xref: /openbmc/linux/fs/locks.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  *  linux/fs/locks.c
3  *
4  *  Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls.
5  *  Doug Evans (dje@spiff.uucp), August 07, 1992
6  *
7  *  Deadlock detection added.
8  *  FIXME: one thing isn't handled yet:
9  *	- mandatory locks (requires lots of changes elsewhere)
10  *  Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994.
11  *
12  *  Miscellaneous edits, and a total rewrite of posix_lock_file() code.
13  *  Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994
14  *
15  *  Converted file_lock_table to a linked list from an array, which eliminates
16  *  the limits on how many active file locks are open.
17  *  Chad Page (pageone@netcom.com), November 27, 1994
18  *
19  *  Removed dependency on file descriptors. dup()'ed file descriptors now
20  *  get the same locks as the original file descriptors, and a close() on
21  *  any file descriptor removes ALL the locks on the file for the current
22  *  process. Since locks still depend on the process id, locks are inherited
23  *  after an exec() but not after a fork(). This agrees with POSIX, and both
24  *  BSD and SVR4 practice.
25  *  Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995
26  *
27  *  Scrapped free list which is redundant now that we allocate locks
28  *  dynamically with kmalloc()/kfree().
29  *  Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995
30  *
31  *  Implemented two lock personalities - FL_FLOCK and FL_POSIX.
32  *
33  *  FL_POSIX locks are created with calls to fcntl() and lockf() through the
34  *  fcntl() system call. They have the semantics described above.
35  *
36  *  FL_FLOCK locks are created with calls to flock(), through the flock()
37  *  system call, which is new. Old C libraries implement flock() via fcntl()
38  *  and will continue to use the old, broken implementation.
39  *
40  *  FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated
41  *  with a file pointer (filp). As a result they can be shared by a parent
42  *  process and its children after a fork(). They are removed when the last
43  *  file descriptor referring to the file pointer is closed (unless explicitly
44  *  unlocked).
45  *
46  *  FL_FLOCK locks never deadlock, an existing lock is always removed before
47  *  upgrading from shared to exclusive (or vice versa). When this happens
48  *  any processes blocked by the current lock are woken up and allowed to
49  *  run before the new lock is applied.
50  *  Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995
51  *
52  *  Removed some race conditions in flock_lock_file(), marked other possible
53  *  races. Just grep for FIXME to see them.
54  *  Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996.
55  *
56  *  Addressed Dmitry's concerns. Deadlock checking no longer recursive.
57  *  Lock allocation changed to GFP_ATOMIC as we can't afford to sleep
58  *  once we've checked for blocking and deadlocking.
59  *  Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996.
60  *
61  *  Initial implementation of mandatory locks. SunOS turned out to be
62  *  a rotten model, so I implemented the "obvious" semantics.
63  *  See 'Documentation/filesystems/mandatory-locking.txt' for details.
64  *  Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996.
65  *
66  *  Don't allow mandatory locks on mmap()'ed files. Added simple functions to
67  *  check if a file has mandatory locks, used by mmap(), open() and creat() to
68  *  see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference
69  *  Manual, Section 2.
70  *  Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996.
71  *
72  *  Tidied up block list handling. Added '/proc/locks' interface.
73  *  Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996.
74  *
75  *  Fixed deadlock condition for pathological code that mixes calls to
76  *  flock() and fcntl().
77  *  Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996.
78  *
79  *  Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use
80  *  for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to
81  *  guarantee sensible behaviour in the case where file system modules might
82  *  be compiled with different options than the kernel itself.
83  *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
84  *
85  *  Added a couple of missing wake_up() calls. Thanks to Thomas Meckel
86  *  (Thomas.Meckel@mni.fh-giessen.de) for spotting this.
87  *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
88  *
89  *  Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK
90  *  locks. Changed process synchronisation to avoid dereferencing locks that
91  *  have already been freed.
92  *  Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996.
93  *
94  *  Made the block list a circular list to minimise searching in the list.
95  *  Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996.
96  *
97  *  Made mandatory locking a mount option. Default is not to allow mandatory
98  *  locking.
99  *  Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996.
100  *
101  *  Some adaptations for NFS support.
102  *  Olaf Kirch (okir@monad.swb.de), Dec 1996,
103  *
104  *  Fixed /proc/locks interface so that we can't overrun the buffer we are handed.
105  *  Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997.
106  *
107  *  Use slab allocator instead of kmalloc/kfree.
108  *  Use generic list implementation from <linux/list.h>.
109  *  Sped up posix_locks_deadlock by only considering blocked locks.
110  *  Matthew Wilcox <willy@debian.org>, March, 2000.
111  *
112  *  Leases and LOCK_MAND
113  *  Matthew Wilcox <willy@debian.org>, June, 2000.
114  *  Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000.
115  *
116  * Locking conflicts and dependencies:
117  * If multiple threads attempt to lock the same byte (or flock the same file)
118  * only one can be granted the lock, and other must wait their turn.
119  * The first lock has been "applied" or "granted", the others are "waiting"
120  * and are "blocked" by the "applied" lock..
121  *
122  * Waiting and applied locks are all kept in trees whose properties are:
123  *
124  *	- the root of a tree may be an applied or waiting lock.
125  *	- every other node in the tree is a waiting lock that
126  *	  conflicts with every ancestor of that node.
127  *
128  * Every such tree begins life as a waiting singleton which obviously
129  * satisfies the above properties.
130  *
131  * The only ways we modify trees preserve these properties:
132  *
133  *	1. We may add a new leaf node, but only after first verifying that it
134  *	   conflicts with all of its ancestors.
135  *	2. We may remove the root of a tree, creating a new singleton
136  *	   tree from the root and N new trees rooted in the immediate
137  *	   children.
138  *	3. If the root of a tree is not currently an applied lock, we may
139  *	   apply it (if possible).
140  *	4. We may upgrade the root of the tree (either extend its range,
141  *	   or upgrade its entire range from read to write).
142  *
143  * When an applied lock is modified in a way that reduces or downgrades any
144  * part of its range, we remove all its children (2 above).  This particularly
145  * happens when a lock is unlocked.
146  *
147  * For each of those child trees we "wake up" the thread which is
148  * waiting for the lock so it can continue handling as follows: if the
149  * root of the tree applies, we do so (3).  If it doesn't, it must
150  * conflict with some applied lock.  We remove (wake up) all of its children
151  * (2), and add it is a new leaf to the tree rooted in the applied
152  * lock (1).  We then repeat the process recursively with those
153  * children.
154  *
155  */
156 
157 #include <linux/capability.h>
158 #include <linux/file.h>
159 #include <linux/fdtable.h>
160 #include <linux/fs.h>
161 #include <linux/init.h>
162 #include <linux/security.h>
163 #include <linux/slab.h>
164 #include <linux/syscalls.h>
165 #include <linux/time.h>
166 #include <linux/rcupdate.h>
167 #include <linux/pid_namespace.h>
168 #include <linux/hashtable.h>
169 #include <linux/percpu.h>
170 
171 #define CREATE_TRACE_POINTS
172 #include <trace/events/filelock.h>
173 
174 #include <linux/uaccess.h>
175 
176 #define IS_POSIX(fl)	(fl->fl_flags & FL_POSIX)
177 #define IS_FLOCK(fl)	(fl->fl_flags & FL_FLOCK)
178 #define IS_LEASE(fl)	(fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
179 #define IS_OFDLCK(fl)	(fl->fl_flags & FL_OFDLCK)
180 #define IS_REMOTELCK(fl)	(fl->fl_pid <= 0)
181 
182 static bool lease_breaking(struct file_lock *fl)
183 {
184 	return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
185 }
186 
187 static int target_leasetype(struct file_lock *fl)
188 {
189 	if (fl->fl_flags & FL_UNLOCK_PENDING)
190 		return F_UNLCK;
191 	if (fl->fl_flags & FL_DOWNGRADE_PENDING)
192 		return F_RDLCK;
193 	return fl->fl_type;
194 }
195 
196 int leases_enable = 1;
197 int lease_break_time = 45;
198 
199 /*
200  * The global file_lock_list is only used for displaying /proc/locks, so we
201  * keep a list on each CPU, with each list protected by its own spinlock.
202  * Global serialization is done using file_rwsem.
203  *
204  * Note that alterations to the list also require that the relevant flc_lock is
205  * held.
206  */
207 struct file_lock_list_struct {
208 	spinlock_t		lock;
209 	struct hlist_head	hlist;
210 };
211 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
212 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
213 
214 /*
215  * The blocked_hash is used to find POSIX lock loops for deadlock detection.
216  * It is protected by blocked_lock_lock.
217  *
218  * We hash locks by lockowner in order to optimize searching for the lock a
219  * particular lockowner is waiting on.
220  *
221  * FIXME: make this value scale via some heuristic? We generally will want more
222  * buckets when we have more lockowners holding locks, but that's a little
223  * difficult to determine without knowing what the workload will look like.
224  */
225 #define BLOCKED_HASH_BITS	7
226 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
227 
228 /*
229  * This lock protects the blocked_hash. Generally, if you're accessing it, you
230  * want to be holding this lock.
231  *
232  * In addition, it also protects the fl->fl_blocked_requests list, and the
233  * fl->fl_blocker pointer for file_lock structures that are acting as lock
234  * requests (in contrast to those that are acting as records of acquired locks).
235  *
236  * Note that when we acquire this lock in order to change the above fields,
237  * we often hold the flc_lock as well. In certain cases, when reading the fields
238  * protected by this lock, we can skip acquiring it iff we already hold the
239  * flc_lock.
240  */
241 static DEFINE_SPINLOCK(blocked_lock_lock);
242 
243 static struct kmem_cache *flctx_cache __read_mostly;
244 static struct kmem_cache *filelock_cache __read_mostly;
245 
246 static struct file_lock_context *
247 locks_get_lock_context(struct inode *inode, int type)
248 {
249 	struct file_lock_context *ctx;
250 
251 	/* paired with cmpxchg() below */
252 	ctx = smp_load_acquire(&inode->i_flctx);
253 	if (likely(ctx) || type == F_UNLCK)
254 		goto out;
255 
256 	ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
257 	if (!ctx)
258 		goto out;
259 
260 	spin_lock_init(&ctx->flc_lock);
261 	INIT_LIST_HEAD(&ctx->flc_flock);
262 	INIT_LIST_HEAD(&ctx->flc_posix);
263 	INIT_LIST_HEAD(&ctx->flc_lease);
264 
265 	/*
266 	 * Assign the pointer if it's not already assigned. If it is, then
267 	 * free the context we just allocated.
