owner is not even nominally tied to a thread of 1003 * execution, the deadlock detection below can't reasonably work well. Just 1004 * skip it for those. 1005 * 1006 * In principle, we could do a more limited deadlock detection on FL_OFDLCK 1007 * locks that just checks for the case where two tasks are attempting to 1008 * upgrade from read to write locks on the same inode. 1009 */ 1010 1011 #define MAX_DEADLK_ITERATIONS 10 1012 1013 /* Find a lock that the owner of the given block_fl is blocking on. */ 1014 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl) 1015 { 1016 struct file_lock *fl; 1017 1018 hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) { 1019 if (posix_same_owner(fl, block_fl)) { 1020 while (fl->fl_blocker) 1021 fl = fl->fl_blocker; 1022 return fl; 1023 } 1024 } 1025 return NULL; 1026 } 1027 1028 /* Must be called with the blocked_lock_lock held! */ 1029 static int posix_locks_deadlock(struct file_lock *caller_fl, 1030 struct file_lock *block_fl) 1031 { 1032 int i = 0; 1033 1034 lockdep_assert_held(&blocked_lock_lock); 1035 1036 /* 1037 * This deadlock detector can't reasonably detect deadlocks with 1038 * FL_OFDLCK locks, since they aren't owned by a process, per-se. 1039 */ 1040 if (IS_OFDLCK(caller_fl)) 1041 return 0; 1042 1043 while ((block_fl = what_owner_is_waiting_for(block_fl))) { 1044 if (i++ > MAX_DEADLK_ITERATIONS) 1045 return 0; 1046 if (posix_same_owner(caller_fl, block_fl)) 1047 return 1; 1048 } 1049 return 0; 1050 } 1051 1052 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 1053 * after any leases, but before any posix locks. 1054 * 1055 * Note that if called with an FL_EXISTS argument, the caller may determine 1056 * whether or not a lock was successfully freed by testing the return 1057 * value for -ENOENT. 1058 */ 1059 static int flock_lock_inode(struct inode *inode, struct file_lock *request) 1060 { 1061 struct file_lock *new_fl = NULL; 1062 struct file_lock *fl; 1063 struct file_lock_context *ctx; 1064 int error = 0; 1065 bool found = false; 1066 LIST_HEAD(dispose); 1067 1068 ctx = locks_get_lock_context(inode, request->fl_type); 1069 if (!ctx) { 1070 if (request->fl_type != F_UNLCK) 1071 return -ENOMEM; 1072 return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0; 1073 } 1074 1075 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) { 1076 new_fl = locks_alloc_lock(); 1077 if (!new_fl) 1078 return -ENOMEM; 1079 } 1080 1081 percpu_down_read(&file_rwsem); 1082 spin_lock(&ctx->flc_lock); 1083 if (request->fl_flags & FL_ACCESS) 1084 goto find_conflict; 1085 1086 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1087 if (request->fl_file != fl->fl_file) 1088 continue; 1089 if (request->fl_type == fl->fl_type) 1090 goto out; 1091 found = true; 1092 locks_delete_lock_ctx(fl, &dispose); 1093 break; 1094 } 1095 1096 if (request->fl_type == F_UNLCK) { 1097 if ((request->fl_flags & FL_EXISTS) && !found) 1098 error = -ENOENT; 1099 goto out; 1100 } 1101 1102 find_conflict: 1103 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1104 if (!flock_locks_conflict(request, fl)) 1105 continue; 1106 error = -EAGAIN; 1107 if (!(request->fl_flags & FL_SLEEP)) 1108 goto out; 1109 error = FILE_LOCK_DEFERRED; 1110 locks_insert_block(fl, request, flock_locks_conflict); 1111 goto out; 1112 } 1113 if (request->fl_flags & FL_ACCESS) 1114 goto out; 1115 locks_copy_lock(new_fl, request); 1116 locks_move_blocks(new_fl, request); 1117 locks_insert_lock_ctx(new_fl, &ctx->flc_flock); 1118 new_fl = NULL; 1119 error = 0; 1120 1121 out: 1122 spin_unlock(&ctx->flc_lock); 1123 percpu_up_read(&file_rwsem); 1124 if (new_fl) 1125 locks_free_lock(new_fl); 1126 locks_dispose_list(&dispose); 1127 trace_flock_lock_inode(inode, request, error); 1128 return error; 1129 } 1130 1131 static int posix_lock_inode(struct inode *inode, struct file_lock *request, 1132 struct file_lock *conflock) 1133 { 1134 struct file_lock *fl, *tmp; 1135 struct file_lock *new_fl = NULL; 1136 struct file_lock *new_fl2 = NULL; 1137 struct file_lock *left = NULL; 1138 struct file_lock *right = NULL; 1139 struct file_lock_context *ctx; 1140 int error; 1141 bool added = false; 1142 LIST_HEAD(dispose); 1143 1144 ctx = locks_get_lock_context(inode, request->fl_type); 1145 if (!ctx) 1146 return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM; 1147 1148 /* 1149 * We may need two file_lock structures for this operation, 1150 * so we get them in advance to avoid races. 1151 * 1152 * In some cases we can be sure, that no new locks will be needed 1153 */ 1154 if (!(request->fl_flags & FL_ACCESS) && 1155 (request->fl_type != F_UNLCK || 1156 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 1157 new_fl = locks_alloc_lock(); 1158 new_fl2 = locks_alloc_lock(); 1159 } 1160 1161 percpu_down_read(&file_rwsem); 1162 spin_lock(&ctx->flc_lock); 1163 /* 1164 * New lock request. Walk all POSIX locks and look for conflicts. If 1165 * there are any, either return error or put the request on the 1166 * blocker's list of waiters and the global blocked_hash. 1167 */ 1168 if (request->fl_type != F_UNLCK) { 1169 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1170 if (!posix_locks_conflict(request, fl)) 1171 continue; 1172 if (conflock) 1173 locks_copy_conflock(conflock, fl); 1174 error = -EAGAIN; 1175 if (!(request->fl_flags & FL_SLEEP)) 1176 goto out; 1177 /* 1178 * Deadlock detection and insertion into the blocked 1179 * locks list must be done while holding the same lock! 1180 */ 1181 error = -EDEADLK; 1182 spin_lock(&blocked_lock_lock); 1183 /* 1184 * Ensure that we don't find any locks blocked on this 1185 * request during deadlock detection. 1186 */ 1187 __locks_wake_up_blocks(request); 1188 if (likely(!posix_locks_deadlock(request, fl))) { 1189 error = FILE_LOCK_DEFERRED; 1190 __locks_insert_block(fl, request, 1191 posix_locks_conflict); 1192 } 1193 spin_unlock(&blocked_lock_lock); 1194 goto out; 1195 } 1196 } 1197 1198 /* If we're just looking for a conflict, we're done. */ 1199 error = 0; 1200 if (request->fl_flags & FL_ACCESS) 1201 goto out; 1202 1203 /* Find the first old lock with the same owner as the new lock */ 1204 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1205 if (posix_same_owner(request, fl)) 1206 break; 1207 } 1208 1209 /* Process locks with this owner. */ 1210 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) { 1211 if (!posix_same_owner(request, fl)) 1212 break; 1213 1214 /* Detect adjacent or overlapping regions (if same lock type) */ 1215 if (request->fl_type == fl->fl_type) { 1216 /* In all comparisons of start vs end, use 1217 * "start - 1" rather than "end + 1". If end 1218 * is OFFSET_MAX, end + 1 will become negative. 1219 */ 1220 if (fl->fl_end < request->fl_start - 1) 1221 continue; 1222 /* If the next lock in the list has entirely bigger 1223 * addresses than the new one, insert the lock here. 1224 */ 1225 if (fl->fl_start - 1 > request->fl_end) 1226 break; 1227 1228 /* If we come here, the new and old lock are of the 1229 * same type and adjacent or overlapping. Make one 1230 * lock yielding from the lower start address of both 1231 * locks to the higher end address. 