xref: /openbmc/linux/fs/locks.c (revision 75f25bd3)
1 /*
2  *  linux/fs/locks.c
3  *
4  *  Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls.
5  *  Doug Evans (dje@spiff.uucp), August 07, 1992
6  *
7  *  Deadlock detection added.
8  *  FIXME: one thing isn't handled yet:
9  *	- mandatory locks (requires lots of changes elsewhere)
10  *  Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994.
11  *
12  *  Miscellaneous edits, and a total rewrite of posix_lock_file() code.
13  *  Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994
14  *
15  *  Converted file_lock_table to a linked list from an array, which eliminates
16  *  the limits on how many active file locks are open.
17  *  Chad Page (pageone@netcom.com), November 27, 1994
18  *
19  *  Removed dependency on file descriptors. dup()'ed file descriptors now
20  *  get the same locks as the original file descriptors, and a close() on
21  *  any file descriptor removes ALL the locks on the file for the current
22  *  process. Since locks still depend on the process id, locks are inherited
23  *  after an exec() but not after a fork(). This agrees with POSIX, and both
24  *  BSD and SVR4 practice.
25  *  Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995
26  *
27  *  Scrapped free list which is redundant now that we allocate locks
28  *  dynamically with kmalloc()/kfree().
29  *  Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995
30  *
31  *  Implemented two lock personalities - FL_FLOCK and FL_POSIX.
32  *
33  *  FL_POSIX locks are created with calls to fcntl() and lockf() through the
34  *  fcntl() system call. They have the semantics described above.
35  *
36  *  FL_FLOCK locks are created with calls to flock(), through the flock()
37  *  system call, which is new. Old C libraries implement flock() via fcntl()
38  *  and will continue to use the old, broken implementation.
39  *
40  *  FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated
41  *  with a file pointer (filp). As a result they can be shared by a parent
42  *  process and its children after a fork(). They are removed when the last
43  *  file descriptor referring to the file pointer is closed (unless explicitly
44  *  unlocked).
45  *
46  *  FL_FLOCK locks never deadlock, an existing lock is always removed before
47  *  upgrading from shared to exclusive (or vice versa). When this happens
48  *  any processes blocked by the current lock are woken up and allowed to
49  *  run before the new lock is applied.
50  *  Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995
51  *
52  *  Removed some race conditions in flock_lock_file(), marked other possible
53  *  races. Just grep for FIXME to see them.
54  *  Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996.
55  *
56  *  Addressed Dmitry's concerns. Deadlock checking no longer recursive.
57  *  Lock allocation changed to GFP_ATOMIC as we can't afford to sleep
58  *  once we've checked for blocking and deadlocking.
59  *  Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996.
60  *
61  *  Initial implementation of mandatory locks. SunOS turned out to be
62  *  a rotten model, so I implemented the "obvious" semantics.
63  *  See 'Documentation/mandatory.txt' for details.
64  *  Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996.
65  *
66  *  Don't allow mandatory locks on mmap()'ed files. Added simple functions to
67  *  check if a file has mandatory locks, used by mmap(), open() and creat() to
68  *  see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference
69  *  Manual, Section 2.
70  *  Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996.
71  *
72  *  Tidied up block list handling. Added '/proc/locks' interface.
73  *  Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996.
74  *
75  *  Fixed deadlock condition for pathological code that mixes calls to
76  *  flock() and fcntl().
77  *  Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996.
78  *
79  *  Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use
80  *  for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to
81  *  guarantee sensible behaviour in the case where file system modules might
82  *  be compiled with different options than the kernel itself.
83  *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
84  *
85  *  Added a couple of missing wake_up() calls. Thanks to Thomas Meckel
86  *  (Thomas.Meckel@mni.fh-giessen.de) for spotting this.
87  *  Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996.
88  *
89  *  Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK
90  *  locks. Changed process synchronisation to avoid dereferencing locks that
91  *  have already been freed.
92  *  Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996.
93  *
94  *  Made the block list a circular list to minimise searching in the list.
95  *  Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996.
96  *
97  *  Made mandatory locking a mount option. Default is not to allow mandatory
98  *  locking.
99  *  Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996.
100  *
101  *  Some adaptations for NFS support.
102  *  Olaf Kirch (okir@monad.swb.de), Dec 1996,
103  *
104  *  Fixed /proc/locks interface so that we can't overrun the buffer we are handed.
105  *  Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997.
106  *
107  *  Use slab allocator instead of kmalloc/kfree.
108  *  Use generic list implementation from <linux/list.h>.