268 	 */
269 	if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
270 		kmem_cache_free(flctx_cache, ctx);
271 		ctx = smp_load_acquire(&inode->i_flctx);
272 	}
273 out:
274 	trace_locks_get_lock_context(inode, type, ctx);
275 	return ctx;
276 }
277 
278 static void
279 locks_dump_ctx_list(struct list_head *list, char *list_type)
280 {
281 	struct file_lock *fl;
282 
283 	list_for_each_entry(fl, list, fl_list) {
284 		pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
285 	}
286 }
287 
288 static void
289 locks_check_ctx_lists(struct inode *inode)
290 {
291 	struct file_lock_context *ctx = inode->i_flctx;
292 
293 	if (unlikely(!list_empty(&ctx->flc_flock) ||
294 		     !list_empty(&ctx->flc_posix) ||
295 		     !list_empty(&ctx->flc_lease))) {
296 		pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
297 			MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
298 			inode->i_ino);
299 		locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
300 		locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
301 		locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
302 	}
303 }
304 
305 static void
306 locks_check_ctx_file_list(struct file *filp, struct list_head *list,
307 				char *list_type)
308 {
309 	struct file_lock *fl;
310 	struct inode *inode = locks_inode(filp);
311 
312 	list_for_each_entry(fl, list, fl_list)
313 		if (fl->fl_file == filp)
314 			pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
315 				" fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
316 				list_type, MAJOR(inode->i_sb->s_dev),
317 				MINOR(inode->i_sb->s_dev), inode->i_ino,
318 				fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
319 }
320 
321 void
322 locks_free_lock_context(struct inode *inode)
323 {
324 	struct file_lock_context *ctx = inode->i_flctx;
325 
326 	if (unlikely(ctx)) {
327 		locks_check_ctx_lists(inode);
328 		kmem_cache_free(flctx_cache, ctx);
329 	}
330 }
331 
332 static void locks_init_lock_heads(struct file_lock *fl)
333 {
334 	INIT_HLIST_NODE(&fl->fl_link);
335 	INIT_LIST_HEAD(&fl->fl_list);
336 	INIT_LIST_HEAD(&fl->fl_blocked_requests);
337 	INIT_LIST_HEAD(&fl->fl_blocked_member);
338 	init_waitqueue_head(&fl->fl_wait);
339 }
340 
341 /* Allocate an empty lock structure. */
342 struct file_lock *locks_alloc_lock(void)
343 {
344 	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
345 
346 	if (fl)
347 		locks_init_lock_heads(fl);
348 
349 	return fl;
350 }
351 EXPORT_SYMBOL_GPL(locks_alloc_lock);
352 
353 void locks_release_private(struct file_lock *fl)
354 {
355 	if (fl->fl_ops) {
356 		if (fl->fl_ops->fl_release_private)
357 			fl->fl_ops->fl_release_private(fl);
358 		fl->fl_ops = NULL;
359 	}
360 
361 	if (fl->fl_lmops) {
362 		if (fl->fl_lmops->lm_put_owner) {
363 			fl->fl_lmops->lm_put_owner(fl->fl_owner);
364 			fl->fl_owner = NULL;
365 		}
366 		fl->fl_lmops = NULL;
367 	}
368 }
369 EXPORT_SYMBOL_GPL(locks_release_private);
370 
371 /* Free a lock which is not in use. */
372 void locks_free_lock(struct file_lock *fl)
373 {
374 	BUG_ON(waitqueue_active(&fl->fl_wait));
375 	BUG_ON(!list_empty(&fl->fl_list));
376 	BUG_ON(!list_empty(&fl->fl_blocked_requests));
377 	BUG_ON(!list_empty(&fl->fl_blocked_member));
378 	BUG_ON(!hlist_unhashed(&fl->fl_link));
379 
380 	locks_release_private(fl);
381 	kmem_cache_free(filelock_cache, fl);
382 }
383 EXPORT_SYMBOL(locks_free_lock);
384 
385 static void
386 locks_dispose_list(struct list_head *dispose)
387 {
388 	struct file_lock *fl;
389 
390 	while (!list_empty(dispose)) {
391 		fl = list_first_entry(dispose, struct file_lock, fl_list);
392 		list_del_init(&fl->fl_list);
393 		locks_free_lock(fl);
394 	}
395 }
396 
397 void locks_init_lock(struct file_lock *fl)
398 {
399 	memset(fl, 0, sizeof(struct file_lock));
400 	locks_init_lock_heads(fl);
401 }
402 EXPORT_SYMBOL(locks_init_lock);
403 
404 /*
405  * Initialize a new lock from an existing file_lock structure.
406  */
407 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
408 {
409 	new->fl_owner = fl->fl_owner;
410 	new->fl_pid = fl->fl_pid;
411 	new->fl_file = NULL;
412 	new->fl_flags = fl->fl_flags;
413 	new->fl_type = fl->fl_type;
414 	new->fl_start = fl->fl_start;
415 	new->fl_end = fl->fl_end;
416 	new->fl_lmops = fl->fl_lmops;
417 	new->fl_ops = NULL;
418 
419 	if (fl->fl_lmops) {
420 		if (fl->fl_lmops->lm_get_owner)
421 			fl->fl_lmops->lm_get_owner(fl->fl_owner);
422 	}
423 }
424 EXPORT_SYMBOL(locks_copy_conflock);
425 
426 void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
427 {
428 	/* "new" must be a freshly-initialized lock */
429 	WARN_ON_ONCE(new->fl_ops);
430 
431 	locks_copy_conflock(new, fl);
432 
433 	new->fl_file = fl->fl_file;
434 	new->fl_ops = fl->fl_ops;
435 
436 	if (fl->fl_ops) {
437 		if (fl->fl_ops->fl_copy_lock)
438 			fl->fl_ops->fl_copy_lock(new, fl);
439 	}
440 }
441 EXPORT_SYMBOL(locks_copy_lock);
442 
443 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
444 {
445 	struct file_lock *f;
446 
447 	/*
448 	 * As ctx->flc_lock is held, new requests cannot be added to
449 	 * ->fl_blocked_requests, so we don't need a lock to check if it
450 	 * is empty.
451 	 */
452 	if (list_empty(&fl->fl_blocked_requests))
453 		return;
454 	spin_lock(&blocked_lock_lock);
455 	list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests);
456 	list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member)
457 		f->fl_blocker = new;
458 	spin_unlock(&blocked_lock_lock);
459 }
460 
461 static inline int flock_translate_cmd(int cmd) {
462 	if (cmd & LOCK_MAND)
463 		return cmd & (LOCK_MAND | LOCK_RW);
464 	switch (cmd) {
465 	case LOCK_SH:
466 		return F_RDLCK;
467 	case LOCK_EX:
468 		return F_WRLCK;
469 	case LOCK_UN:
470 		return F_UNLCK;
471 	}
472 	return -EINVAL;
473 }
474 
475 /* Fill in a file_lock structure with an appropriate FLOCK lock. */
476 static struct file_lock *
477 flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl)
478 {
479 	int type = flock_translate_cmd(cmd);
480 
481 	if (type < 0)
482 		return ERR_PTR(type);
483 
484 	if (fl == NULL) {
485 		fl = locks_alloc_lock();
486 		if (fl == NULL)
487 			return ERR_PTR(-ENOMEM);
488 	} else {
489 		locks_init_lock(fl);
490 	}
491 
492 	fl->fl_file = filp;
493 	fl->fl_owner = filp;
494 	fl->fl_pid = current->tgid;
495 	fl->fl_flags = FL_FLOCK;
496 	fl->fl_type = type;
497 	fl->fl_end = OFFSET_MAX;
498 
499 	return fl;
500 }
501 
502 static int assign_type(struct file_lock *fl, long type)
503 {
504 	switch (type) {
505 	case F_RDLCK:
506 	case F_WRLCK:
507 	case F_UNLCK:
508 		fl->fl_type = type;
509 		break;
510 	default:
511 		return -EINVAL;
512 	}
513 	return 0;
514 }
515 
516 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
517 				 struct flock64 *l)
518 {
519 	switch (l->l_whence) {
520 	case SEEK_SET:
521 		fl->fl_start = 0;
522 		break;
523 	case SEEK_CUR:
524 		fl->fl_start = filp->f_pos;
525 		break;
526 	case SEEK_END:
527 		fl->fl_start = i_size_read(file_inode(filp));
528 		break;
529 	default:
530 		return -EINVAL;
531 	}
532 	if (l->l_start > OFFSET_MAX - fl->fl_start)
533 		return -EOVERFLOW;
534 	fl->fl_start += l->l_start;
535 	if (fl->fl_start < 0)
536 		return -EINVAL;
537 
538 	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
539 	   POSIX-2001 defines it. */
540 	if (l->l_len > 0) {
541 		if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
542 			return -EOVERFLOW;
543 		fl->fl_end = fl->fl_start + l->l_len - 1;
544 
545 	} else if (l->l_len < 0) {
546 		if (fl->fl_start + l->l_len < 0)
547 			return -EINVAL;
548 		fl->fl_end = fl->fl_start - 1;
549 		fl->fl_start += l->l_len;
550 	} else
551 		fl->fl_end = OFFSET_MAX;
552 
553 	fl->fl_owner = current->files;
554 	fl->fl_pid = current->tgid;
555 	fl->fl_file = filp;
556 	fl->fl_flags = FL_POSIX;
557 	fl->fl_ops = NULL;
558 	fl->fl_lmops = NULL;
559 
560 	return assign_type(fl, l->l_type);
561 }
562 
563 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
564  * style lock.
565  */
566 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
567 			       struct flock *l)
568 {
569 	struct flock64 ll = {
570 		.l_type = l->l_type,
571 		.l_whence = l->l_whence,
572 		.l_start = l->l_start,
573 		.l_len = l->l_len,
574 	};
575 
576 	return flock64_to_posix_lock(filp, fl, &ll);
577 }
578 
579 /* default lease lock manager operations */
580 static bool
581 lease_break_callback(struct file_lock *fl)
582 {
583 	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
584 	return false;
585 }
586 
587 static void
588 lease_setup(struct file_lock *fl, void **priv)
589 {
590 	struct file *filp = fl->fl_file;
591 	struct fasync_struct *fa = *priv;
592 
593 	/*
594 	 * fasync_insert_entry() returns the old entry if any. If there was no
595 	 * old entry, then it used "priv" and inserted it into the fasync list.
596 	 * Clear the pointer to indicate that it shouldn't be freed.
597 	 */
598 	if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
599 		*priv = NULL;
600 
601 	__f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
602 }
603 
604 static const struct lock_manager_operations lease_manager_ops = {
605 	.lm_break = lease_break_callback,
606 	.lm_change = lease_modify,
607 	.lm_setup = lease_setup,
608 };
609 
610 /*
611  * Initialize a lease, use the default lock manager operations
612  */
613 static int lease_init(struct file *filp, long type, struct file_lock *fl)
614 {
615 	if (assign_type(fl, type) != 0)
616 		return -EINVAL;
617 
618 	fl->fl_owner = filp;
619 	fl->fl_pid = current->tgid;
620 
621 	fl->fl_file = filp;
622 	fl->fl_flags = FL_LEASE;
623 	fl->fl_start = 0;
624 	fl->fl_end = OFFSET_MAX;
625 	fl->fl_ops = NULL;
626 	fl->fl_lmops = &lease_manager_ops;
627 	return 0;
628 }
629 
630 /* Allocate a file_lock initialised to this type of lease */
631 static struct file_lock *lease_alloc(struct file *filp, long type)
632 {
633 	struct file_lock *fl = locks_alloc_lock();
634 	int error = -ENOMEM;
635 
636 	if (fl == NULL)
637 		return ERR_PTR(error);
638 
639 	error = lease_init(filp, type, fl);
640 	if (error) {
641 		locks_free_lock(fl);
642 		return ERR_PTR(error);
643 	}
644 	return fl;
645 }
646 
647 /* Check if two locks overlap each other.
648  */
649 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
650 {
651 	return ((fl1->fl_end >= fl2->fl_start) &&
652 		(fl2->fl_end >= fl1->fl_start));
653 }
654 
655 /*
656  * Check whether two locks have the same owner.
657  */
658 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
659 {
660 	if (fl1->fl_lmops && fl1->fl_lmops->lm_compare_owner)
661 		return fl2->fl_lmops == fl1->fl_lmops &&
662 			fl1->fl_lmops->lm_compare_owner(fl1, fl2);
663 	return fl1->fl_owner == fl2->fl_owner;
664 }
665 
666 /* Must be called with the flc_lock held! */
667 static void locks_insert_global_locks(struct file_lock *fl)
668 {
669 	struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
670 
671 	percpu_rwsem_assert_held(&file_rwsem);
672 
673 	spin_lock(&fll->lock);
674 	fl->fl_link_cpu = smp_processor_id();
675 	hlist_add_head(&fl->fl_link, &fll->hlist);
676 	spin_unlock(&fll->lock);
677 }
678 
679 /* Must be called with the flc_lock held! */
680 static void locks_delete_global_locks(struct file_lock *fl)
681 {
682 	struct file_lock_list_struct *fll;
683 
684 	percpu_rwsem_assert_held(&file_rwsem);
685 
686 	/*
687 	 * Avoid taking lock if already unhashed. This is safe since this check
688 	 * is done while holding the flc_lock, and new insertions into the list
689 	 * also require that it be held.
690 	 */
691 	if (hlist_unhashed(&fl->fl_link))
692 		return;
693 
694 	fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu);
695 	spin_lock(&fll->lock);
696 	hlist_del_init(&fl->fl_link);
697 	spin_unlock(&fll->lock);
698 }
699 
700 static unsigned long
701 posix_owner_key(struct file_lock *fl)
702 {
703 	if (fl->fl_lmops && fl->fl_lmops->lm_owner_key)
704 		return fl->fl_lmops->lm_owner_key(fl);
705 	return (unsigned long)fl->fl_owner;
706 }
707 
708 static void locks_insert_global_blocked(struct file_lock *waiter)
709 {
710 	lockdep_assert_held(&blocked_lock_lock);
711 
712 	hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter));
713 }
714 
715 static void locks_delete_global_blocked(struct file_lock *waiter)
716 {
717 	lockdep_assert_held(&blocked_lock_lock);
718 
719 	hash_del(&waiter->fl_link);
720 }
721 
722 /* Remove waiter from blocker's block list.
723  * When blocker ends up pointing to itself then the list is empty.
724  *
725  * Must be called with blocked_lock_lock held.