1232 */ 1233 if (fl->fl_start > request->fl_start) 1234 fl->fl_start = request->fl_start; 1235 else 1236 request->fl_start = fl->fl_start; 1237 if (fl->fl_end < request->fl_end) 1238 fl->fl_end = request->fl_end; 1239 else 1240 request->fl_end = fl->fl_end; 1241 if (added) { 1242 locks_delete_lock_ctx(fl, &dispose); 1243 continue; 1244 } 1245 request = fl; 1246 added = true; 1247 } else { 1248 /* Processing for different lock types is a bit 1249 * more complex. 1250 */ 1251 if (fl->fl_end < request->fl_start) 1252 continue; 1253 if (fl->fl_start > request->fl_end) 1254 break; 1255 if (request->fl_type == F_UNLCK) 1256 added = true; 1257 if (fl->fl_start < request->fl_start) 1258 left = fl; 1259 /* If the next lock in the list has a higher end 1260 * address than the new one, insert the new one here. 1261 */ 1262 if (fl->fl_end > request->fl_end) { 1263 right = fl; 1264 break; 1265 } 1266 if (fl->fl_start >= request->fl_start) { 1267 /* The new lock completely replaces an old 1268 * one (This may happen several times). 1269 */ 1270 if (added) { 1271 locks_delete_lock_ctx(fl, &dispose); 1272 continue; 1273 } 1274 /* 1275 * Replace the old lock with new_fl, and 1276 * remove the old one. It's safe to do the 1277 * insert here since we know that we won't be 1278 * using new_fl later, and that the lock is 1279 * just replacing an existing lock. 1280 */ 1281 error = -ENOLCK; 1282 if (!new_fl) 1283 goto out; 1284 locks_copy_lock(new_fl, request); 1285 request = new_fl; 1286 new_fl = NULL; 1287 locks_insert_lock_ctx(request, &fl->fl_list); 1288 locks_delete_lock_ctx(fl, &dispose); 1289 added = true; 1290 } 1291 } 1292 } 1293 1294 /* 1295 * The above code only modifies existing locks in case of merging or 1296 * replacing. If new lock(s) need to be inserted all modifications are 1297 * done below this, so it's safe yet to bail out. 1298 */ 1299 error = -ENOLCK; /* "no luck" */ 1300 if (right && left == right && !new_fl2) 1301 goto out; 1302 1303 error = 0; 1304 if (!added) { 1305 if (request->fl_type == F_UNLCK) { 1306 if (request->fl_flags & FL_EXISTS) 1307 error = -ENOENT; 1308 goto out; 1309 } 1310 1311 if (!new_fl) { 1312 error = -ENOLCK; 1313 goto out; 1314 } 1315 locks_copy_lock(new_fl, request); 1316 locks_move_blocks(new_fl, request); 1317 locks_insert_lock_ctx(new_fl, &fl->fl_list); 1318 fl = new_fl; 1319 new_fl = NULL; 1320 } 1321 if (right) { 1322 if (left == right) { 1323 /* The new lock breaks the old one in two pieces, 1324 * so we have to use the second new lock. 1325 */ 1326 left = new_fl2; 1327 new_fl2 = NULL; 1328 locks_copy_lock(left, right); 1329 locks_insert_lock_ctx(left, &fl->fl_list); 1330 } 1331 right->fl_start = request->fl_end + 1; 1332 locks_wake_up_blocks(right); 1333 } 1334 if (left) { 1335 left->fl_end = request->fl_start - 1; 1336 locks_wake_up_blocks(left); 1337 } 1338 out: 1339 spin_unlock(&ctx->flc_lock); 1340 percpu_up_read(&file_rwsem); 1341 /* 1342 * Free any unused locks. 1343 */ 1344 if (new_fl) 1345 locks_free_lock(new_fl); 1346 if (new_fl2) 1347 locks_free_lock(new_fl2); 1348 locks_dispose_list(&dispose); 1349 trace_posix_lock_inode(inode, request, error); 1350 1351 return error; 1352 } 1353 1354 /** 1355 * posix_lock_file - Apply a POSIX-style lock to a file 1356 * @filp: The file to apply the lock to 1357 * @fl: The lock to be applied 1358 * @conflock: Place to return a copy of the conflicting lock, if found. 1359 * 1360 * Add a POSIX style lock to a file. 1361 * We merge adjacent & overlapping locks whenever possible. 1362 * POSIX locks are sorted by owner task, then by starting address 1363 * 1364 * Note that if called with an FL_EXISTS argument, the caller may determine 1365 * whether or not a lock was successfully freed by testing the return 1366 * value for -ENOENT. 1367 */ 1368 int posix_lock_file(struct file *filp, struct file_lock *fl, 1369 struct file_lock *conflock) 1370 { 1371 return posix_lock_inode(locks_inode(filp), fl, conflock); 1372 } 1373 EXPORT_SYMBOL(posix_lock_file); 1374 1375 /** 1376 * posix_lock_inode_wait - Apply a POSIX-style lock to a file 1377 * @inode: inode of file to which lock request should be applied 1378 * @fl: The lock to be applied 1379 * 1380 * Apply a POSIX style lock request to an inode. 1381 */ 1382 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl) 1383 { 1384 int error; 1385 might_sleep (); 1386 for (;;) { 1387 error = posix_lock_inode(inode, fl, NULL); 1388 if (error != FILE_LOCK_DEFERRED) 1389 break; 1390 error = wait_event_interruptible(fl->fl_wait, 1391 list_empty(&fl->fl_blocked_member)); 1392 if (error) 1393 break; 1394 } 1395 locks_delete_block(fl); 1396 return error; 1397 } 1398 1399 #ifdef CONFIG_MANDATORY_FILE_LOCKING 1400 /** 1401 * locks_mandatory_locked - Check for an active lock 1402 * @file: the file to check 1403 * 1404 * Searches the inode's list of locks to find any POSIX locks which conflict. 1405 * This function is called from locks_verify_locked() only. 1406 */ 1407 int locks_mandatory_locked(struct file *file) 1408 { 1409 int ret; 1410 struct inode *inode = locks_inode(file); 1411 struct file_lock_context *ctx; 1412 struct file_lock *fl; 1413 1414 ctx = smp_load_acquire(&inode->i_flctx); 1415 if (!ctx || list_empty_careful(&ctx->flc_posix)) 1416 return 0; 1417 1418 /* 1419 * Search the lock list for this inode for any POSIX locks. 1420 */ 1421 spin_lock(&ctx->flc_lock); 1422 ret = 0; 1423 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1424 if (fl->fl_owner != current->files && 1425 fl->fl_owner != file) { 1426 ret = -EAGAIN; 1427 break; 1428 } 1429 } 1430 spin_unlock(&ctx->flc_lock); 1431 return ret; 1432 } 1433 1434 /** 1435 * locks_mandatory_area - Check for a conflicting lock 1436 * @inode: the file to check 1437 * @filp: how the file was opened (if it was) 1438 * @start: first byte in the file to check 1439 * @end: lastbyte in the file to check 1440 * @type: %F_WRLCK for a write lock, else %F_RDLCK 1441 * 1442 * Searches the inode's list of locks to find any POSIX locks which conflict. 1443 */ 1444 int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start, 1445 loff_t end, unsigned char type) 1446 { 1447 struct file_lock fl; 1448 int error; 1449 bool sleep = false; 1450 1451 locks_init_lock(&fl); 1452 fl.fl_pid = current->tgid; 1453 fl.fl_file = filp; 1454 fl.fl_flags = FL_POSIX | FL_ACCESS; 1455 if (filp && !