109  *  Sped up posix_locks_deadlock by only considering blocked locks.
110  *  Matthew Wilcox <willy@debian.org>, March, 2000.
111  *
112  *  Leases and LOCK_MAND
113  *  Matthew Wilcox <willy@debian.org>, June, 2000.
114  *  Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000.
115  */
116 
117 #include <linux/capability.h>
118 #include <linux/file.h>
119 #include <linux/fdtable.h>
120 #include <linux/fs.h>
121 #include <linux/init.h>
122 #include <linux/module.h>
123 #include <linux/security.h>
124 #include <linux/slab.h>
125 #include <linux/syscalls.h>
126 #include <linux/time.h>
127 #include <linux/rcupdate.h>
128 #include <linux/pid_namespace.h>
129 
130 #include <asm/uaccess.h>
131 
132 #define IS_POSIX(fl)	(fl->fl_flags & FL_POSIX)
133 #define IS_FLOCK(fl)	(fl->fl_flags & FL_FLOCK)
134 #define IS_LEASE(fl)	(fl->fl_flags & FL_LEASE)
135 
136 int leases_enable = 1;
137 int lease_break_time = 45;
138 
139 #define for_each_lock(inode, lockp) \
140 	for (lockp = &inode->i_flock; *lockp != NULL; lockp = &(*lockp)->fl_next)
141 
142 static LIST_HEAD(file_lock_list);
143 static LIST_HEAD(blocked_list);
144 static DEFINE_SPINLOCK(file_lock_lock);
145 
146 /*
147  * Protects the two list heads above, plus the inode->i_flock list
148  */
149 void lock_flocks(void)
150 {
151 	spin_lock(&file_lock_lock);
152 }
153 EXPORT_SYMBOL_GPL(lock_flocks);
154 
155 void unlock_flocks(void)
156 {
157 	spin_unlock(&file_lock_lock);
158 }
159 EXPORT_SYMBOL_GPL(unlock_flocks);
160 
161 static struct kmem_cache *filelock_cache __read_mostly;
162 
163 static void locks_init_lock_heads(struct file_lock *fl)
164 {
165 	INIT_LIST_HEAD(&fl->fl_link);
166 	INIT_LIST_HEAD(&fl->fl_block);
167 	init_waitqueue_head(&fl->fl_wait);
168 }
169 
170 /* Allocate an empty lock structure. */
171 struct file_lock *locks_alloc_lock(void)
172 {
173 	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
174 
175 	if (fl)
176 		locks_init_lock_heads(fl);
177 
178 	return fl;
179 }
180 EXPORT_SYMBOL_GPL(locks_alloc_lock);
181 
182 void locks_release_private(struct file_lock *fl)
183 {
184 	if (fl->fl_ops) {
185 		if (fl->fl_ops->fl_release_private)
186 			fl->fl_ops->fl_release_private(fl);
187 		fl->fl_ops = NULL;
188 	}
189 	if (fl->fl_lmops) {
190 		if (fl->fl_lmops->lm_release_private)
191 			fl->fl_lmops->lm_release_private(fl);
192 		fl->fl_lmops = NULL;
193 	}
194 
195 }
196 EXPORT_SYMBOL_GPL(locks_release_private);
197 
198 /* Free a lock which is not in use. */
199 void locks_free_lock(struct file_lock *fl)
200 {
201 	BUG_ON(waitqueue_active(&fl->fl_wait));
202 	BUG_ON(!list_empty(&fl->fl_block));
203 	BUG_ON(!list_empty(&fl->fl_link));
204 
205 	locks_release_private(fl);
206 	kmem_cache_free(filelock_cache, fl);
207 }
208 EXPORT_SYMBOL(locks_free_lock);
209 
210 void locks_init_lock(struct file_lock *fl)
211 {
212 	memset(fl, 0, sizeof(struct file_lock));
213 	locks_init_lock_heads(fl);
214 }
215 
216 EXPORT_SYMBOL(locks_init_lock);
217 
218 static void locks_copy_private(struct file_lock *new, struct file_lock *fl)
219 {
220 	if (fl->fl_ops) {
221 		if (fl->fl_ops->fl_copy_lock)
222 			fl->fl_ops->fl_copy_lock(new, fl);
223 		new->fl_ops = fl->fl_ops;
224 	}
225 	if (fl->fl_lmops)
226 		new->fl_lmops = fl->fl_lmops;
227 }
228 
229 /*
230  * Initialize a new lock from an existing file_lock structure.