726  */
727 static void __locks_delete_block(struct file_lock *waiter)
728 {
729 	locks_delete_global_blocked(waiter);
730 	list_del_init(&waiter->fl_blocked_member);
731 	waiter->fl_blocker = NULL;
732 }
733 
734 static void __locks_wake_up_blocks(struct file_lock *blocker)
735 {
736 	while (!list_empty(&blocker->fl_blocked_requests)) {
737 		struct file_lock *waiter;
738 
739 		waiter = list_first_entry(&blocker->fl_blocked_requests,
740 					  struct file_lock, fl_blocked_member);
741 		__locks_delete_block(waiter);
742 		if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
743 			waiter->fl_lmops->lm_notify(waiter);
744 		else
745 			wake_up(&waiter->fl_wait);
746 	}
747 }
748 
749 /**
750  *	locks_delete_lock - stop waiting for a file lock
751  *	@waiter: the lock which was waiting
752  *
753  *	lockd/nfsd need to disconnect the lock while working on it.
754  */
755 int locks_delete_block(struct file_lock *waiter)
756 {
757 	int status = -ENOENT;
758 
759 	/*
760 	 * If fl_blocker is NULL, it won't be set again as this thread
761 	 * "owns" the lock and is the only one that might try to claim
762 	 * the lock.  So it is safe to test fl_blocker locklessly.
763 	 * Also if fl_blocker is NULL, this waiter is not listed on
764 	 * fl_blocked_requests for some lock, so no other request can
765 	 * be added to the list of fl_blocked_requests for this
766 	 * request.  So if fl_blocker is NULL, it is safe to
767 	 * locklessly check if fl_blocked_requests is empty.  If both
768 	 * of these checks succeed, there is no need to take the lock.
769 	 */
770 	if (waiter->fl_blocker == NULL &&
771 	    list_empty(&waiter->fl_blocked_requests))
772 		return status;
773 	spin_lock(&blocked_lock_lock);
774 	if (waiter->fl_blocker)
775 		status = 0;
776 	__locks_wake_up_blocks(waiter);
777 	__locks_delete_block(waiter);
778 	spin_unlock(&blocked_lock_lock);
779 	return status;
780 }
781 EXPORT_SYMBOL(locks_delete_block);
782 
783 /* Insert waiter into blocker's block list.
784  * We use a circular list so that processes can be easily woken up in
785  * the order they blocked. The documentation doesn't require this but
786  * it seems like the reasonable thing to do.
787  *
788  * Must be called with both the flc_lock and blocked_lock_lock held. The
789  * fl_blocked_requests list itself is protected by the blocked_lock_lock,
790  * but by ensuring that the flc_lock is also held on insertions we can avoid
791  * taking the blocked_lock_lock in some cases when we see that the
792  * fl_blocked_requests list is empty.
793  *
794  * Rather than just adding to the list, we check for conflicts with any existing
795  * waiters, and add beneath any waiter that blocks the new waiter.
796  * Thus wakeups don't happen until needed.
797  */
798 static void __locks_insert_block(struct file_lock *blocker,
799 				 struct file_lock *waiter,
800 				 bool conflict(struct file_lock *,
801 					       struct file_lock *))
802 {
803 	struct file_lock *fl;
804 	BUG_ON(!list_empty(&waiter->fl_blocked_member));
805 
806 new_blocker:
807 	list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member)
808 		if (conflict(fl, waiter)) {
809 			blocker =  fl;
810 			goto new_blocker;
811 		}
812 	waiter->fl_blocker = blocker;
813 	list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests);
814 	if (IS_POSIX(blocker) && !IS_OFDLCK(blocker))
815 		locks_insert_global_blocked(waiter);
816 
817 	/* The requests in waiter->fl_blocked are known to conflict with
818 	 * waiter, but might not conflict with blocker, or the requests
819 	 * and lock which block it.  So they all need to be woken.
820 	 */
821 	__locks_wake_up_blocks(waiter);
822 }
823 
824 /* Must be called with flc_lock held. */
825 static void locks_insert_block(struct file_lock *blocker,
826 			       struct file_lock *waiter,
827 			       bool conflict(struct file_lock *,
828 					     struct file_lock *))
829 {
830 	spin_lock(&blocked_lock_lock);
831 	__locks_insert_block(blocker, waiter, conflict);
832 	spin_unlock(&blocked_lock_lock);
833 }
834 
835 /*
836  * Wake up processes blocked waiting for blocker.
837  *
838  * Must be called with the inode->flc_lock held!
839  */
840 static void locks_wake_up_blocks(struct file_lock *blocker)
841 {
842 	/*
843 	 * Avoid taking global lock if list is empty. This is safe since new
844 	 * blocked requests are only added to the list under the flc_lock, and
845 	 * the flc_lock is always held here. Note that removal from the
846 	 * fl_blocked_requests list does not require the flc_lock, so we must
847 	 * recheck list_empty() after acquiring the blocked_lock_lock.
848 	 */
849 	if (list_empty(&blocker->fl_blocked_requests))
850 		return;
851 
852 	spin_lock(&blocked_lock_lock);
853 	__locks_wake_up_blocks(blocker);
854 	spin_unlock(&blocked_lock_lock);
855 }
856 
857 static void
858 locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before)
859 {
860 	list_add_tail(&fl->fl_list, before);
861 	locks_insert_global_locks(fl);
862 }
863 
864 static void
865 locks_unlink_lock_ctx(struct file_lock *fl)
866 {
867 	locks_delete_global_locks(fl);
868 	list_del_init(&fl->fl_list);
869 	locks_wake_up_blocks(fl);
870 }
871 
872 static void
873 locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose)
874 {
875 	locks_unlink_lock_ctx(fl);
876 	if (dispose)
877 		list_add(&fl->fl_list, dispose);
878 	else
879 		locks_free_lock(fl);
880 }
881 
882 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
883  * checks for shared/exclusive status of overlapping locks.
884  */
885 static bool locks_conflict(struct file_lock *caller_fl,
886 			   struct file_lock *sys_fl)
887 {
888 	if (sys_fl->fl_type == F_WRLCK)
889 		return true;
890 	if (caller_fl->fl_type == F_WRLCK)
891 		return true;
892 	return false;
893 }
894 
895 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
896  * checking before calling the locks_conflict().
897  */
898 static bool posix_locks_conflict(struct file_lock *caller_fl,
899 				 struct file_lock *sys_fl)
900 {
901 	/* POSIX locks owned by the same process do not conflict with
902 	 * each other.
903 	 */
904 	if (posix_same_owner(caller_fl, sys_fl))
905 		return false;
906 
907 	/* Check whether they overlap */
908 	if (!locks_overlap(caller_fl, sys_fl))
909 		return false;
910 
911 	return locks_conflict(caller_fl, sys_fl);
912 }
913 
914 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
915  * checking before calling the locks_conflict().
916  */
917 static bool flock_locks_conflict(struct file_lock *caller_fl,
918 				 struct file_lock *sys_fl)
919 {
920 	/* FLOCK locks referring to the same filp do not conflict with
921 	 * each other.
922 	 */
923 	if (caller_fl->fl_file == sys_fl->fl_file)
924 		return false;
925 	if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND))
926 		return false;
927 
928 	return locks_conflict(caller_fl, sys_fl);
929 }
930 
931 void
932 posix_test_lock(struct file *filp, struct file_lock *fl)
933 {
934 	struct file_lock *cfl;
935 	struct file_lock_context *ctx;
936 	struct inode *inode = locks_inode(filp);
937 
938 	ctx = smp_load_acquire(&inode->i_flctx);
939 	if (!ctx || list_empty_careful(&ctx->flc_posix)) {
940 		fl->fl_type = F_UNLCK;
941 		return;
942 	}
943 
944 	spin_lock(&ctx->flc_lock);
945 	list_for_each_entry(cfl, &ctx->flc_posix, fl_list) {
946 		if (posix_locks_conflict(fl, cfl)) {
947 			locks_copy_conflock(fl, cfl);
948 			goto out;
949 		}
950 	}
951 	fl->fl_type = F_UNLCK;
952 out:
953 	spin_unlock(&ctx->flc_lock);
954 	return;
955 }
956 EXPORT_SYMBOL(posix_test_lock);
957 
958 /*
959  * Deadlock detection:
960  *
961  * We attempt to detect deadlocks that are due purely to posix file
962  * locks.
963  *
964  * We assume that a task can be waiting for at most one lock at a time.
965  * So for any acquired lock, the process holding that lock may be
966  * waiting on at most one other lock.  That lock in turns may be held by
967  * someone waiting for at most one other lock.  Given a requested lock
968  * caller_fl which is about to wait for a conflicting lock block_fl, we
969  * follow this chain of waiters to ensure we are not about to create a
970  * cycle.
971  *
972  * Since we do this before we ever put a process to sleep on a lock, we
973  * are ensured that there is never a cycle; that is what guarantees that
974  * the while() loop in posix_locks_deadlock() eventually completes.
975  *
976  * Note: the above assumption may not be true when handling lock
977  * requests from a broken NFS client. It may also fail in the presence
978  * of tasks (such as posix threads) sharing the same open file table.
979  * To handle those cases, we just bail out after a few iterations.
980  *
981  * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
982  * Because the owner is not even nominally tied to a thread of
983  * execution, the deadlock detection below can't reasonably work well. Just
984  * skip it for those.
985  *
986  * In principle, we could do a more limited deadlock detection on FL_OFDLCK
987  * locks that just checks for the case where two tasks are attempting to
988  * upgrade from read to write locks on the same inode.
989  */
990 
991 #define MAX_DEADLK_ITERATIONS 10
992 
993 /* Find a lock that the owner of the given block_fl is blocking on. */
994 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
995 {
996 	struct file_lock *fl;
997 
998 	hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) {
999 		if (posix_same_owner(fl, block_fl)) {
1000 			while (fl->fl_blocker)
1001 				fl = fl->fl_blocker;
1002 			return fl;
1003 		}
1004 	}
1005 	return NULL;
1006 }
1007 
1008 /* Must be called with the blocked_lock_lock held! */
1009 static int posix_locks_deadlock(struct file_lock *caller_fl,
1010 				struct file_lock *block_fl)
1011 {
1012 	int i = 0;
1013 
1014 	lockdep_assert_held(&blocked_lock_lock);
1015 
1016 	/*
1017 	 * This deadlock detector can't reasonably detect deadlocks with
1018 	 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1019 	 */
1020 	if (IS_OFDLCK(caller_fl))
1021 		return 0;
1022 
1023 	while ((block_fl = what_owner_is_waiting_for(block_fl))) {
1024 		if (i++ > MAX_DEADLK_ITERATIONS)
1025 			return 0;
1026 		if (posix_same_owner(caller_fl, block_fl))
1027 			return 1;
1028 	}
1029 	return 0;
1030 }
1031 
1032 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1033  * after any leases, but before any posix locks.
1034  *
1035  * Note that if called with an FL_EXISTS argument, the caller may determine
1036  * whether or not a lock was successfully freed by testing the return
1037  * value for -ENOENT.
1038  */
1039 static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1040 {
1041 	struct file_lock *new_fl = NULL;
1042 	struct file_lock *fl;
1043 	struct file_lock_context *ctx;
1044 	int error = 0;
1045 	bool found = false;
1046 	LIST_HEAD(dispose);
1047 
1048 	ctx = locks_get_lock_context(inode, request->fl_type);
1049 	if (!ctx) {
1050 		if (request->fl_type != F_UNLCK)
1051 			return -ENOMEM;
1052 		return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0;
1053 	}
1054 
1055 	if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
1056 		new_fl = locks_alloc_lock();
1057 		if (!new_fl)
1058 			return -ENOMEM;
1059 	}
1060 
1061 	percpu_down_read(&file_rwsem);
1062 	spin_lock(&ctx->flc_lock);
1063 	if (request->fl_flags & FL_ACCESS)
1064 		goto find_conflict;
1065 
1066 	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1067 		if (request->fl_file != fl->fl_file)
1068 			continue;
1069 		if (request->fl_type == fl->fl_type)
1070 			goto out;
1071 		found = true;
1072 		locks_delete_lock_ctx(fl, &dispose);
1073 		break;
1074 	}
1075 
1076 	if (request->fl_type == F_UNLCK) {
1077 		if ((request->fl_flags & FL_EXISTS) && !found)
1078 			error = -ENOENT;
1079 		goto out;
1080 	}
1081 
1082 find_conflict:
1083 	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1084 		if (!flock_locks_conflict(request, fl))
1085 			continue;
1086 		error = -EAGAIN;
1087 		if (!(request->fl_flags & FL_SLEEP))
1088 			goto out;
1089 		error = FILE_LOCK_DEFERRED;
1090 		locks_insert_block(fl, request, flock_locks_conflict);
1091 		goto out;
1092 	}
1093 	if (request->fl_flags & FL_ACCESS)
1094 		goto out;
1095 	locks_copy_lock(new_fl, request);
1096 	locks_move_blocks(new_fl, request);
1097 	locks_insert_lock_ctx(new_fl, &ctx->flc_flock);
1098 	new_fl = NULL;
1099 	error = 0;
1100 
1101 out:
1102 	spin_unlock(&ctx->flc_lock);
1103 	percpu_up_read(&file_rwsem);
1104 	if (new_fl)
1105 		locks_free_lock(new_fl);
1106 	locks_dispose_list(&dispose);
1107 	trace_flock_lock_inode(inode, request, error);
1108 	return error;
1109 }
1110 
1111 static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1112 			    struct file_lock *conflock)
1113 {
1114 	struct file_lock *fl, *tmp;
1115 	struct file_lock *new_fl = NULL;
1116 	struct file_lock *new_fl2 = NULL;
1117 	struct file_lock *left = NULL;
1118 	struct file_lock *right = NULL;
1119 	struct file_lock_context *ctx;
1120 	int error;
1121 	bool added = false;
1122 	LIST_HEAD(dispose);
1123 
1124 	ctx = locks_get_lock_context(inode, request->fl_type);
1125 	if (!ctx)
1126 		return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM;
1127 
1128 	/*
1129 	 * We may need two file_lock structures for this operation,
1130 	 * so we get them in advance to avoid races.