(filp->f_flags & O_NONBLOCK)) 1456 sleep = true; 1457 fl.fl_type = type; 1458 fl.fl_start = start; 1459 fl.fl_end = end; 1460 1461 for (;;) { 1462 if (filp) { 1463 fl.fl_owner = filp; 1464 fl.fl_flags &= ~FL_SLEEP; 1465 error = posix_lock_inode(inode, &fl, NULL); 1466 if (!error) 1467 break; 1468 } 1469 1470 if (sleep) 1471 fl.fl_flags |= FL_SLEEP; 1472 fl.fl_owner = current->files; 1473 error = posix_lock_inode(inode, &fl, NULL); 1474 if (error != FILE_LOCK_DEFERRED) 1475 break; 1476 error = wait_event_interruptible(fl.fl_wait, 1477 list_empty(&fl.fl_blocked_member)); 1478 if (!error) { 1479 /* 1480 * If we've been sleeping someone might have 1481 * changed the permissions behind our back. 1482 */ 1483 if (__mandatory_lock(inode)) 1484 continue; 1485 } 1486 1487 break; 1488 } 1489 locks_delete_block(&fl); 1490 1491 return error; 1492 } 1493 EXPORT_SYMBOL(locks_mandatory_area); 1494 #endif /* CONFIG_MANDATORY_FILE_LOCKING */ 1495 1496 static void lease_clear_pending(struct file_lock *fl, int arg) 1497 { 1498 switch (arg) { 1499 case F_UNLCK: 1500 fl->fl_flags &= ~FL_UNLOCK_PENDING; 1501 /* fall through */ 1502 case F_RDLCK: 1503 fl->fl_flags &= ~FL_DOWNGRADE_PENDING; 1504 } 1505 } 1506 1507 /* We already had a lease on this file; just change its type */ 1508 int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose) 1509 { 1510 int error = assign_type(fl, arg); 1511 1512 if (error) 1513 return error; 1514 lease_clear_pending(fl, arg); 1515 locks_wake_up_blocks(fl); 1516 if (arg == F_UNLCK) { 1517 struct file *filp = fl->fl_file; 1518 1519 f_delown(filp); 1520 filp->f_owner.signum = 0; 1521 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync); 1522 if (fl->fl_fasync != NULL) { 1523 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 1524 fl->fl_fasync = NULL; 1525 } 1526 locks_delete_lock_ctx(fl, dispose); 1527 } 1528 return 0; 1529 } 1530 EXPORT_SYMBOL(lease_modify); 1531 1532 static bool past_time(unsigned long then) 1533 { 1534 if (!then) 1535 /* 0 is a special value meaning "this never expires": */ 1536 return false; 1537 return time_after(jiffies, then); 1538 } 1539 1540 static void time_out_leases(struct inode *inode, struct list_head *dispose) 1541 { 1542 struct file_lock_context *ctx = inode->i_flctx; 1543 struct file_lock *fl, *tmp; 1544 1545 lockdep_assert_held(&ctx->flc_lock); 1546 1547 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1548 trace_time_out_leases(inode, fl); 1549 if (past_time(fl->fl_downgrade_time)) 1550 lease_modify(fl, F_RDLCK, dispose); 1551 if (past_time(fl->fl_break_time)) 1552 lease_modify(fl, F_UNLCK, dispose); 1553 } 1554 } 1555 1556 static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker) 1557 { 1558 bool rc; 1559 1560 if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) { 1561 rc = false; 1562 goto trace; 1563 } 1564 if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) { 1565 rc = false; 1566 goto trace; 1567 } 1568 1569 rc = locks_conflict(breaker, lease); 1570 trace: 1571 trace_leases_conflict(rc, lease, breaker); 1572 return rc; 1573 } 1574 1575 static bool 1576 any_leases_conflict(struct inode *inode, struct file_lock *breaker) 1577 { 1578 struct file_lock_context *ctx = inode->i_flctx; 1579 struct file_lock *fl; 1580 1581 lockdep_assert_held(&ctx->flc_lock); 1582 1583 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1584 if (leases_conflict(fl, breaker)) 1585 return true; 1586 } 1587 return false; 1588 } 1589 1590 /** 1591 * __break_lease - revoke all outstanding leases on file 1592 * @inode: the inode of the file to return 1593 * @mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR: 1594 * break all leases 1595 * @type: FL_LEASE: break leases and delegations; FL_DELEG: break 1596 * only delegations 1597 * 1598 * break_lease (inlined for speed) has checked there already is at least 1599 * some kind of lock (maybe a lease) on this file. Leases are broken on 1600 * a call to open() or truncate(). This function can sleep unless you 1601 * specified %O_NONBLOCK to your open(). 1602 */ 1603 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) 1604 { 1605 int error = 0; 1606 struct file_lock_context *ctx; 1607 struct file_lock *new_fl, *fl, *tmp; 1608 unsigned long break_time; 1609 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1610 LIST_HEAD(dispose); 1611 1612 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1613 if (IS_ERR(new_fl)) 1614 return PTR_ERR(new_fl); 1615 new_fl->fl_flags = type; 1616 1617 /* typically we will check that ctx is non-NULL before calling */ 1618 ctx = smp_load_acquire(&inode->i_flctx); 1619 if (!ctx) { 1620 WARN_ON_ONCE(1); 1621 goto free_lock; 1622 } 1623 1624 percpu_down_read(&file_rwsem); 1625 spin_lock(&ctx->flc_lock); 1626 1627 time_out_leases(inode, &dispose); 1628 1629 if (!any_leases_conflict(inode, new_fl)) 1630 goto out; 1631 1632 break_time = 0; 1633 if (lease_break_time > 0) { 1634 break_time = jiffies + lease_break_time * HZ; 1635 if (break_time == 0) 1636 break_time++; /* so that 0 means no break time */ 1637 } 1638 1639 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1640 if (!leases_conflict(fl, new_fl)) 1641 continue; 1642 if (want_write) { 1643 if (fl->fl_flags & FL_UNLOCK_PENDING) 1644 continue; 1645 fl->fl_flags |= FL_UNLOCK_PENDING; 1646 fl->fl_break_time = break_time; 1647 } else { 1648 if (lease_breaking(fl)) 1649 continue; 1650 fl->fl_flags |= FL_DOWNGRADE_PENDING; 1651 fl->fl_downgrade_time = break_time; 1652 } 1653 if (fl->fl_lmops->lm_break(fl)) 1654 locks_delete_lock_ctx(fl, &dispose); 1655 } 1656 1657 if (list_empty(&ctx->flc_lease)) 1658 goto out; 1659 1660 if (mode & O_NONBLOCK) { 1661 trace_break_lease_noblock(inode, new_fl); 1662 error = -EWOULDBLOCK; 1663 goto out; 1664 } 1665 1666 restart: 1667 fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list); 1668 break_time = fl->fl_break_time; 1669 if (break_time != 0) 1670 break_time -= jiffies; 1671 if (break_time == 0) 1672 break_time++; 1673 locks_insert_block(fl, new_fl, leases_conflict); 1674 trace_break_lease_block(inode, new_fl); 1675 spin_unlock(&ctx->flc_lock); 1676 percpu_up_read(&file_rwsem); 1677 1678 locks_dispose_list(&dispose); 1679 error = wait_event_interruptible_timeout(new_fl->fl_wait, 1680 list_empty(&new_fl->fl_blocked_member), 1681 break_time); 1682 1683 percpu_down_read(&file_rwsem); 1684 spin_lock(&ctx->flc_lock); 1685 trace_break_lease_unblock(inode, new_fl); 1686 locks_delete_block(new_fl); 1687 if (error >= 0) { 1688 /* 1689 * Wait for the next conflicting lease that has not been 1690 * broken yet 1691 */ 1692 if (error == 0) 1693 time_out_leases(inode, &dispose); 1694 if (any_leases_conflict(inode, new_fl)) 1695 goto restart; 1696 error = 0; 1697 } 1698 out: 1699 spin_unlock(&ctx->flc_lock); 1700 percpu_up_read(&file_rwsem); 1701 locks_dispose_list(&dispose); 1702 free_lock: 1703 locks_free_lock(new_fl); 1704 return error; 1705 } 1706 EXPORT_SYMBOL(__break_lease); 1707 1708 /** 1709 * lease_get_mtime - update modified time of an inode with exclusive lease 1710 * @inode: the inode 1711 * @time: pointer to a timespec which contains the last modified time 1712 * 1713 * This is to force NFS clients to flush their caches for files with 1714 * exclusive leases. The justification is that if someone has an 1715 * exclusive lease, then they could be modifying it. 1716 */ 1717 void lease_get_mtime(struct inode *inode, struct timespec64 *time) 1718 { 1719 bool has_lease = false; 1720 struct file_lock_context *ctx; 1721 struct file_lock *fl; 1722 1723 ctx = smp_load_acquire(&inode->i_flctx); 1724 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1725 spin_lock(&ctx->flc_lock); 1726 fl = list_first_entry_or_null(&ctx->flc_lease, 1727 struct file_lock, fl_list); 1728 if (fl && (fl->fl_type == F_WRLCK)) 1729 has_lease = true; 1730 spin_unlock(&ctx->flc_lock); 1731 } 1732 1733 if (has_lease) 1734 *time = current_time(inode); 1735 } 1736 EXPORT_SYMBOL(lease_get_mtime); 1737 1738 /** 1739 * fcntl_getlease - Enquire what lease is currently active 1740 * @filp: the file 1741 * 1742 * The value returned by this function will be one of 1743 * (if no lease break is pending): 1744 * 1745 * %F_RDLCK to indicate a shared lease is held. 1746 * 1747 * %F_WRLCK to indicate an exclusive lease is held. 1748 * 1749 * %F_UNLCK to indicate no lease is held. 1750 * 1751 * (if a lease break is pending): 1752 * 1753 * %F_RDLCK to indicate an exclusive lease needs to be 1754 * changed to a shared lease (or removed). 1755 * 1756 * %F_UNLCK to indicate the lease needs to be removed. 1757 * 1758 * XXX: sfr & willy disagree over whether F_INPROGRESS 1759 * should be returned to userspace. 1760 */ 1761 int fcntl_getlease(struct file *filp) 1762 { 1763 struct file_lock *fl; 1764 struct inode *inode = locks_inode(filp); 1765 struct file_lock_context *ctx; 1766 int type = F_UNLCK; 1767 LIST_HEAD(dispose); 1768 1769 ctx = smp_load_acquire(&inode->i_flctx); 1770 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1771 percpu_down_read(&file_rwsem); 1772 spin_lock(&ctx->flc_lock); 1773 time_out_leases(inode, &dispose); 1774 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1775 if (fl->fl_file != filp) 1776 continue; 1777 type = target_leasetype(fl); 1778 break; 1779 } 1780 spin_unlock(&ctx->flc_lock); 1781 percpu_up_read(&file_rwsem); 1782 1783 locks_dispose_list(&dispose); 1784 } 1785 return type; 1786 } 1787 1788 /** 1789 * check_conflicting_open - see if the given file points to an inode that has 1790 * an existing open that would conflict with the 1791 * desired lease. 1792 * @filp: file to check 1793 * @arg: type of lease that we're trying to acquire 1794 * @flags: current lock flags 1795 * 1796 * Check to see if there's an existing open fd on this file that would 1797 * conflict with the lease we're trying to set. 1798 */ 1799 static int 1800 check_conflicting_open(struct file *filp, const long arg, int flags) 1801 { 1802 struct inode *inode = locks_inode(filp); 1803 int self_wcount = 0, self_rcount = 0; 1804 1805 if (flags & FL_LAYOUT) 1806 return 0; 1807 1808 if (arg == F_RDLCK) 1809 return inode_is_open_for_write(inode) ? -EAGAIN : 0; 1810 else if (arg != F_WRLCK) 1811 return 0; 1812 1813 /* 1814 * Make sure that only read/write count is from lease requestor. 1815 * Note that this will result in denying write leases when i_writecount 1816 * is negative, which is what we want. (We shouldn't grant write leases 1817 * on files open for execution.) 1818 */ 1819 if (filp->f_mode & FMODE_WRITE) 1820 self_wcount = 1; 1821 else if (filp->f_mode & FMODE_READ) 1822 self_rcount = 1; 1823 1824 if (atomic_read(&inode->i_writecount) != self_wcount || 1825 atomic_read(&inode->i_readcount) != self_rcount) 1826 return -EAGAIN; 1827 1828 return 0; 1829 } 1830 1831 static int 1832 generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv) 1833 { 1834 struct file_lock *fl, *my_fl = NULL, *lease; 1835 struct inode *inode = locks_inode(filp); 1836 struct file_lock_context *ctx; 1837 bool is_deleg = (*flp)->fl_flags & FL_DELEG; 1838 int error; 1839 LIST_HEAD(dispose); 1840 1841 lease = *flp; 1842 trace_generic_add_lease(inode, lease); 1843 1844 /* Note that arg is never F_UNLCK here */ 1845 ctx = locks_get_lock_context(inode, arg); 1846 if (!ctx) 1847 return -ENOMEM; 1848 1849 /* 1850 * In the delegation case we need mutual exclusion with 1851 * a number of operations that take the i_mutex. We trylock 1852 * because delegations are an optional optimization, and if 1853 * there's some chance of a conflict--we'd rather not 1854 * bother, maybe that's a sign this just isn't a good file to 1855 * hand out a delegation on. 1856 */ 1857 if (is_deleg && !inode_trylock(inode)) 1858 return -EAGAIN; 1859 1860 if (is_deleg && arg == F_WRLCK) { 1861 /* Write delegations are not currently supported: */ 1862 inode_unlock(inode); 1863 WARN_ON_ONCE(1); 1864 return -EINVAL; 1865 } 1866 1867 percpu_down_read(&file_rwsem); 1868 spin_lock(&ctx->flc_lock); 1869 time_out_leases(inode, &dispose); 1870 error = check_conflicting_open(filp, arg, lease->fl_flags); 1871 if (error) 1872 goto out; 1873 1874 /* 1875 * At this point, we know that if there is an exclusive 1876 * lease on this file, then we hold it on this filp 1877 * (otherwise our open of this file would have blocked). 1878 * And if we are trying to acquire an exclusive lease, 1879 * then the file is not open by anyone (including us) 1880 * except for this filp. 1881 */ 1882 error = -EAGAIN; 1883 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1884 if (fl->fl_file == filp && 1885 fl->fl_owner == lease->fl_owner) { 1886 my_fl = fl; 1887 continue; 1888 } 1889 1890 /* 1891 * No exclusive leases if someone else has a lease on 1892 * this file: 1893 */ 1894 if (arg == F_WRLCK) 1895 goto out; 1896 /* 1897 * Modifying our existing lease is OK, but no getting a 1898 * new lease if someone else is opening for write: 1899 */ 1900 if (fl->fl_flags & FL_UNLOCK_PENDING) 1901 goto out; 1902 } 1903 1904 if (my_fl != NULL) { 1905 lease = my_fl; 1906 error = lease->fl_lmops->lm_change(lease, arg, &dispose); 1907 if (error) 1908 goto out; 1909 goto out_setup; 1910 } 1911 1912 error = -EINVAL; 1913 if (!leases_enable) 1914 goto out; 1915 1916 locks_insert_lock_ctx(lease, &ctx->flc_lease); 1917 /* 1918 * The check in break_lease() is lockless. It's possible for another 1919 * open to race in after we did the earlier check for a conflicting 1920 * open but before the lease was inserted. Check again for a 1921 * conflicting open and cancel the lease if there is one. 1922 * 1923 * We also add a barrier here to ensure that the insertion of the lock 1924 * precedes these checks. 1925 */ 1926 smp_mb(); 1927 error = check_conflicting_open(filp, arg, lease->fl_flags); 1928 if (error) { 1929 locks_unlink_lock_ctx(lease); 1930 goto out; 1931 } 1932 1933 out_setup: 1934 if (lease->fl_lmops->lm_setup) 1935 lease->fl_lmops->lm_setup(lease, priv); 1936 out: 1937 spin_unlock(&ctx->flc_lock); 1938 percpu_up_read(&file_rwsem); 1939 locks_dispose_list(&dispose); 1940 if (is_deleg) 1941 inode_unlock(inode); 1942 if (!error && !my_fl) 1943 *flp = NULL; 1944 return error; 1945 } 1946 1947 static int generic_delete_lease(struct file *filp, void *owner) 1948 { 1949 int error = -EAGAIN; 1950 struct file_lock *fl, *victim = NULL; 1951 struct inode *inode = locks_inode(filp); 1952 struct file_lock_context *ctx; 1953 LIST_HEAD(dispose); 1954 1955 ctx = smp_load_acquire(&inode->i_flctx); 1956 if (!ctx) { 1957 trace_generic_delete_lease(inode, NULL); 1958 return error; 1959 } 1960 1961 percpu_down_read(&file_rwsem); 1962 spin_lock(&ctx->flc_lock); 1963 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1964 if (fl->fl_file == filp && 1965 fl->fl_owner == owner) { 1966 victim = fl; 1967 break; 1968 } 1969 } 1970 trace_generic_delete_lease(inode, victim); 1971 if (victim) 1972 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose); 1973 spin_unlock(&ctx->flc_lock); 1974 percpu_up_read(&file_rwsem); 1975 locks_dispose_list(&dispose); 1976 return error; 1977 } 1978 1979 /** 1980 * generic_setlease - sets a lease on an open file 1981 * @filp: file pointer 1982 * @arg: type of lease to obtain 1983 * @flp: input - file_lock to use, output - file_lock inserted 1984 * @priv: private data for lm_setup (may be NULL if lm_setup 1985 * doesn't require it) 1986 * 1987 * The (input) flp->fl_lmops->lm_break function is required 1988 * by break_lease(). 