1131 	 *
1132 	 * In some cases we can be sure, that no new locks will be needed
1133 	 */
1134 	if (!(request->fl_flags & FL_ACCESS) &&
1135 	    (request->fl_type != F_UNLCK ||
1136 	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1137 		new_fl = locks_alloc_lock();
1138 		new_fl2 = locks_alloc_lock();
1139 	}
1140 
1141 	percpu_down_read(&file_rwsem);
1142 	spin_lock(&ctx->flc_lock);
1143 	/*
1144 	 * New lock request. Walk all POSIX locks and look for conflicts. If
1145 	 * there are any, either return error or put the request on the
1146 	 * blocker's list of waiters and the global blocked_hash.
1147 	 */
1148 	if (request->fl_type != F_UNLCK) {
1149 		list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1150 			if (!posix_locks_conflict(request, fl))
1151 				continue;
1152 			if (conflock)
1153 				locks_copy_conflock(conflock, fl);
1154 			error = -EAGAIN;
1155 			if (!(request->fl_flags & FL_SLEEP))
1156 				goto out;
1157 			/*
1158 			 * Deadlock detection and insertion into the blocked
1159 			 * locks list must be done while holding the same lock!
1160 			 */
1161 			error = -EDEADLK;
1162 			spin_lock(&blocked_lock_lock);
1163 			/*
1164 			 * Ensure that we don't find any locks blocked on this
1165 			 * request during deadlock detection.
1166 			 */
1167 			__locks_wake_up_blocks(request);
1168 			if (likely(!posix_locks_deadlock(request, fl))) {
1169 				error = FILE_LOCK_DEFERRED;
1170 				__locks_insert_block(fl, request,
1171 						     posix_locks_conflict);
1172 			}
1173 			spin_unlock(&blocked_lock_lock);
1174 			goto out;
1175 		}
1176 	}
1177 
1178 	/* If we're just looking for a conflict, we're done. */
1179 	error = 0;
1180 	if (request->fl_flags & FL_ACCESS)
1181 		goto out;
1182 
1183 	/* Find the first old lock with the same owner as the new lock */
1184 	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1185 		if (posix_same_owner(request, fl))
1186 			break;
1187 	}
1188 
1189 	/* Process locks with this owner. */
1190 	list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) {
1191 		if (!posix_same_owner(request, fl))
1192 			break;
1193 
1194 		/* Detect adjacent or overlapping regions (if same lock type) */
1195 		if (request->fl_type == fl->fl_type) {
1196 			/* In all comparisons of start vs end, use
1197 			 * "start - 1" rather than "end + 1". If end
1198 			 * is OFFSET_MAX, end + 1 will become negative.
1199 			 */
1200 			if (fl->fl_end < request->fl_start - 1)
1201 				continue;
1202 			/* If the next lock in the list has entirely bigger
1203 			 * addresses than the new one, insert the lock here.
1204 			 */
1205 			if (fl->fl_start - 1 > request->fl_end)
1206 				break;
1207 
1208 			/* If we come here, the new and old lock are of the
1209 			 * same type and adjacent or overlapping. Make one
1210 			 * lock yielding from the lower start address of both
1211 			 * locks to the higher end address.
1212 			 */
1213 			if (fl->fl_start > request->fl_start)
1214 				fl->fl_start = request->fl_start;
1215 			else
1216 				request->fl_start = fl->fl_start;
1217 			if (fl->fl_end < request->fl_end)
1218 				fl->fl_end = request->fl_end;
1219 			else
1220 				request->fl_end = fl->fl_end;
1221 			if (added) {
1222 				locks_delete_lock_ctx(fl, &dispose);
1223 				continue;
1224 			}
1225 			request = fl;
1226 			added = true;
1227 		} else {
1228 			/* Processing for different lock types is a bit
1229 			 * more complex.
1230 			 */
1231 			if (fl->fl_end < request->fl_start)
1232 				continue;
1233 			if (fl->fl_start > request->fl_end)
1234 				break;
1235 			if (request->fl_type == F_UNLCK)
1236 				added = true;
1237 			if (fl->fl_start < request->fl_start)
1238 				left = fl;
1239 			/* If the next lock in the list has a higher end
1240 			 * address than the new one, insert the new one here.
1241 			 */
1242 			if (fl->fl_end > request->fl_end) {
1243 				right = fl;
1244 				break;
1245 			}
1246 			if (fl->fl_start >= request->fl_start) {
1247 				/* The new lock completely replaces an old
1248 				 * one (This may happen several times).
1249 				 */
1250 				if (added) {
1251 					locks_delete_lock_ctx(fl, &dispose);
1252 					continue;
1253 				}
1254 				/*
1255 				 * Replace the old lock with new_fl, and
1256 				 * remove the old one. It's safe to do the
1257 				 * insert here since we know that we won't be
1258 				 * using new_fl later, and that the lock is
1259 				 * just replacing an existing lock.
1260 				 */
1261 				error = -ENOLCK;
1262 				if (!new_fl)
1263 					goto out;
1264 				locks_copy_lock(new_fl, request);
1265 				request = new_fl;
1266 				new_fl = NULL;
1267 				locks_insert_lock_ctx(request, &fl->fl_list);
1268 				locks_delete_lock_ctx(fl, &dispose);
1269 				added = true;
1270 			}
1271 		}
1272 	}
1273 
1274 	/*
1275 	 * The above code only modifies existing locks in case of merging or
1276 	 * replacing. If new lock(s) need to be inserted all modifications are
1277 	 * done below this, so it's safe yet to bail out.
1278 	 */
1279 	error = -ENOLCK; /* "no luck" */
1280 	if (right && left == right && !new_fl2)
1281 		goto out;
1282 
1283 	error = 0;
1284 	if (!added) {
1285 		if (request->fl_type == F_UNLCK) {
1286 			if (request->fl_flags & FL_EXISTS)
1287 				error = -ENOENT;
1288 			goto out;
1289 		}
1290 
1291 		if (!new_fl) {
1292 			error = -ENOLCK;
1293 			goto out;
1294 		}
1295 		locks_copy_lock(new_fl, request);
1296 		locks_move_blocks(new_fl, request);
1297 		locks_insert_lock_ctx(new_fl, &fl->fl_list);
1298 		fl = new_fl;
1299 		new_fl = NULL;
1300 	}
1301 	if (right) {
1302 		if (left == right) {
1303 			/* The new lock breaks the old one in two pieces,
1304 			 * so we have to use the second new lock.
1305 			 */
1306 			left = new_fl2;
1307 			new_fl2 = NULL;
1308 			locks_copy_lock(left, right);
1309 			locks_insert_lock_ctx(left, &fl->fl_list);
1310 		}
1311 		right->fl_start = request->fl_end + 1;
1312 		locks_wake_up_blocks(right);
1313 	}
1314 	if (left) {
1315 		left->fl_end = request->fl_start - 1;
1316 		locks_wake_up_blocks(left);
1317 	}
1318  out:
1319 	spin_unlock(&ctx->flc_lock);
1320 	percpu_up_read(&file_rwsem);
1321 	/*
1322 	 * Free any unused locks.
1323 	 */
1324 	if (new_fl)
1325 		locks_free_lock(new_fl);
1326 	if (new_fl2)
1327 		locks_free_lock(new_fl2);
1328 	locks_dispose_list(&dispose);
1329 	trace_posix_lock_inode(inode, request, error);
1330 
1331 	return error;
1332 }
1333 
1334 /**
1335  * posix_lock_file - Apply a POSIX-style lock to a file
1336  * @filp: The file to apply the lock to
1337  * @fl: The lock to be applied
1338  * @conflock: Place to return a copy of the conflicting lock, if found.
1339  *
1340  * Add a POSIX style lock to a file.
1341  * We merge adjacent & overlapping locks whenever possible.
1342  * POSIX locks are sorted by owner task, then by starting address
1343  *
1344  * Note that if called with an FL_EXISTS argument, the caller may determine
1345  * whether or not a lock was successfully freed by testing the return
1346  * value for -ENOENT.
1347  */
1348 int posix_lock_file(struct file *filp, struct file_lock *fl,
1349 			struct file_lock *conflock)
1350 {
1351 	return posix_lock_inode(locks_inode(filp), fl, conflock);
1352 }
1353 EXPORT_SYMBOL(posix_lock_file);
1354 
1355 /**
1356  * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1357  * @inode: inode of file to which lock request should be applied
1358  * @fl: The lock to be applied
1359  *
1360  * Apply a POSIX style lock request to an inode.
1361  */
1362 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1363 {
1364 	int error;
1365 	might_sleep ();
1366 	for (;;) {
1367 		error = posix_lock_inode(inode, fl, NULL);
1368 		if (error != FILE_LOCK_DEFERRED)
1369 			break;
1370 		error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker);
1371 		if (error)
1372 			break;
1373 	}
1374 	locks_delete_block(fl);
1375 	return error;
1376 }
1377 
1378 #ifdef CONFIG_MANDATORY_FILE_LOCKING
1379 /**
1380  * locks_mandatory_locked - Check for an active lock
1381  * @file: the file to check
1382  *
1383  * Searches the inode's list of locks to find any POSIX locks which conflict.
1384  * This function is called from locks_verify_locked() only.
1385  */
1386 int locks_mandatory_locked(struct file *file)
1387 {
1388 	int ret;
1389 	struct inode *inode = locks_inode(file);
1390 	struct file_lock_context *ctx;
1391 	struct file_lock *fl;
1392 
1393 	ctx = smp_load_acquire(&inode->i_flctx);
1394 	if (!ctx || list_empty_careful(&ctx->flc_posix))
1395 		return 0;
1396 
1397 	/*
1398 	 * Search the lock list for this inode for any POSIX locks.
1399 	 */
1400 	spin_lock(&ctx->flc_lock);
1401 	ret = 0;
1402 	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1403 		if (fl->fl_owner != current->files &&
1404 		    fl->fl_owner != file) {
1405 			ret = -EAGAIN;
1406 			break;
1407 		}
1408 	}
1409 	spin_unlock(&ctx->flc_lock);
1410 	return ret;
1411 }
1412 
1413 /**
1414  * locks_mandatory_area - Check for a conflicting lock
1415  * @inode:	the file to check
1416  * @filp:       how the file was opened (if it was)
1417  * @start:	first byte in the file to check
1418  * @end:	lastbyte in the file to check
1419  * @type:	%F_WRLCK for a write lock, else %F_RDLCK
1420  *
1421  * Searches the inode's list of locks to find any POSIX locks which conflict.
1422  */
1423 int locks_mandatory_area(struct inode *inode, struct file *filp, loff_t start,
1424 			 loff_t end, unsigned char type)
1425 {
1426 	struct file_lock fl;
1427 	int error;
1428 	bool sleep = false;
1429 
1430 	locks_init_lock(&fl);
1431 	fl.fl_pid = current->tgid;
1432 	fl.fl_file = filp;
1433 	fl.fl_flags = FL_POSIX | FL_ACCESS;
1434 	if (filp && !(filp->f_flags & O_NONBLOCK))
1435 		sleep = true;
1436 	fl.fl_type = type;
1437 	fl.fl_start = start;
1438 	fl.fl_end = end;
1439 
1440 	for (;;) {
1441 		if (filp) {
1442 			fl.fl_owner = filp;
1443 			fl.fl_flags &= ~FL_SLEEP;
1444 			error = posix_lock_inode(inode, &fl, NULL);
1445 			if (!error)
1446 				break;
1447 		}
1448 
1449 		if (sleep)
1450 			fl.fl_flags |= FL_SLEEP;
1451 		fl.fl_owner = current->files;
1452 		error = posix_lock_inode(inode, &fl, NULL);
1453 		if (error != FILE_LOCK_DEFERRED)
1454 			break;
1455 		error = wait_event_interruptible(fl.fl_wait, !fl.fl_blocker);
1456 		if (!error) {
1457 			/*
1458 			 * If we've been sleeping someone might have
1459 			 * changed the permissions behind our back.
1460 			 */
1461 			if (__mandatory_lock(inode))
1462 				continue;
1463 		}
1464 
1465 		break;
1466 	}
1467 	locks_delete_block(&fl);
1468 
1469 	return error;
1470 }
1471 EXPORT_SYMBOL(locks_mandatory_area);
1472 #endif /* CONFIG_MANDATORY_FILE_LOCKING */
1473 
1474 static void lease_clear_pending(struct file_lock *fl, int arg)
1475 {
1476 	switch (arg) {
1477 	case F_UNLCK:
1478 		fl->fl_flags &= ~FL_UNLOCK_PENDING;
1479 		/* fall through: */
1480 	case F_RDLCK:
1481 		fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1482 	}
1483 }
1484 
1485 /* We already had a lease on this file; just change its type */
1486 int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose)
1487 {
1488 	int error = assign_type(fl, arg);
1489 
1490 	if (error)
1491 		return error;
1492 	lease_clear_pending(fl, arg);
1493 	locks_wake_up_blocks(fl);
1494 	if (arg == F_UNLCK) {
1495 		struct file *filp = fl->fl_file;
1496 
1497 		f_delown(filp);
1498 		filp->f_owner.signum = 0;
1499 		fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1500 		if (fl->fl_fasync != NULL) {
1501 			printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1502 			fl->fl_fasync = NULL;
1503 		}
1504 		locks_delete_lock_ctx(fl, dispose);
1505 	}
1506 	return 0;
1507 }
1508 EXPORT_SYMBOL(lease_modify);
1509 
1510 static bool past_time(unsigned long then)
1511 {
1512 	if (!then)
1513 		/* 0 is a special value meaning "this never expires": */
1514 		return false;
1515 	return time_after(jiffies, then);
1516 }
1517 
1518 static void time_out_leases(struct inode *inode, struct list_head *dispose)
1519 {
1520 	struct file_lock_context *ctx = inode->i_flctx;
1521 	struct file_lock *fl, *tmp;
1522 
1523 	lockdep_assert_held(&ctx->flc_lock);
1524 
1525 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1526 		trace_time_out_leases(inode, fl);
1527 		if (past_time(fl->fl_downgrade_time))
1528 			lease_modify(fl, F_RDLCK, dispose);
1529 		if (past_time(fl->fl_break_time))
1530 			lease_modify(fl, F_UNLCK, dispose);
1531 	}
1532 }
1533 
1534 static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker)
1535 {
1536 	if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT))
1537 		return false;
1538 	if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE))
1539 		return false;
1540 	return locks_conflict(breaker, lease);
1541 }
1542 
1543 static bool
1544 any_leases_conflict(struct inode *inode, struct file_lock *breaker)
1545 {
1546 	struct file_lock_context *ctx = inode->i_flctx;
1547 	struct file_lock *fl;
1548 
1549 	lockdep_assert_held(&ctx->flc_lock);
1550 
1551 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1552 		if (leases_conflict(fl, breaker))
1553 			return true;
1554 	}
1555 	return false;
1556 }
1557 
1558 /**
1559  *	__break_lease	-	revoke all outstanding leases on file
1560  *	@inode: the inode of the file to return
1561  *	@mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1562  *	    break all leases
1563  *	@type: FL_LEASE: break leases and delegations; FL_DELEG: break
1564  *	    only delegations
1565  *
1566  *	break_lease (inlined for speed) has checked there already is at least
1567  *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1568  *	a call to open() or truncate().  This function can sleep unless you
1569  *	specified %O_NONBLOCK to your open().
1570  */
1571 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1572 {
1573 	int error = 0;
1574 	struct file_lock_context *ctx;
1575 	struct file_lock *new_fl, *fl, *tmp;
1576 	unsigned long break_time;
1577 	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1578 	LIST_HEAD(dispose);
1579 
1580 	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1581 	if (IS_ERR(new_fl))
1582 		return PTR_ERR(new_fl);
1583 	new_fl->fl_flags = type;
1584 
1585 	/* typically we will check that ctx is non-NULL before calling */
1586 	ctx = smp_load_acquire(&inode->i_flctx);
1587 	if (!ctx) {
1588 		WARN_ON_ONCE(1);
1589 		return error;
1590 	}
1591 
1592 	percpu_down_read(&file_rwsem);
1593 	spin_lock(&ctx->flc_lock);
1594 
1595 	time_out_leases(inode, &dispose);
1596 
1597 	if (!any_leases_conflict(inode, new_fl))
1598 		goto out;
1599 
1600 	break_time = 0;
1601 	if (lease_break_time > 0) {
1602 		break_time = jiffies + lease_break_time * HZ;
1603 		if (break_time == 0)
1604 			break_time++;	/* so that 0 means no break time */
1605 	}
1606 
1607 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1608 		if (!leases_conflict(fl, new_fl))
1609 			continue;
1610 		if (want_write) {
1611 			if (fl->fl_flags & FL_UNLOCK_PENDING)
1612 				continue;
1613 			fl->fl_flags |= FL_UNLOCK_PENDING;
1614 			fl->fl_break_time = break_time;
1615 		} else {
1616 			if (lease_breaking(fl))
1617 				continue;
1618 			fl->fl_flags |= FL_DOWNGRADE_PENDING;
1619 			fl->fl_downgrade_time = break_time;
1620 		}
1621 		if (fl->fl_lmops->lm_break(fl))
1622 			locks_delete_lock_ctx(fl, &dispose);
1623 	}
1624 
1625 	if (list_empty(&ctx->flc_lease))
1626 		goto out;
1627 
1628 	if (mode & O_NONBLOCK) {
1629 		trace_break_lease_noblock(inode, new_fl);
1630 		error = -EWOULDBLOCK;
1631 		goto out;
1632 	}
1633 
1634 restart:
1635 	fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list);
1636 	break_time = fl->fl_break_time;
1637 	if (break_time != 0)
1638 		break_time -= jiffies;
1639 	if (break_time == 0)
1640 		break_time++;
1641 	locks_insert_block(fl, new_fl, leases_conflict);
1642 	trace_break_lease_block(inode, new_fl);
1643 	spin_unlock(&ctx->flc_lock);
1644 	percpu_up_read(&file_rwsem);
1645 
1646 	locks_dispose_list(&dispose);
1647 	error = wait_event_interruptible_timeout(new_fl->fl_wait,
1648 						!new_fl->fl_blocker, break_time);
1649 
1650 	percpu_down_read(&file_rwsem);
1651 	spin_lock(&ctx->flc_lock);
1652 	trace_break_lease_unblock(inode, new_fl);
1653 	locks_delete_block(new_fl);
1654 	if (error >= 0) {
1655 		/*
1656 		 * Wait for the next conflicting lease that has not been
1657 		 * broken yet
1658 		 */
1659 		if (error == 0)
1660 			time_out_leases(inode, &dispose);
1661 		if (any_leases_conflict(inode, new_fl))
1662 			goto restart;
1663 		error = 0;
1664 	}
1665 out:
1666 	spin_unlock(&ctx->flc_lock);
1667 	percpu_up_read(&file_rwsem);
1668 	locks_dispose_list(&dispose);
1669 	locks_free_lock(new_fl);
1670 	return error;
1671 }
1672 EXPORT_SYMBOL(__break_lease);
1673 
1674 /**
1675  *	lease_get_mtime - update modified time of an inode with exclusive lease
1676  *	@inode: the inode
1677  *      @time:  pointer to a timespec which contains the last modified time
1678  *
1679  * This is to force NFS clients to flush their caches for files with
1680  * exclusive leases.  The justification is that if someone has an
1681  * exclusive lease, then they could be modifying it.
1682  */
1683 void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1684 {
1685 	bool has_lease = false;
1686 	struct file_lock_context *ctx;
1687 	struct file_lock *fl;
1688 
1689 	ctx = smp_load_acquire(&inode->i_flctx);
1690 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1691 		spin_lock(&ctx->flc_lock);
1692 		fl = list_first_entry_or_null(&ctx->flc_lease,
1693 					      struct file_lock, fl_list);
1694 		if (fl && (fl->fl_type == F_WRLCK))
1695 			has_lease = true;
1696 		spin_unlock(&ctx->flc_lock);
1697 	}
1698 
1699 	if (has_lease)
1700 		*time = current_time(inode);
1701 }
1702 EXPORT_SYMBOL(lease_get_mtime);
1703 
1704 /**
1705  *	fcntl_getlease - Enquire what lease is currently active
1706  *	@filp: the file
1707  *
1708  *	The value returned by this function will be one of
1709  *	(if no lease break is pending):
1710  *
1711  *	%F_RDLCK to indicate a shared lease is held.
1712  *
1713  *	%F_WRLCK to indicate an exclusive lease is held.
1714  *
1715  *	%F_UNLCK to indicate no lease is held.
1716  *
1717  *	(if a lease break is pending):
1718  *
1719  *	%F_RDLCK to indicate an exclusive lease needs to be
1720  *		changed to a shared lease (or removed).
1721  *
1722  *	%F_UNLCK to indicate the lease needs to be removed.
1723  *
1724  *	XXX: sfr & willy disagree over whether F_INPROGRESS
1725  *	should be returned to userspace.
1726  */
1727 int fcntl_getlease(struct file *filp)
1728 {
1729 	struct file_lock *fl;
1730 	struct inode *inode = locks_inode(filp);
1731 	struct file_lock_context *ctx;
1732 	int type = F_UNLCK;
1733 	LIST_HEAD(dispose);
1734 
1735 	ctx = smp_load_acquire(&inode->i_flctx);
1736 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1737 		percpu_down_read(&file_rwsem);
1738 		spin_lock(&ctx->flc_lock);
1739 		time_out_leases(inode, &dispose);
1740 		list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1741 			if (fl->fl_file != filp)
1742 				continue;
1743 			type = target_leasetype(fl);
1744 			break;
1745 		}
1746 		spin_unlock(&ctx->flc_lock);
1747 		percpu_up_read(&file_rwsem);
1748 
1749 		locks_dispose_list(&dispose);
1750 	}
1751 	return type;
1752 }
1753 
1754 /**
1755  * check_conflicting_open - see if the given dentry points to a file that has
1756  *			    an existing open that would conflict with the
1757  *			    desired lease.
1758  * @dentry:	dentry to check
1759  * @arg:	type of lease that we're trying to acquire
1760  * @flags:	current lock flags
1761  *
1762  * Check to see if there's an existing open fd on this file that would
1763  * conflict with the lease we're trying to set.
1764  */
1765 static int
1766 check_conflicting_open(const struct dentry *dentry, const long arg, int flags)
1767 {
1768 	int ret = 0;
1769 	struct inode *inode = dentry->d_inode;
1770 
1771 	if (flags & FL_LAYOUT)
1772 		return 0;
1773 
1774 	if ((arg == F_RDLCK) && inode_is_open_for_write(inode))
1775 		return -EAGAIN;
1776 
1777 	if ((arg == F_WRLCK) && ((d_count(dentry) > 1) ||
1778 	    (atomic_read(&inode->i_count) > 1)))
1779 		ret = -EAGAIN;
1780 
1781 	return ret;
1782 }
1783 
1784 static int
1785 generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv)
1786 {
1787 	struct file_lock *fl, *my_fl = NULL, *lease;
1788 	struct dentry *dentry = filp->f_path.dentry;
1789 	struct inode *inode = dentry->d_inode;
1790 	struct file_lock_context *ctx;
1791 	bool is_deleg = (*flp)->fl_flags & FL_DELEG;
1792 	int error;
1793 	LIST_HEAD(dispose);
1794 
1795 	lease = *flp;
1796 	trace_generic_add_lease(inode, lease);
1797 
1798 	/* Note that arg is never F_UNLCK here */
1799 	ctx = locks_get_lock_context(inode, arg);
1800 	if (!ctx)
1801 		return -ENOMEM;
1802 
1803 	/*
1804 	 * In the delegation case we need mutual exclusion with
1805 	 * a number of operations that take the i_mutex.  We trylock
1806 	 * because delegations are an optional optimization, and if
1807 	 * there's some chance of a conflict--we'd rather not
1808 	 * bother, maybe that's a sign this just isn't a good file to
1809 	 * hand out a delegation on.