1989 */ 1990 int generic_setlease(struct file *filp, long arg, struct file_lock **flp, 1991 void **priv) 1992 { 1993 struct inode *inode = locks_inode(filp); 1994 int error; 1995 1996 if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE)) 1997 return -EACCES; 1998 if (!S_ISREG(inode->i_mode)) 1999 return -EINVAL; 2000 error = security_file_lock(filp, arg); 2001 if (error) 2002 return error; 2003 2004 switch (arg) { 2005 case F_UNLCK: 2006 return generic_delete_lease(filp, *priv); 2007 case F_RDLCK: 2008 case F_WRLCK: 2009 if (!(*flp)->fl_lmops->lm_break) { 2010 WARN_ON_ONCE(1); 2011 return -ENOLCK; 2012 } 2013 2014 return generic_add_lease(filp, arg, flp, priv); 2015 default: 2016 return -EINVAL; 2017 } 2018 } 2019 EXPORT_SYMBOL(generic_setlease); 2020 2021 #if IS_ENABLED(CONFIG_SRCU) 2022 /* 2023 * Kernel subsystems can register to be notified on any attempt to set 2024 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd 2025 * to close files that it may have cached when there is an attempt to set a 2026 * conflicting lease. 2027 */ 2028 static struct srcu_notifier_head lease_notifier_chain; 2029 2030 static inline void 2031 lease_notifier_chain_init(void) 2032 { 2033 srcu_init_notifier_head(&lease_notifier_chain); 2034 } 2035 2036 static inline void 2037 setlease_notifier(long arg, struct file_lock *lease) 2038 { 2039 if (arg != F_UNLCK) 2040 srcu_notifier_call_chain(&lease_notifier_chain, arg, lease); 2041 } 2042 2043 int lease_register_notifier(struct notifier_block *nb) 2044 { 2045 return srcu_notifier_chain_register(&lease_notifier_chain, nb); 2046 } 2047 EXPORT_SYMBOL_GPL(lease_register_notifier); 2048 2049 void lease_unregister_notifier(struct notifier_block *nb) 2050 { 2051 srcu_notifier_chain_unregister(&lease_notifier_chain, nb); 2052 } 2053 EXPORT_SYMBOL_GPL(lease_unregister_notifier); 2054 2055 #else /* !IS_ENABLED(CONFIG_SRCU) */ 2056 static inline void 2057 lease_notifier_chain_init(void) 2058 { 2059 } 2060 2061 static inline void 2062 setlease_notifier(long arg, struct file_lock *lease) 2063 { 2064 } 2065 2066 int lease_register_notifier(struct notifier_block *nb) 2067 { 2068 return 0; 2069 } 2070 EXPORT_SYMBOL_GPL(lease_register_notifier); 2071 2072 void lease_unregister_notifier(struct notifier_block *nb) 2073 { 2074 } 2075 EXPORT_SYMBOL_GPL(lease_unregister_notifier); 2076 2077 #endif /* IS_ENABLED(CONFIG_SRCU) */ 2078 2079 /** 2080 * vfs_setlease - sets a lease on an open file 2081 * @filp: file pointer 2082 * @arg: type of lease to obtain 2083 * @lease: file_lock to use when adding a lease 2084 * @priv: private info for lm_setup when adding a lease (may be 2085 * NULL if lm_setup doesn't require it) 2086 * 2087 * Call this to establish a lease on the file. The "lease" argument is not 2088 * used for F_UNLCK requests and may be NULL. For commands that set or alter 2089 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be 2090 * set; if not, this function will return -ENOLCK (and generate a scary-looking 2091 * stack trace). 2092 * 2093 * The "priv" pointer is passed directly to the lm_setup function as-is. It 2094 * may be NULL if the lm_setup operation doesn't require it. 2095 */ 2096 int 2097 vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) 2098 { 2099 if (lease) 2100 setlease_notifier(arg, *lease); 2101 if (filp->f_op->setlease) 2102 return filp->f_op->setlease(filp, arg, lease, priv); 2103 else 2104 return generic_setlease(filp, arg, lease, priv); 2105 } 2106 EXPORT_SYMBOL_GPL(vfs_setlease); 2107 2108 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg) 2109 { 2110 struct file_lock *fl; 2111 struct fasync_struct *new; 2112 int error; 2113 2114 fl = lease_alloc(filp, arg); 2115 if (IS_ERR(fl)) 2116 return PTR_ERR(fl); 2117 2118 new = fasync_alloc(); 2119 if (!new) { 2120 locks_free_lock(fl); 2121 return -ENOMEM; 2122 } 2123 new->fa_fd = fd; 2124 2125 error = vfs_setlease(filp, arg, &fl, (void **)&new); 2126 if (fl) 2127 locks_free_lock(fl); 2128 if (new) 2129 fasync_free(new); 2130 return error; 2131 } 2132 2133 /** 2134 * fcntl_setlease - sets a lease on an open file 2135 * @fd: open file descriptor 2136 * @filp: file pointer 2137 * @arg: type of lease to obtain 2138 * 2139 * Call this fcntl to establish a lease on the file. 2140 * Note that you also need to call %F_SETSIG to 2141 * receive a signal when the lease is broken. 2142 */ 2143 int fcntl_setlease(unsigned int fd, struct file *filp, long arg) 2144 { 2145 if (arg == F_UNLCK) 2146 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp); 2147 return do_fcntl_add_lease(fd, filp, arg); 2148 } 2149 2150 /** 2151 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file 2152 * @inode: inode of the file to apply to 2153 * @fl: The lock to be applied 2154 * 2155 * Apply a FLOCK style lock request to an inode. 2156 */ 2157 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2158 { 2159 int error; 2160 might_sleep(); 2161 for (;;) { 2162 error = flock_lock_inode(inode, fl); 2163 if (error != FILE_LOCK_DEFERRED) 2164 break; 2165 error = wait_event_interruptible(fl->fl_wait, 2166 list_empty(&fl->fl_blocked_member)); 2167 if (error) 2168 break; 2169 } 2170 locks_delete_block(fl); 2171 return error; 2172 } 2173 2174 /** 2175 * locks_lock_inode_wait - Apply a lock to an inode 2176 * @inode: inode of the file to apply to 2177 * @fl: The lock to be applied 2178 * 2179 * Apply a POSIX or FLOCK style lock request to an inode. 2180 */ 2181 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2182 { 2183 int res = 0; 2184 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 2185 case FL_POSIX: 2186 res = posix_lock_inode_wait(inode, fl); 2187 break; 2188 case FL_FLOCK: 2189 res = flock_lock_inode_wait(inode, fl); 2190 break; 2191 default: 2192 BUG(); 2193 } 2194 return res; 2195 } 2196 EXPORT_SYMBOL(locks_lock_inode_wait); 2197 2198 /** 2199 * sys_flock: - flock() system call. 2200 * @fd: the file descriptor to lock. 2201 * @cmd: the type of lock to apply. 2202 * 2203 * Apply a %FL_FLOCK style lock to an open file descriptor. 2204 * The @cmd can be one of: 2205 * 2206 * - %LOCK_SH -- a shared lock. 2207 * - %LOCK_EX -- an exclusive lock. 2208 * - %LOCK_UN -- remove an existing lock. 2209 * - %LOCK_MAND -- a 'mandatory' flock. 2210 * This exists to emulate Windows Share Modes. 2211 * 2212 * %LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other 2213 * processes read and write access respectively. 2214 */ 2215 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 2216 { 2217 struct fd f = fdget(fd); 2218 struct file_lock *lock; 2219 int can_sleep, unlock; 2220 int error; 2221 2222 error = -EBADF; 2223 if (!f.file) 2224 goto out; 2225 2226 can_sleep = !(cmd & LOCK_NB); 2227 cmd &= ~LOCK_NB; 2228 unlock = (cmd == LOCK_UN); 2229 2230 if (!unlock && !(cmd & LOCK_MAND) && 2231 !(f.file->f_mode & (FMODE_READ|FMODE_WRITE))) 2232 goto out_putf; 2233 2234 lock = flock_make_lock(f.file, cmd, NULL); 2235 if (IS_ERR(lock)) { 2236 error = PTR_ERR(lock); 2237 goto out_putf; 2238 } 2239 2240 if (can_sleep) 2241 lock->fl_flags |= FL_SLEEP; 2242 2243 error = security_file_lock(f.file, lock->fl_type); 2244 if (error) 2245 goto out_free; 2246 2247 if (f.file->f_op->flock) 2248 error = f.file->f_op->flock(f.file, 2249 (can_sleep) ? F_SETLKW : F_SETLK, 2250 lock); 2251 else 2252 error = locks_lock_file_wait(f.file, lock); 2253 2254 out_free: 2255 locks_free_lock(lock); 2256 2257 out_putf: 2258 fdput(f); 2259 out: 2260 return error; 2261 } 2262 2263 /** 2264 * vfs_test_lock - test file byte range lock 2265 * @filp: The file to test lock for 2266 * @fl: The lock to test; also used to hold result 2267 * 2268 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 2269 * setting conf->fl_type to something other than F_UNLCK. 2270 */ 2271 int vfs_test_lock(struct file *filp, struct file_lock *fl) 2272 { 2273 if (filp->f_op->lock) 2274 return filp->f_op->lock(filp, F_GETLK, fl); 2275 posix_test_lock(filp, fl); 2276 return 0; 2277 } 2278 EXPORT_SYMBOL_GPL(vfs_test_lock); 2279 2280 /** 2281 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace 2282 * @fl: The file_lock who's fl_pid should be translated 2283 * @ns: The namespace into which the pid should be translated 2284 * 2285 * Used to tranlate a fl_pid into a namespace virtual pid number 2286 */ 2287 static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns) 2288 { 2289 pid_t vnr; 2290 struct pid *pid; 2291 2292 if (IS_OFDLCK(fl)) 2293 return -1; 2294 if (IS_REMOTELCK(fl)) 2295 return fl->fl_pid; 2296 /* 2297 * If the flock owner process is dead and its pid has been already 2298 * freed, the translation below won't work, but we still want to show 2299 * flock owner pid number in init pidns. 2300 */ 2301 if (ns == &init_pid_ns) 2302 return (pid_t)fl->fl_pid; 2303 2304 rcu_read_lock(); 2305 pid = find_pid_ns(fl->fl_pid, &init_pid_ns); 2306 vnr = pid_nr_ns(pid, ns); 2307 rcu_read_unlock(); 2308 return vnr; 2309 } 2310 2311 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 2312 { 2313 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2314 #if BITS_PER_LONG == 32 2315 /* 2316 * Make sure we can represent the posix lock via 2317 * legacy 32bit flock. 2318 */ 2319 if (fl->fl_start > OFFT_OFFSET_MAX) 2320 return -EOVERFLOW; 2321 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 2322 return -EOVERFLOW; 2323 #endif 2324 flock->l_start = fl->fl_start; 2325 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2326 fl->fl_end - fl->fl_start + 1; 2327 flock->l_whence = 0; 2328 flock->l_type = fl->fl_type; 2329 return 0; 2330 } 2331 2332 #if BITS_PER_LONG == 32 2333 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 2334 { 2335 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2336 flock->l_start = fl->fl_start; 2337 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2338 fl->fl_end - fl->fl_start + 1; 2339 flock->l_whence = 0; 2340 flock->l_type = fl->fl_type; 2341 } 2342 #endif 2343 2344 /* Report the first existing lock that would conflict with l. 2345 * This implements the F_GETLK command of fcntl(). 2346 */ 2347 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock) 2348 { 2349 struct file_lock *fl; 2350 int error; 2351 2352 fl = locks_alloc_lock(); 2353 if (fl == NULL) 2354 return -ENOMEM; 2355 error = -EINVAL; 2356 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2357 goto out; 2358 2359 error = flock_to_posix_lock(filp, fl, flock); 2360 if (error) 2361 goto out; 2362 2363 if (cmd == F_OFD_GETLK) { 2364 error = -EINVAL; 2365 if (flock->l_pid != 0) 2366 goto out; 2367 2368 cmd = F_GETLK; 2369 fl->fl_flags |= FL_OFDLCK; 2370 fl->fl_owner = filp; 2371 } 2372 2373 error = vfs_test_lock(filp, fl); 2374 if (error) 2375 goto out; 2376 2377 flock->l_type = fl->fl_type; 2378 if (fl->fl_type != F_UNLCK) { 2379 error = posix_lock_to_flock(flock, fl); 2380 if (error) 2381 goto out; 2382 } 2383 out: 2384 locks_free_lock(fl); 2385 return error; 2386 } 2387 2388 /** 2389 * vfs_lock_file - file byte range lock 2390 * @filp: The file to apply the lock to 2391 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 2392 * @fl: The lock to be applied 2393 * @conf: Place to return a copy of the conflicting lock, if found. 2394 * 2395 * A caller that doesn't care about the conflicting lock may pass NULL 2396 * as the final argument. 2397 * 2398 * If the filesystem defines a private ->lock() method, then @conf will 2399 * be left unchanged; so a caller that cares should initialize it to 2400 * some acceptable default. 2401 * 2402 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 2403 * locks, the ->lock() interface may return asynchronously, before the lock has 2404 * been granted or denied by the underlying filesystem, if (and only if) 2405 * lm_grant is set. Callers expecting ->lock() to return asynchronously 2406 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if) 2407 * the request is for a blocking lock. When ->lock() does return asynchronously, 2408 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock 2409 * request completes. 2410 * If the request is for non-blocking lock the file system should return 2411 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 2412 * with the result. If the request timed out the callback routine will return a 2413 * nonzero return code and the file system should release the lock. The file 2414 * system is also responsible to keep a corresponding posix lock when it 2415 * grants a lock so the VFS can find out which locks are locally held and do 2416 * the correct lock cleanup when required. 2417 * The underlying filesystem must not drop the kernel lock or call 2418 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED 2419 * return code. 2420 */ 2421 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 2422 { 2423 if (filp->f_op->lock) 2424 return filp->f_op->lock(filp, cmd, fl); 2425 else 2426 return posix_lock_file(filp, fl, conf); 2427 } 2428 EXPORT_SYMBOL_GPL(vfs_lock_file); 2429 2430 static int do_lock_file_wait(struct file *filp, unsigned int cmd, 2431 struct file_lock *fl) 2432 { 2433 int error; 2434 2435 error = security_file_lock(filp, fl->fl_type); 2436 if (error) 2437 return error; 2438 2439 for (;;) { 2440 error = vfs_lock_file(filp, cmd, fl, NULL); 2441 if (error != FILE_LOCK_DEFERRED) 2442 break; 2443 error = wait_event_interruptible(fl->fl_wait, 2444 list_empty(&fl->fl_blocked_member)); 2445 if (error) 2446 break; 2447 } 2448 locks_delete_block(fl); 2449 2450 return error; 2451 } 2452 2453 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */ 2454 static int 2455 check_fmode_for_setlk(struct file_lock *fl) 2456 { 2457 switch (fl->fl_type) { 2458 case F_RDLCK: 2459 if (!(fl->fl_file->f_mode & FMODE_READ)) 2460 return -EBADF; 2461 break; 2462 case F_WRLCK: 2463 if (!(fl->fl_file->f_mode & FMODE_WRITE)) 2464 return -EBADF; 2465 } 2466 return 0; 2467 } 2468 2469 /* Apply the lock described by l to an open file descriptor. 2470 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2471 */ 2472 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 2473 struct flock *flock) 2474 { 2475 struct file_lock *file_lock = locks_alloc_lock(); 2476 struct inode *inode = locks_inode(filp); 2477 struct file *f; 2478 int error; 2479 2480 if (file_lock == NULL) 2481 return -ENOLCK; 2482 2483 /* Don't allow mandatory locks on files that may be memory mapped 2484 * and shared. 2485 */ 2486 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 2487 error = -EAGAIN; 2488 goto out; 2489 } 2490 2491 error = flock_to_posix_lock(filp, file_lock, flock); 2492 if (error) 2493 goto out; 2494 2495 error = check_fmode_for_setlk(file_lock); 2496 if (error) 2497 goto out; 2498 2499 /* 2500 * If the cmd is requesting file-private locks, then set the 2501 * FL_OFDLCK flag and override the owner. 