1810 	 */
1811 	if (is_deleg && !inode_trylock(inode))
1812 		return -EAGAIN;
1813 
1814 	if (is_deleg && arg == F_WRLCK) {
1815 		/* Write delegations are not currently supported: */
1816 		inode_unlock(inode);
1817 		WARN_ON_ONCE(1);
1818 		return -EINVAL;
1819 	}
1820 
1821 	percpu_down_read(&file_rwsem);
1822 	spin_lock(&ctx->flc_lock);
1823 	time_out_leases(inode, &dispose);
1824 	error = check_conflicting_open(dentry, arg, lease->fl_flags);
1825 	if (error)
1826 		goto out;
1827 
1828 	/*
1829 	 * At this point, we know that if there is an exclusive
1830 	 * lease on this file, then we hold it on this filp
1831 	 * (otherwise our open of this file would have blocked).
1832 	 * And if we are trying to acquire an exclusive lease,
1833 	 * then the file is not open by anyone (including us)
1834 	 * except for this filp.
1835 	 */
1836 	error = -EAGAIN;
1837 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1838 		if (fl->fl_file == filp &&
1839 		    fl->fl_owner == lease->fl_owner) {
1840 			my_fl = fl;
1841 			continue;
1842 		}
1843 
1844 		/*
1845 		 * No exclusive leases if someone else has a lease on
1846 		 * this file:
1847 		 */
1848 		if (arg == F_WRLCK)
1849 			goto out;
1850 		/*
1851 		 * Modifying our existing lease is OK, but no getting a
1852 		 * new lease if someone else is opening for write:
1853 		 */
1854 		if (fl->fl_flags & FL_UNLOCK_PENDING)
1855 			goto out;
1856 	}
1857 
1858 	if (my_fl != NULL) {
1859 		lease = my_fl;
1860 		error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1861 		if (error)
1862 			goto out;
1863 		goto out_setup;
1864 	}
1865 
1866 	error = -EINVAL;
1867 	if (!leases_enable)
1868 		goto out;
1869 
1870 	locks_insert_lock_ctx(lease, &ctx->flc_lease);
1871 	/*
1872 	 * The check in break_lease() is lockless. It's possible for another
1873 	 * open to race in after we did the earlier check for a conflicting
1874 	 * open but before the lease was inserted. Check again for a
1875 	 * conflicting open and cancel the lease if there is one.
1876 	 *
1877 	 * We also add a barrier here to ensure that the insertion of the lock
1878 	 * precedes these checks.
1879 	 */
1880 	smp_mb();
1881 	error = check_conflicting_open(dentry, arg, lease->fl_flags);
1882 	if (error) {
1883 		locks_unlink_lock_ctx(lease);
1884 		goto out;
1885 	}
1886 
1887 out_setup:
1888 	if (lease->fl_lmops->lm_setup)
1889 		lease->fl_lmops->lm_setup(lease, priv);
1890 out:
1891 	spin_unlock(&ctx->flc_lock);
1892 	percpu_up_read(&file_rwsem);
1893 	locks_dispose_list(&dispose);
1894 	if (is_deleg)
1895 		inode_unlock(inode);
1896 	if (!error && !my_fl)
1897 		*flp = NULL;
1898 	return error;
1899 }
1900 
1901 static int generic_delete_lease(struct file *filp, void *owner)
1902 {
1903 	int error = -EAGAIN;
1904 	struct file_lock *fl, *victim = NULL;
1905 	struct inode *inode = locks_inode(filp);
1906 	struct file_lock_context *ctx;
1907 	LIST_HEAD(dispose);
1908 
1909 	ctx = smp_load_acquire(&inode->i_flctx);
1910 	if (!ctx) {
1911 		trace_generic_delete_lease(inode, NULL);
1912 		return error;
1913 	}
1914 
1915 	percpu_down_read(&file_rwsem);
1916 	spin_lock(&ctx->flc_lock);
1917 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1918 		if (fl->fl_file == filp &&
1919 		    fl->fl_owner == owner) {
1920 			victim = fl;
1921 			break;
1922 		}
1923 	}
1924 	trace_generic_delete_lease(inode, victim);
1925 	if (victim)
1926 		error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1927 	spin_unlock(&ctx->flc_lock);
1928 	percpu_up_read(&file_rwsem);
1929 	locks_dispose_list(&dispose);
1930 	return error;
1931 }
1932 
1933 /**
1934  *	generic_setlease	-	sets a lease on an open file
1935  *	@filp:	file pointer
1936  *	@arg:	type of lease to obtain
1937  *	@flp:	input - file_lock to use, output - file_lock inserted
1938  *	@priv:	private data for lm_setup (may be NULL if lm_setup
1939  *		doesn't require it)
1940  *
1941  *	The (input) flp->fl_lmops->lm_break function is required
1942  *	by break_lease().
1943  */
1944 int generic_setlease(struct file *filp, long arg, struct file_lock **flp,
1945 			void **priv)
1946 {
1947 	struct inode *inode = locks_inode(filp);
1948 	int error;
1949 
1950 	if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE))
1951 		return -EACCES;
1952 	if (!S_ISREG(inode->i_mode))
1953 		return -EINVAL;
1954 	error = security_file_lock(filp, arg);
1955 	if (error)
1956 		return error;
1957 
1958 	switch (arg) {
1959 	case F_UNLCK:
1960 		return generic_delete_lease(filp, *priv);
1961 	case F_RDLCK:
1962 	case F_WRLCK:
1963 		if (!(*flp)->fl_lmops->lm_break) {
1964 			WARN_ON_ONCE(1);
1965 			return -ENOLCK;
1966 		}
1967 
1968 		return generic_add_lease(filp, arg, flp, priv);
1969 	default:
1970 		return -EINVAL;
1971 	}
1972 }
1973 EXPORT_SYMBOL(generic_setlease);
1974 
1975 /**
1976  * vfs_setlease        -       sets a lease on an open file
1977  * @filp:	file pointer
1978  * @arg:	type of lease to obtain
1979  * @lease:	file_lock to use when adding a lease
1980  * @priv:	private info for lm_setup when adding a lease (may be
1981  *		NULL if lm_setup doesn't require it)
1982  *
1983  * Call this to establish a lease on the file. The "lease" argument is not
1984  * used for F_UNLCK requests and may be NULL. For commands that set or alter
1985  * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
1986  * set; if not, this function will return -ENOLCK (and generate a scary-looking
1987  * stack trace).
1988  *
1989  * The "priv" pointer is passed directly to the lm_setup function as-is. It
1990  * may be NULL if the lm_setup operation doesn't require it.
1991  */
1992 int
1993 vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv)
1994 {
1995 	if (filp->f_op->setlease)
1996 		return filp->f_op->setlease(filp, arg, lease, priv);
1997 	else
1998 		return generic_setlease(filp, arg, lease, priv);
1999 }
2000 EXPORT_SYMBOL_GPL(vfs_setlease);
2001 
2002 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg)
2003 {
2004 	struct file_lock *fl;
2005 	struct fasync_struct *new;
2006 	int error;
2007 
2008 	fl = lease_alloc(filp, arg);
2009 	if (IS_ERR(fl))
2010 		return PTR_ERR(fl);
2011 
2012 	new = fasync_alloc();
2013 	if (!new) {
2014 		locks_free_lock(fl);
2015 		return -ENOMEM;
2016 	}
2017 	new->fa_fd = fd;
2018 
2019 	error = vfs_setlease(filp, arg, &fl, (void **)&new);
2020 	if (fl)
2021 		locks_free_lock(fl);
2022 	if (new)
2023 		fasync_free(new);
2024 	return error;
2025 }
2026 
2027 /**
2028  *	fcntl_setlease	-	sets a lease on an open file
2029  *	@fd: open file descriptor
2030  *	@filp: file pointer
2031  *	@arg: type of lease to obtain
2032  *
2033  *	Call this fcntl to establish a lease on the file.
2034  *	Note that you also need to call %F_SETSIG to
2035  *	receive a signal when the lease is broken.
2036  */
2037 int fcntl_setlease(unsigned int fd, struct file *filp, long arg)
2038 {
2039 	if (arg == F_UNLCK)
2040 		return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2041 	return do_fcntl_add_lease(fd, filp, arg);
2042 }
2043 
2044 /**
2045  * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2046  * @inode: inode of the file to apply to
2047  * @fl: The lock to be applied
2048  *
2049  * Apply a FLOCK style lock request to an inode.
2050  */
2051 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2052 {
2053 	int error;
2054 	might_sleep();
2055 	for (;;) {
2056 		error = flock_lock_inode(inode, fl);
2057 		if (error != FILE_LOCK_DEFERRED)
2058 			break;
2059 		error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker);
2060 		if (error)
2061 			break;
2062 	}
2063 	locks_delete_block(fl);
2064 	return error;
2065 }
2066 
2067 /**
2068  * locks_lock_inode_wait - Apply a lock to an inode
2069  * @inode: inode of the file to apply to
2070  * @fl: The lock to be applied
2071  *
2072  * Apply a POSIX or FLOCK style lock request to an inode.
2073  */
2074 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2075 {
2076 	int res = 0;
2077 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
2078 		case FL_POSIX:
2079 			res = posix_lock_inode_wait(inode, fl);
2080 			break;
2081 		case FL_FLOCK:
2082 			res = flock_lock_inode_wait(inode, fl);
2083 			break;
2084 		default:
2085 			BUG();
2086 	}
2087 	return res;
2088 }
2089 EXPORT_SYMBOL(locks_lock_inode_wait);
2090 
2091 /**
2092  *	sys_flock: - flock() system call.
2093  *	@fd: the file descriptor to lock.
2094  *	@cmd: the type of lock to apply.
2095  *
2096  *	Apply a %FL_FLOCK style lock to an open file descriptor.
2097  *	The @cmd can be one of:
2098  *
2099  *	- %LOCK_SH -- a shared lock.
2100  *	- %LOCK_EX -- an exclusive lock.
2101  *	- %LOCK_UN -- remove an existing lock.
2102  *	- %LOCK_MAND -- a 'mandatory' flock.
2103  *	  This exists to emulate Windows Share Modes.
2104  *
2105  *	%LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other
2106  *	processes read and write access respectively.
2107  */
2108 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2109 {
2110 	struct fd f = fdget(fd);
2111 	struct file_lock *lock;
2112 	int can_sleep, unlock;
2113 	int error;
2114 
2115 	error = -EBADF;
2116 	if (!f.file)
2117 		goto out;
2118 
2119 	can_sleep = !(cmd & LOCK_NB);
2120 	cmd &= ~LOCK_NB;
2121 	unlock = (cmd == LOCK_UN);
2122 
2123 	if (!unlock && !(cmd & LOCK_MAND) &&
2124 	    !(f.file->f_mode & (FMODE_READ|FMODE_WRITE)))
2125 		goto out_putf;
2126 
2127 	lock = flock_make_lock(f.file, cmd, NULL);
2128 	if (IS_ERR(lock)) {
2129 		error = PTR_ERR(lock);
2130 		goto out_putf;
2131 	}
2132 
2133 	if (can_sleep)
2134 		lock->fl_flags |= FL_SLEEP;
2135 
2136 	error = security_file_lock(f.file, lock->fl_type);
2137 	if (error)
2138 		goto out_free;
2139 
2140 	if (f.file->f_op->flock)
2141 		error = f.file->f_op->flock(f.file,
2142 					  (can_sleep) ? F_SETLKW : F_SETLK,
2143 					  lock);
2144 	else
2145 		error = locks_lock_file_wait(f.file, lock);
2146 
2147  out_free:
2148 	locks_free_lock(lock);
2149 
2150  out_putf:
2151 	fdput(f);
2152  out:
2153 	return error;
2154 }
2155 
2156 /**
2157  * vfs_test_lock - test file byte range lock
2158  * @filp: The file to test lock for
2159  * @fl: The lock to test; also used to hold result
2160  *
2161  * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
2162  * setting conf->fl_type to something other than F_UNLCK.