2502 */ 2503 switch (cmd) { 2504 case F_OFD_SETLK: 2505 error = -EINVAL; 2506 if (flock->l_pid != 0) 2507 goto out; 2508 2509 cmd = F_SETLK; 2510 file_lock->fl_flags |= FL_OFDLCK; 2511 file_lock->fl_owner = filp; 2512 break; 2513 case F_OFD_SETLKW: 2514 error = -EINVAL; 2515 if (flock->l_pid != 0) 2516 goto out; 2517 2518 cmd = F_SETLKW; 2519 file_lock->fl_flags |= FL_OFDLCK; 2520 file_lock->fl_owner = filp; 2521 /* Fallthrough */ 2522 case F_SETLKW: 2523 file_lock->fl_flags |= FL_SLEEP; 2524 } 2525 2526 error = do_lock_file_wait(filp, cmd, file_lock); 2527 2528 /* 2529 * Attempt to detect a close/fcntl race and recover by releasing the 2530 * lock that was just acquired. There is no need to do that when we're 2531 * unlocking though, or for OFD locks. 2532 */ 2533 if (!error && file_lock->fl_type != F_UNLCK && 2534 !(file_lock->fl_flags & FL_OFDLCK)) { 2535 /* 2536 * We need that spin_lock here - it prevents reordering between 2537 * update of i_flctx->flc_posix and check for it done in 2538 * close(). rcu_read_lock() wouldn't do. 2539 */ 2540 spin_lock(¤t->files->file_lock); 2541 f = fcheck(fd); 2542 spin_unlock(¤t->files->file_lock); 2543 if (f != filp) { 2544 file_lock->fl_type = F_UNLCK; 2545 error = do_lock_file_wait(filp, cmd, file_lock); 2546 WARN_ON_ONCE(error); 2547 error = -EBADF; 2548 } 2549 } 2550 out: 2551 trace_fcntl_setlk(inode, file_lock, error); 2552 locks_free_lock(file_lock); 2553 return error; 2554 } 2555 2556 #if BITS_PER_LONG == 32 2557 /* Report the first existing lock that would conflict with l. 2558 * This implements the F_GETLK command of fcntl(). 2559 */ 2560 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock) 2561 { 2562 struct file_lock *fl; 2563 int error; 2564 2565 fl = locks_alloc_lock(); 2566 if (fl == NULL) 2567 return -ENOMEM; 2568 2569 error = -EINVAL; 2570 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2571 goto out; 2572 2573 error = flock64_to_posix_lock(filp, fl, flock); 2574 if (error) 2575 goto out; 2576 2577 if (cmd == F_OFD_GETLK) { 2578 error = -EINVAL; 2579 if (flock->l_pid != 0) 2580 goto out; 2581 2582 cmd = F_GETLK64; 2583 fl->fl_flags |= FL_OFDLCK; 2584 fl->fl_owner = filp; 2585 } 2586 2587 error = vfs_test_lock(filp, fl); 2588 if (error) 2589 goto out; 2590 2591 flock->l_type = fl->fl_type; 2592 if (fl->fl_type != F_UNLCK) 2593 posix_lock_to_flock64(flock, fl); 2594 2595 out: 2596 locks_free_lock(fl); 2597 return error; 2598 } 2599 2600 /* Apply the lock described by l to an open file descriptor. 2601 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2602 */ 2603 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 2604 struct flock64 *flock) 2605 { 2606 struct file_lock *file_lock = locks_alloc_lock(); 2607 struct inode *inode = locks_inode(filp); 2608 struct file *f; 2609 int error; 2610 2611 if (file_lock == NULL) 2612 return -ENOLCK; 2613 2614 /* Don't allow mandatory locks on files that may be memory mapped 2615 * and shared. 2616 */ 2617 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 2618 error = -EAGAIN; 2619 goto out; 2620 } 2621 2622 error = flock64_to_posix_lock(filp, file_lock, flock); 2623 if (error) 2624 goto out; 2625 2626 error = check_fmode_for_setlk(file_lock); 2627 if (error) 2628 goto out; 2629 2630 /* 2631 * If the cmd is requesting file-private locks, then set the 2632 * FL_OFDLCK flag and override the owner. 2633 */ 2634 switch (cmd) { 2635 case F_OFD_SETLK: 2636 error = -EINVAL; 2637 if (flock->l_pid != 0) 2638 goto out; 2639 2640 cmd = F_SETLK64; 2641 file_lock->fl_flags |= FL_OFDLCK; 2642 file_lock->fl_owner = filp; 2643 break; 2644 case F_OFD_SETLKW: 2645 error = -EINVAL; 2646 if (flock->l_pid != 0) 2647 goto out; 2648 2649 cmd = F_SETLKW64; 2650 file_lock->fl_flags |= FL_OFDLCK; 2651 file_lock->fl_owner = filp; 2652 /* Fallthrough */ 2653 case F_SETLKW64: 2654 file_lock->fl_flags |= FL_SLEEP; 2655 } 2656 2657 error = do_lock_file_wait(filp, cmd, file_lock); 2658 2659 /* 2660 * Attempt to detect a close/fcntl race and recover by releasing the 2661 * lock that was just acquired. There is no need to do that when we're 2662 * unlocking though, or for OFD locks. 2663 */ 2664 if (!error && file_lock->fl_type != F_UNLCK && 2665 !(file_lock->fl_flags & FL_OFDLCK)) { 2666 /* 2667 * We need that spin_lock here - it prevents reordering between 2668 * update of i_flctx->flc_posix and check for it done in 2669 * close(). rcu_read_lock() wouldn't do. 2670 */ 2671 spin_lock(¤t->files->file_lock); 2672 f = fcheck(fd); 2673 spin_unlock(¤t->files->file_lock); 2674 if (f != filp) { 2675 file_lock->fl_type = F_UNLCK; 2676 error = do_lock_file_wait(filp, cmd, file_lock); 2677 WARN_ON_ONCE(error); 2678 error = -EBADF; 2679 } 2680 } 2681 out: 2682 locks_free_lock(file_lock); 2683 return error; 2684 } 2685 #endif /* BITS_PER_LONG == 32 */ 2686 2687 /* 2688 * This function is called when the file is being removed 2689 * from the task's fd array. POSIX locks belonging to this task 2690 * are deleted at this time. 2691 */ 2692 void locks_remove_posix(struct file *filp, fl_owner_t owner) 2693 { 2694 int error; 2695 struct inode *inode = locks_inode(filp); 2696 struct file_lock lock; 2697 struct file_lock_context *ctx; 2698 2699 /* 2700 * If there are no locks held on this file, we don't need to call 2701 * posix_lock_file(). Another process could be setting a lock on this 2702 * file at the same time, but we wouldn't remove that lock anyway. 2703 */ 2704 ctx = smp_load_acquire(&inode->i_flctx); 2705 if (!ctx || list_empty(&ctx->flc_posix)) 2706 return; 2707 2708 locks_init_lock(&lock); 2709 lock.fl_type = F_UNLCK; 2710 lock.fl_flags = FL_POSIX | FL_CLOSE; 2711 lock.fl_start = 0; 2712 lock.fl_end = OFFSET_MAX; 2713 lock.fl_owner = owner; 2714 lock.fl_pid = current->tgid; 2715 lock.fl_file = filp; 2716 lock.fl_ops = NULL; 2717 lock.fl_lmops = NULL; 2718 2719 error = vfs_lock_file(filp, F_SETLK, &lock, NULL); 2720 2721 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2722 lock.fl_ops->fl_release_private(&lock); 2723 trace_locks_remove_posix(inode, &lock, error); 2724 } 2725 EXPORT_SYMBOL(locks_remove_posix); 2726 2727 /* The i_flctx must be valid when calling into here */ 2728 static void 2729 locks_remove_flock(struct file *filp, struct file_lock_context *flctx) 2730 { 2731 struct file_lock fl; 2732 struct inode *inode = locks_inode(filp); 2733 2734 if (list_empty(&flctx->flc_flock)) 2735 return; 2736 2737 flock_make_lock(filp, LOCK_UN, &fl); 2738 fl.fl_flags |= FL_CLOSE; 2739 2740 if (filp->f_op->flock) 2741 filp->f_op->flock(filp, F_SETLKW, &fl); 2742 else 2743 flock_lock_inode(inode, &fl); 2744 2745 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2746 fl.fl_ops->fl_release_private(&fl); 2747 } 2748 2749 /* The i_flctx must be valid when calling into here */ 2750 static void 2751 locks_remove_lease(struct file *filp, struct file_lock_context *ctx) 2752 { 2753 struct file_lock *fl, *tmp; 2754 LIST_HEAD(dispose); 2755 2756 if (list_empty(&ctx->flc_lease)) 2757 return; 2758 2759 percpu_down_read(&file_rwsem); 2760 spin_lock(&ctx->flc_lock); 2761 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) 2762 if (filp == fl->fl_file) 2763 lease_modify(fl, F_UNLCK, &dispose); 2764 spin_unlock(&ctx->flc_lock); 2765 percpu_up_read(&file_rwsem); 2766 2767 locks_dispose_list(&dispose); 2768 } 2769 2770 /* 2771 * This function is called on the last close of an open file. 2772 */ 2773 void locks_remove_file(struct file *filp) 2774 { 2775 struct file_lock_context *ctx; 2776 2777 ctx = smp_load_acquire(&locks_inode(filp)->i_flctx); 2778 if (!ctx) 2779 return; 2780 2781 /* remove any OFD locks */ 2782 locks_remove_posix(filp, filp); 2783 2784 /* remove flock locks */ 2785 locks_remove_flock(filp, ctx); 2786 2787 /* remove any leases */ 2788 locks_remove_lease(filp, ctx); 2789 2790 spin_lock(&ctx->flc_lock); 2791 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX"); 2792 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK"); 2793 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE"); 2794 spin_unlock(&ctx->flc_lock); 2795 } 2796 2797 /** 2798 * vfs_cancel_lock - file byte range unblock lock 2799 * @filp: The file to apply the unblock to 2800 * @fl: The lock to be unblocked 2801 * 2802 * Used by lock managers to cancel blocked requests 2803 */ 2804 int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2805 { 2806 if (filp->f_op->lock) 2807 return filp->f_op->lock(filp, F_CANCELLK, fl); 2808 return 0; 2809 } 2810 EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2811 2812 #ifdef CONFIG_PROC_FS 2813 #include <linux/proc_fs.h> 2814 #include <linux/seq_file.h> 2815 2816 struct locks_iterator { 2817 int li_cpu; 2818 loff_t li_pos; 2819 }; 2820 2821 static void lock_get_status(struct seq_file *f, struct file_lock *fl, 2822 loff_t id, char *pfx) 2823 { 2824 struct inode *inode = NULL; 2825 unsigned int fl_pid; 2826 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2827 2828 fl_pid = locks_translate_pid(fl, proc_pidns); 2829 /* 2830 * If lock owner is dead (and pid is freed) or not visible in current 2831 * pidns, zero is shown as a pid value. Check lock info from 2832 * init_pid_ns to get saved lock pid value. 2833 */ 2834 2835 if (fl->fl_file != NULL) 2836 inode = locks_inode(fl->fl_file); 2837 2838 seq_printf(f, "%lld:%s ", id, pfx); 2839 if (IS_POSIX(fl)) { 2840 if (fl->fl_flags & FL_ACCESS) 2841 seq_puts(f, "ACCESS"); 2842 else if (IS_OFDLCK(fl)) 2843 seq_puts(f, "OFDLCK"); 2844 else 2845 seq_puts(f, "POSIX "); 2846 2847 seq_printf(f, " %s ", 2848 (inode == NULL) ? "*NOINODE*" : 2849 mandatory_lock(inode) ? "MANDATORY" : "ADVISORY "); 2850 } else if (IS_FLOCK(fl)) { 2851 if (fl->fl_type & LOCK_MAND) { 2852 seq_puts(f, "FLOCK MSNFS "); 2853 } else { 2854 seq_puts(f, "FLOCK ADVISORY "); 2855 } 2856 } else if (IS_LEASE(fl)) { 2857 if (fl->fl_flags & FL_DELEG) 2858 seq_puts(f, "DELEG "); 2859 else 2860 seq_puts(f, "LEASE "); 2861 2862 if (lease_breaking(fl)) 2863 seq_puts(f, "BREAKING "); 2864 else if (fl->fl_file) 2865 seq_puts(f, "ACTIVE "); 2866 else 2867 seq_puts(f, "BREAKER "); 2868 } else { 2869 seq_puts(f, "UNKNOWN UNKNOWN "); 2870 } 2871 if (fl->fl_type & LOCK_MAND) { 2872 seq_printf(f, "%s ", 2873 (fl->fl_type & LOCK_READ) 2874 ? (fl->fl_type & LOCK_WRITE) ? "RW " : "READ " 2875 : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE "); 2876 } else { 2877 int type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type; 2878 2879 seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" : 2880 (type == F_RDLCK) ? "READ" : "UNLCK"); 2881 } 2882 if (inode) { 2883 /* userspace relies on this representation of dev_t */ 2884 seq_printf(f, "%d %02x:%02x:%lu ", fl_pid, 2885 MAJOR(inode->i_sb->s_dev), 2886 MINOR(inode->i_sb->s_dev), inode->i_ino); 2887 } else { 2888 seq_printf(f, "%d <none>:0 ", fl_pid); 2889 } 2890 if (IS_POSIX(fl)) { 2891 if (fl->fl_end == OFFSET_MAX) 2892 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2893 else 2894 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2895 } else { 2896 seq_puts(f, "0 EOF\n"); 2897 } 2898 } 2899 2900 static int locks_show(struct seq_file *f, void *v) 2901 { 2902 struct locks_iterator *iter = f->private; 2903 struct file_lock *fl, *bfl; 2904 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2905 2906 fl = hlist_entry(v, struct file_lock, fl_link); 2907 2908 if (locks_translate_pid(fl, proc_pidns) == 0) 2909 return 0; 2910 2911 lock_get_status(f, fl, iter->li_pos, ""); 2912 2913 list_for_each_entry(bfl, &fl->fl_blocked_requests, fl_blocked_member) 2914 lock_get_status(f, bfl, iter->li_pos, " ->"); 2915 2916 return 0; 2917 } 2918 2919 static void __show_fd_locks(struct seq_file *f, 2920 struct list_head *head, int *id, 2921 struct file *filp, struct files_struct *files) 2922 { 2923 struct file_lock *fl; 2924 2925 list_for_each_entry(fl, head, fl_list) { 2926 2927 if (filp != fl->fl_file) 2928 continue; 2929 if (fl->fl_owner != files && 2930 fl->fl_owner != filp) 2931 continue; 2932 2933 (*id)++; 2934 seq_puts(f, "lock:\t"); 2935 lock_get_status(f, fl, *id, ""); 2936 } 2937 } 2938 2939 void show_fd_locks(struct seq_file *f, 2940 struct file *filp, struct files_struct *files) 2941 { 2942 struct inode *inode = locks_inode(filp); 2943 struct file_lock_context *ctx; 2944 int id = 0; 2945 2946 ctx = smp_load_acquire(&inode->i_flctx); 2947 if (!ctx) 2948 return; 2949 2950 spin_lock(&ctx->flc_lock); 2951 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files); 2952 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files); 2953 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files); 2954 spin_unlock(&ctx->flc_lock); 2955 } 2956 2957 static void *locks_start(struct seq_file *f, loff_t *pos) 2958 __acquires(&blocked_lock_lock) 2959 { 2960 struct locks_iterator *iter = f->private; 2961 2962 iter->li_pos = *pos + 1; 2963 percpu_down_write(&file_rwsem); 2964 spin_lock(&blocked_lock_lock); 2965 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos); 2966 } 2967 2968 static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 2969 { 2970 struct locks_iterator *iter = f->private; 2971 2972 ++iter->li_pos; 2973 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos); 2974 } 2975 2976 static void locks_stop(struct seq_file *f, void *v) 2977 __releases(&blocked_lock_lock) 2978 { 2979 spin_unlock(&blocked_lock_lock); 2980 percpu_up_write(&file_rwsem); 2981 } 2982 2983 static const struct seq_operations locks_seq_operations = { 2984 .start = locks_start, 2985 .next = locks_next, 2986 .stop = locks_stop, 2987 .show = locks_show, 2988 }; 2989 2990 static int __init proc_locks_init(void) 2991 { 2992 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations, 2993 sizeof(struct locks_iterator), NULL); 2994 return 0; 2995 } 2996 fs_initcall(proc_locks_init); 2997 #endif 2998 2999 static int __init filelock_init(void) 3000 { 3001 int i; 3002 3003 flctx_cache = kmem_cache_create("file_lock_ctx", 3004 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL); 3005 3006 filelock_cache = kmem_cache_create("file_lock_cache", 3007 sizeof(struct file_lock), 0, SLAB_PANIC, NULL); 3008 3009 for_each_possible_cpu(i) { 3010 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i); 3011 3012 spin_lock_init(&fll->lock); 3013 INIT_HLIST_HEAD(&fll->hlist); 3014 } 3015 3016 lease_notifier_chain_init(); 3017 return 0; 3018 } 3019 core_initcall(filelock_init); 3020