2163  */
2164 int vfs_test_lock(struct file *filp, struct file_lock *fl)
2165 {
2166 	if (filp->f_op->lock)
2167 		return filp->f_op->lock(filp, F_GETLK, fl);
2168 	posix_test_lock(filp, fl);
2169 	return 0;
2170 }
2171 EXPORT_SYMBOL_GPL(vfs_test_lock);
2172 
2173 /**
2174  * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2175  * @fl: The file_lock who's fl_pid should be translated
2176  * @ns: The namespace into which the pid should be translated
2177  *
2178  * Used to tranlate a fl_pid into a namespace virtual pid number
2179  */
2180 static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns)
2181 {
2182 	pid_t vnr;
2183 	struct pid *pid;
2184 
2185 	if (IS_OFDLCK(fl))
2186 		return -1;
2187 	if (IS_REMOTELCK(fl))
2188 		return fl->fl_pid;
2189 	/*
2190 	 * If the flock owner process is dead and its pid has been already
2191 	 * freed, the translation below won't work, but we still want to show
2192 	 * flock owner pid number in init pidns.
2193 	 */
2194 	if (ns == &init_pid_ns)
2195 		return (pid_t)fl->fl_pid;
2196 
2197 	rcu_read_lock();
2198 	pid = find_pid_ns(fl->fl_pid, &init_pid_ns);
2199 	vnr = pid_nr_ns(pid, ns);
2200 	rcu_read_unlock();
2201 	return vnr;
2202 }
2203 
2204 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2205 {
2206 	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2207 #if BITS_PER_LONG == 32
2208 	/*
2209 	 * Make sure we can represent the posix lock via
2210 	 * legacy 32bit flock.
2211 	 */
2212 	if (fl->fl_start > OFFT_OFFSET_MAX)
2213 		return -EOVERFLOW;
2214 	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2215 		return -EOVERFLOW;
2216 #endif
2217 	flock->l_start = fl->fl_start;
2218 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2219 		fl->fl_end - fl->fl_start + 1;
2220 	flock->l_whence = 0;
2221 	flock->l_type = fl->fl_type;
2222 	return 0;
2223 }
2224 
2225 #if BITS_PER_LONG == 32
2226 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2227 {
2228 	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2229 	flock->l_start = fl->fl_start;
2230 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2231 		fl->fl_end - fl->fl_start + 1;
2232 	flock->l_whence = 0;
2233 	flock->l_type = fl->fl_type;
2234 }
2235 #endif
2236 
2237 /* Report the first existing lock that would conflict with l.
2238  * This implements the F_GETLK command of fcntl().
2239  */
2240 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2241 {
2242 	struct file_lock *fl;
2243 	int error;
2244 
2245 	fl = locks_alloc_lock();
2246 	if (fl == NULL)
2247 		return -ENOMEM;
2248 	error = -EINVAL;
2249 	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2250 		goto out;
2251 
2252 	error = flock_to_posix_lock(filp, fl, flock);
2253 	if (error)
2254 		goto out;
2255 
2256 	if (cmd == F_OFD_GETLK) {
2257 		error = -EINVAL;
2258 		if (flock->l_pid != 0)
2259 			goto out;
2260 
2261 		cmd = F_GETLK;
2262 		fl->fl_flags |= FL_OFDLCK;
2263 		fl->fl_owner = filp;
2264 	}
2265 
2266 	error = vfs_test_lock(filp, fl);
2267 	if (error)
2268 		goto out;
2269 
2270 	flock->l_type = fl->fl_type;
2271 	if (fl->fl_type != F_UNLCK) {
2272 		error = posix_lock_to_flock(flock, fl);
2273 		if (error)
2274 			goto out;
2275 	}
2276 out:
2277 	locks_free_lock(fl);
2278 	return error;
2279 }
2280 
2281 /**
2282  * vfs_lock_file - file byte range lock
2283  * @filp: The file to apply the lock to
2284  * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2285  * @fl: The lock to be applied
2286  * @conf: Place to return a copy of the conflicting lock, if found.
2287  *
2288  * A caller that doesn't care about the conflicting lock may pass NULL
2289  * as the final argument.
2290  *
2291  * If the filesystem defines a private ->lock() method, then @conf will
2292  * be left unchanged; so a caller that cares should initialize it to
2293  * some acceptable default.
2294  *
2295  * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2296  * locks, the ->lock() interface may return asynchronously, before the lock has
2297  * been granted or denied by the underlying filesystem, if (and only if)
2298  * lm_grant is set. Callers expecting ->lock() to return asynchronously
2299  * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if)
2300  * the request is for a blocking lock. When ->lock() does return asynchronously,
2301  * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock
2302  * request completes.
2303  * If the request is for non-blocking lock the file system should return
2304  * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2305  * with the result. If the request timed out the callback routine will return a
2306  * nonzero return code and the file system should release the lock. The file
2307  * system is also responsible to keep a corresponding posix lock when it
2308  * grants a lock so the VFS can find out which locks are locally held and do
2309  * the correct lock cleanup when required.
2310  * The underlying filesystem must not drop the kernel lock or call
2311  * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2312  * return code.
2313  */
2314 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2315 {
2316 	if (filp->f_op->lock)
2317 		return filp->f_op->lock(filp, cmd, fl);
2318 	else
2319 		return posix_lock_file(filp, fl, conf);
2320 }
2321 EXPORT_SYMBOL_GPL(vfs_lock_file);
2322 
2323 static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2324 			     struct file_lock *fl)
2325 {
2326 	int error;
2327 
2328 	error = security_file_lock(filp, fl->fl_type);
2329 	if (error)
2330 		return error;
2331 
2332 	for (;;) {
2333 		error = vfs_lock_file(filp, cmd, fl, NULL);
2334 		if (error != FILE_LOCK_DEFERRED)
2335 			break;
2336 		error = wait_event_interruptible(fl->fl_wait, !fl->fl_blocker);
2337 		if (error)
2338 			break;
2339 	}
2340 	locks_delete_block(fl);
2341 
2342 	return error;
2343 }
2344 
2345 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2346 static int
2347 check_fmode_for_setlk(struct file_lock *fl)
2348 {
2349 	switch (fl->fl_type) {
2350 	case F_RDLCK:
2351 		if (!(fl->fl_file->f_mode & FMODE_READ))
2352 			return -EBADF;
2353 		break;
2354 	case F_WRLCK:
2355 		if (!(fl->fl_file->f_mode & FMODE_WRITE))
2356 			return -EBADF;
2357 	}
2358 	return 0;
2359 }
2360 
2361 /* Apply the lock described by l to an open file descriptor.
2362  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2363  */
2364 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2365 		struct flock *flock)
2366 {
2367 	struct file_lock *file_lock = locks_alloc_lock();
2368 	struct inode *inode = locks_inode(filp);
2369 	struct file *f;
2370 	int error;
2371 
2372 	if (file_lock == NULL)
2373 		return -ENOLCK;
2374 
2375 	/* Don't allow mandatory locks on files that may be memory mapped
2376 	 * and shared.
2377 	 */
2378 	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2379 		error = -EAGAIN;
2380 		goto out;
2381 	}
2382 
2383 	error = flock_to_posix_lock(filp, file_lock, flock);
2384 	if (error)
2385 		goto out;
2386 
2387 	error = check_fmode_for_setlk(file_lock);
2388 	if (error)
2389 		goto out;
2390 
2391 	/*
2392 	 * If the cmd is requesting file-private locks, then set the
2393 	 * FL_OFDLCK flag and override the owner.
2394 	 */
2395 	switch (cmd) {
2396 	case F_OFD_SETLK:
2397 		error = -EINVAL;
2398 		if (flock->l_pid != 0)
2399 			goto out;
2400 
2401 		cmd = F_SETLK;
2402 		file_lock->fl_flags |= FL_OFDLCK;
2403 		file_lock->fl_owner = filp;
2404 		break;
2405 	case F_OFD_SETLKW:
2406 		error = -EINVAL;
2407 		if (flock->l_pid != 0)
2408 			goto out;
2409 
2410 		cmd = F_SETLKW;
2411 		file_lock->fl_flags |= FL_OFDLCK;
2412 		file_lock->fl_owner = filp;
2413 		/* Fallthrough */
2414 	case F_SETLKW:
2415 		file_lock->fl_flags |= FL_SLEEP;
2416 	}
2417 
2418 	error = do_lock_file_wait(filp, cmd, file_lock);
2419 
2420 	/*
2421 	 * Attempt to detect a close/fcntl race and recover by releasing the
2422 	 * lock that was just acquired. There is no need to do that when we're
2423 	 * unlocking though, or for OFD locks.
2424 	 */
2425 	if (!error && file_lock->fl_type != F_UNLCK &&
2426 	    !(file_lock->fl_flags & FL_OFDLCK)) {
2427 		/*
2428 		 * We need that spin_lock here - it prevents reordering between
2429 		 * update of i_flctx->flc_posix and check for it done in
2430 		 * close(). rcu_read_lock() wouldn't do.
2431 		 */
2432 		spin_lock(&current->files->file_lock);
2433 		f = fcheck(fd);
2434 		spin_unlock(&current->files->file_lock);
2435 		if (f != filp) {
2436 			file_lock->fl_type = F_UNLCK;
2437 			error = do_lock_file_wait(filp, cmd, file_lock);
2438 			WARN_ON_ONCE(error);
2439 			error = -EBADF;
2440 		}
2441 	}
2442 out:
2443 	trace_fcntl_setlk(inode, file_lock, error);
2444 	locks_free_lock(file_lock);
2445 	return error;
2446 }
2447 
2448 #if BITS_PER_LONG == 32
2449 /* Report the first existing lock that would conflict with l.
2450  * This implements the F_GETLK command of fcntl().
2451  */
2452 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2453 {
2454 	struct file_lock *fl;
2455 	int error;
2456 
2457 	fl = locks_alloc_lock();
2458 	if (fl == NULL)
2459 		return -ENOMEM;
2460 
2461 	error = -EINVAL;
2462 	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2463 		goto out;
2464 
2465 	error = flock64_to_posix_lock(filp, fl, flock);
2466 	if (error)
2467 		goto out;
2468 
2469 	if (cmd == F_OFD_GETLK) {
2470 		error = -EINVAL;
2471 		if (flock->l_pid != 0)
2472 			goto out;
2473 
2474 		cmd = F_GETLK64;
2475 		fl->fl_flags |= FL_OFDLCK;
2476 		fl->fl_owner = filp;
2477 	}
2478 
2479 	error = vfs_test_lock(filp, fl);
2480 	if (error)
2481 		goto out;
2482 
2483 	flock->l_type = fl->fl_type;
2484 	if (fl->fl_type != F_UNLCK)
2485 		posix_lock_to_flock64(flock, fl);
2486 
2487 out:
2488 	locks_free_lock(fl);
2489 	return error;
2490 }
2491 
2492 /* Apply the lock described by l to an open file descriptor.
2493  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2494  */
2495 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2496 		struct flock64 *flock)
2497 {
2498 	struct file_lock *file_lock = locks_alloc_lock();
2499 	struct inode *inode = locks_inode(filp);
2500 	struct file *f;
2501 	int error;
2502 
2503 	if (file_lock == NULL)
2504 		return -ENOLCK;
2505 
2506 	/* Don't allow mandatory locks on files that may be memory mapped
2507 	 * and shared.
2508 	 */
2509 	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
2510 		error = -EAGAIN;
2511 		goto out;
2512 	}
2513 
2514 	error = flock64_to_posix_lock(filp, file_lock, flock);
2515 	if (error)
2516 		goto out;
2517 
2518 	error = check_fmode_for_setlk(file_lock);
2519 	if (error)
2520 		goto out;
2521 
2522 	/*
2523 	 * If the cmd is requesting file-private locks, then set the
2524 	 * FL_OFDLCK flag and override the owner.
2525 	 */
2526 	switch (cmd) {
2527 	case F_OFD_SETLK:
2528 		error = -EINVAL;
2529 		if (flock->l_pid != 0)
2530 			goto out;
2531 
2532 		cmd = F_SETLK64;
2533 		file_lock->fl_flags |= FL_OFDLCK;
2534 		file_lock->fl_owner = filp;
2535 		break;
2536 	case F_OFD_SETLKW:
2537 		error = -EINVAL;
2538 		if (flock->l_pid != 0)
2539 			goto out;
2540 
2541 		cmd = F_SETLKW64;
2542 		file_lock->fl_flags |= FL_OFDLCK;
2543 		file_lock->fl_owner = filp;
2544 		/* Fallthrough */
2545 	case F_SETLKW64:
2546 		file_lock->fl_flags |= FL_SLEEP;
2547 	}
2548 
2549 	error = do_lock_file_wait(filp, cmd, file_lock);
2550 
2551 	/*
2552 	 * Attempt to detect a close/fcntl race and recover by releasing the
2553 	 * lock that was just acquired. There is no need to do that when we're
2554 	 * unlocking though, or for OFD locks.
2555 	 */
2556 	if (!error && file_lock->fl_type != F_UNLCK &&
2557 	    !(file_lock->fl_flags & FL_OFDLCK)) {
2558 		/*
2559 		 * We need that spin_lock here - it prevents reordering between
2560 		 * update of i_flctx->flc_posix and check for it done in
2561 		 * close(). rcu_read_lock() wouldn't do.
2562 		 */
2563 		spin_lock(&current->files->file_lock);
2564 		f = fcheck(fd);
2565 		spin_unlock(&current->files->file_lock);
2566 		if (f != filp) {
2567 			file_lock->fl_type = F_UNLCK;
2568 			error = do_lock_file_wait(filp, cmd, file_lock);
2569 			WARN_ON_ONCE(error);
2570 			error = -EBADF;
2571 		}
2572 	}
2573 out:
2574 	locks_free_lock(file_lock);
2575 	return error;
2576 }
2577 #endif /* BITS_PER_LONG == 32 */
2578 
2579 /*
2580  * This function is called when the file is being removed
2581  * from the task's fd array.  POSIX locks belonging to this task
2582  * are deleted at this time.
2583  */
2584 void locks_remove_posix(struct file *filp, fl_owner_t owner)
2585 {
2586 	int error;
2587 	struct inode *inode = locks_inode(filp);
2588 	struct file_lock lock;
2589 	struct file_lock_context *ctx;
2590 
2591 	/*
2592 	 * If there are no locks held on this file, we don't need to call
2593 	 * posix_lock_file().  Another process could be setting a lock on this
2594 	 * file at the same time, but we wouldn't remove that lock anyway.
2595 	 */
2596 	ctx =  smp_load_acquire(&inode->i_flctx);
2597 	if (!ctx || list_empty(&ctx->flc_posix))
2598 		return;
2599 
2600 	locks_init_lock(&lock);
2601 	lock.fl_type = F_UNLCK;
2602 	lock.fl_flags = FL_POSIX | FL_CLOSE;
2603 	lock.fl_start = 0;
2604 	lock.fl_end = OFFSET_MAX;
2605 	lock.fl_owner = owner;
2606 	lock.fl_pid = current->tgid;
2607 	lock.fl_file = filp;
2608 	lock.fl_ops = NULL;
2609 	lock.fl_lmops = NULL;
2610 
2611 	error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2612 
2613 	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2614 		lock.fl_ops->fl_release_private(&lock);
2615 	trace_locks_remove_posix(inode, &lock, error);
2616 }
2617 EXPORT_SYMBOL(locks_remove_posix);
2618 
2619 /* The i_flctx must be valid when calling into here */
2620 static void
2621 locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2622 {
2623 	struct file_lock fl;
2624 	struct inode *inode = locks_inode(filp);
2625 
2626 	if (list_empty(&flctx->flc_flock))
2627 		return;
2628 
2629 	flock_make_lock(filp, LOCK_UN, &fl);
2630 	fl.fl_flags |= FL_CLOSE;
2631 
2632 	if (filp->f_op->flock)
2633 		filp->f_op->flock(filp, F_SETLKW, &fl);
2634 	else
2635 		flock_lock_inode(inode, &fl);
2636 
2637 	if (fl.fl_ops && fl.fl_ops->fl_release_private)
2638 		fl.fl_ops->fl_release_private(&fl);
2639 }
2640 
2641 /* The i_flctx must be valid when calling into here */
2642 static void
2643 locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2644 {
2645 	struct file_lock *fl, *tmp;
2646 	LIST_HEAD(dispose);
2647 
2648 	if (list_empty(&ctx->flc_lease))
2649 		return;
2650 
2651 	percpu_down_read(&file_rwsem);
2652 	spin_lock(&ctx->flc_lock);
2653 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list)
2654 		if (filp == fl->fl_file)
2655 			lease_modify(fl, F_UNLCK, &dispose);
2656 	spin_unlock(&ctx->flc_lock);
2657 	percpu_up_read(&file_rwsem);
2658 
2659 	locks_dispose_list(&dispose);
2660 }
2661 
2662 /*
2663  * This function is called on the last close of an open file.
2664  */
2665 void locks_remove_file(struct file *filp)
2666 {
2667 	struct file_lock_context *ctx;
2668 
2669 	ctx = smp_load_acquire(&locks_inode(filp)->i_flctx);
2670 	if (!ctx)
2671 		return;
2672 
2673 	/* remove any OFD locks */
2674 	locks_remove_posix(filp, filp);
2675 
2676 	/* remove flock locks */
2677 	locks_remove_flock(filp, ctx);
2678 
2679 	/* remove any leases */
2680 	locks_remove_lease(filp, ctx);
2681 
2682 	spin_lock(&ctx->flc_lock);
2683 	locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2684 	locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2685 	locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2686 	spin_unlock(&ctx->flc_lock);
2687 }
2688 
2689 /**
2690  * vfs_cancel_lock - file byte range unblock lock
2691  * @filp: The file to apply the unblock to
2692  * @fl: The lock to be unblocked
2693  *
2694  * Used by lock managers to cancel blocked requests
2695  */
2696 int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2697 {
2698 	if (filp->f_op->lock)
2699 		return filp->f_op->lock(filp, F_CANCELLK, fl);
2700 	return 0;
2701 }
2702 EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2703 
2704 #ifdef CONFIG_PROC_FS
2705 #include <linux/proc_fs.h>
2706 #include <linux/seq_file.h>
2707 
2708 struct locks_iterator {
2709 	int	li_cpu;
2710 	loff_t	li_pos;
2711 };
2712 
2713 static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2714 			    loff_t id, char *pfx)
2715 {
2716 	struct inode *inode = NULL;
2717 	unsigned int fl_pid;
2718 	struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info;
2719 
2720 	fl_pid = locks_translate_pid(fl, proc_pidns);
2721 	/*
2722 	 * If lock owner is dead (and pid is freed) or not visible in current
2723 	 * pidns, zero is shown as a pid value. Check lock info from
2724 	 * init_pid_ns to get saved lock pid value.
2725 	 */
2726 
2727 	if (fl->fl_file != NULL)
2728 		inode = locks_inode(fl->fl_file);
2729 
2730 	seq_printf(f, "%lld:%s ", id, pfx);
2731 	if (IS_POSIX(fl)) {
2732 		if (fl->fl_flags & FL_ACCESS)
2733 			seq_puts(f, "ACCESS");
2734 		else if (IS_OFDLCK(fl))
2735 			seq_puts(f, "OFDLCK");
2736 		else
2737 			seq_puts(f, "POSIX ");
2738 
2739 		seq_printf(f, " %s ",
2740 			     (inode == NULL) ? "*NOINODE*" :
2741 			     mandatory_lock(inode) ? "MANDATORY" : "ADVISORY ");
2742 	} else if (IS_FLOCK(fl)) {
2743 		if (fl->fl_type & LOCK_MAND) {
2744 			seq_puts(f, "FLOCK  MSNFS     ");
2745 		} else {
2746 			seq_puts(f, "FLOCK  ADVISORY  ");
2747 		}
2748 	} else if (IS_LEASE(fl)) {
2749 		if (fl->fl_flags & FL_DELEG)
2750 			seq_puts(f, "DELEG  ");
2751 		else
2752 			seq_puts(f, "LEASE  ");
2753 
2754 		if (lease_breaking(fl))
2755 			seq_puts(f, "BREAKING  ");
2756 		else if (fl->fl_file)
2757 			seq_puts(f, "ACTIVE    ");
2758 		else
2759 			seq_puts(f, "BREAKER   ");
2760 	} else {
2761 		seq_puts(f, "UNKNOWN UNKNOWN  ");
2762 	}
2763 	if (fl->fl_type & LOCK_MAND) {
2764 		seq_printf(f, "%s ",
2765 			       (fl->fl_type & LOCK_READ)
2766 			       ? (fl->fl_type & LOCK_WRITE) ? "RW   " : "READ "
2767 			       : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE ");
2768 	} else {
2769 		seq_printf(f, "%s ",
2770 			       (lease_breaking(fl))
2771 			       ? (fl->fl_type == F_UNLCK) ? "UNLCK" : "READ "
2772 			       : (fl->fl_type == F_WRLCK) ? "WRITE" : "READ ");
2773 	}
2774 	if (inode) {
2775 		/* userspace relies on this representation of dev_t */
2776 		seq_printf(f, "%d %02x:%02x:%ld ", fl_pid,
2777 				MAJOR(inode->i_sb->s_dev),
2778 				MINOR(inode->i_sb->s_dev), inode->i_ino);
2779 	} else {
2780 		seq_printf(f, "%d <none>:0 ", fl_pid);
2781 	}
2782 	if (IS_POSIX(fl)) {
2783 		if (fl->fl_end == OFFSET_MAX)
2784 			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2785 		else
2786 			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2787 	} else {
2788 		seq_puts(f, "0 EOF\n");
2789 	}
2790 }
2791 
2792 static int locks_show(struct seq_file *f, void *v)
2793 {
2794 	struct locks_iterator *iter = f->private;
2795 	struct file_lock *fl, *bfl;
2796 	struct pid_namespace *proc_pidns = file_inode(f->file)->i_sb->s_fs_info;
2797 
2798 	fl = hlist_entry(v, struct file_lock, fl_link);
2799 
2800 	if (locks_translate_pid(fl, proc_pidns) == 0)
2801 		return 0;
2802 
2803 	lock_get_status(f, fl, iter->li_pos, "");
2804 
2805 	list_for_each_entry(bfl, &fl->fl_blocked_requests, fl_blocked_member)
2806 		lock_get_status(f, bfl, iter->li_pos, " ->");
2807 
2808 	return 0;
2809 }
2810 
2811 static void __show_fd_locks(struct seq_file *f,
2812 			struct list_head *head, int *id,
2813 			struct file *filp, struct files_struct *files)
2814 {
2815 	struct file_lock *fl;
2816 
2817 	list_for_each_entry(fl, head, fl_list) {
2818 
2819 		if (filp != fl->fl_file)
2820 			continue;
2821 		if (fl->fl_owner != files &&
2822 		    fl->fl_owner != filp)
2823 			continue;
2824 
2825 		(*id)++;
2826 		seq_puts(f, "lock:\t");
2827 		lock_get_status(f, fl, *id, "");
2828 	}
2829 }
2830 
2831 void show_fd_locks(struct seq_file *f,
2832 		  struct file *filp, struct files_struct *files)
2833 {
2834 	struct inode *inode = locks_inode(filp);
2835 	struct file_lock_context *ctx;
2836 	int id = 0;
2837 
2838 	ctx = smp_load_acquire(&inode->i_flctx);
2839 	if (!ctx)
2840 		return;
2841 
2842 	spin_lock(&ctx->flc_lock);
2843 	__show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2844 	__show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2845 	__show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2846 	spin_unlock(&ctx->flc_lock);
2847 }
2848 
2849 static void *locks_start(struct seq_file *f, loff_t *pos)
2850 	__acquires(&blocked_lock_lock)
2851 {
2852 	struct locks_iterator *iter = f->private;
2853 
2854 	iter->li_pos = *pos + 1;
2855 	percpu_down_write(&file_rwsem);
2856 	spin_lock(&blocked_lock_lock);
2857 	return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2858 }
2859 
2860 static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2861 {
2862 	struct locks_iterator *iter = f->private;
2863 
2864 	++iter->li_pos;
2865 	return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2866 }
2867 
2868 static void locks_stop(struct seq_file *f, void *v)
2869 	__releases(&blocked_lock_lock)
2870 {
2871 	spin_unlock(&blocked_lock_lock);
2872 	percpu_up_write(&file_rwsem);
2873 }
2874 
2875 static const struct seq_operations locks_seq_operations = {
2876 	.start	= locks_start,
2877 	.next	= locks_next,
2878 	.stop	= locks_stop,
2879 	.show	= locks_show,
2880 };
2881 
2882 static int __init proc_locks_init(void)
2883 {
2884 	proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
2885 			sizeof(struct locks_iterator), NULL);
2886 	return 0;
2887 }
2888 fs_initcall(proc_locks_init);
2889 #endif
2890 
2891 static int __init filelock_init(void)
2892 {
2893 	int i;
2894 
2895 	flctx_cache = kmem_cache_create("file_lock_ctx",
2896 			sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
2897 
2898 	filelock_cache = kmem_cache_create("file_lock_cache",
2899 			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
2900 
2901 	for_each_possible_cpu(i) {
2902 		struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
2903 
2904 		spin_lock_init(&fll->lock);
2905 		INIT_HLIST_HEAD(&fll->hlist);
2906 	}
2907 
2908 	return 0;
2909 }
2910 core_initcall(filelock_init);
2911