231  */
232 void __locks_copy_lock(struct file_lock *new, const struct file_lock *fl)
233 {
234 	new->fl_owner = fl->fl_owner;
235 	new->fl_pid = fl->fl_pid;
236 	new->fl_file = NULL;
237 	new->fl_flags = fl->fl_flags;
238 	new->fl_type = fl->fl_type;
239 	new->fl_start = fl->fl_start;
240 	new->fl_end = fl->fl_end;
241 	new->fl_ops = NULL;
242 	new->fl_lmops = NULL;
243 }
244 EXPORT_SYMBOL(__locks_copy_lock);
245 
246 void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
247 {
248 	locks_release_private(new);
249 
250 	__locks_copy_lock(new, fl);
251 	new->fl_file = fl->fl_file;
252 	new->fl_ops = fl->fl_ops;
253 	new->fl_lmops = fl->fl_lmops;
254 
255 	locks_copy_private(new, fl);
256 }
257 
258 EXPORT_SYMBOL(locks_copy_lock);
259 
260 static inline int flock_translate_cmd(int cmd) {
261 	if (cmd & LOCK_MAND)
262 		return cmd & (LOCK_MAND | LOCK_RW);
263 	switch (cmd) {
264 	case LOCK_SH:
265 		return F_RDLCK;
266 	case LOCK_EX:
267 		return F_WRLCK;
268 	case LOCK_UN:
269 		return F_UNLCK;
270 	}
271 	return -EINVAL;
272 }
273 
274 /* Fill in a file_lock structure with an appropriate FLOCK lock. */
275 static int flock_make_lock(struct file *filp, struct file_lock **lock,
276 		unsigned int cmd)
277 {
278 	struct file_lock *fl;
279 	int type = flock_translate_cmd(cmd);
280 	if (type < 0)
281 		return type;
282 
283 	fl = locks_alloc_lock();
284 	if (fl == NULL)
285 		return -ENOMEM;
286 
287 	fl->fl_file = filp;
288 	fl->fl_pid = current->tgid;
289 	fl->fl_flags = FL_FLOCK;
290 	fl->fl_type = type;
291 	fl->fl_end = OFFSET_MAX;
292 
293 	*lock = fl;
294 	return 0;
295 }
296 
297 static int assign_type(struct file_lock *fl, int type)
298 {
299 	switch (type) {
300 	case F_RDLCK:
301 	case F_WRLCK:
302 	case F_UNLCK:
303 		fl->fl_type = type;
304 		break;
305 	default:
306 		return -EINVAL;
307 	}
308 	return 0;
309 }
310 
311 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
312  * style lock.
313  */
314 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
315 			       struct flock *l)
316 {
317 	off_t start, end;
318 
319 	switch (l->l_whence) {
320 	case SEEK_SET:
321 		start = 0;
322 		break;
323 	case SEEK_CUR:
324 		start = filp->f_pos;
325 		break;
326 	case SEEK_END:
327 		start = i_size_read(filp->f_path.dentry->d_inode);
328 		break;
329 	default:
330 		return -EINVAL;
331 	}
332 
333 	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
334 	   POSIX-2001 defines it. */
335 	start += l->l_start;
336 	if (start < 0)
337 		return -EINVAL;
338 	fl->fl_end = OFFSET_MAX;
339 	if (l->l_len > 0) {
340 		end = start + l->l_len - 1;
341 		fl->fl_end = end;
342 	} else if (l->l_len < 0) {
343 		end = start - 1;
344 		fl->fl_end = end;
345 		start += l->l_len;
346 		if (start < 0)
347 			return -EINVAL;
348 	}
349 	fl->fl_start = start;	/* we record the absolute position */
350 	if (fl->fl_end < fl->fl_start)
351 		return -EOVERFLOW;
352 
353 	fl->fl_owner = current->files;
354 	fl->fl_pid = current->tgid;
355 	fl->fl_file = filp;
356 	fl->fl_flags = FL_POSIX;
357 	fl->fl_ops = NULL;
358 	fl->fl_lmops = NULL;
359 
360 	return assign_type(fl, l->l_type);
361 }
362 
363 #if BITS_PER_LONG == 32
364 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
365 				 struct flock64 *l)
366 {
367 	loff_t start;
368 
369 	switch (l->l_whence) {
370 	case SEEK_SET:
371 		start = 0;
372 		break;
373 	case SEEK_CUR:
374 		start = filp->f_pos;
375 		break;
376 	case SEEK_END:
377 		start = i_size_read(filp->f_path.dentry->d_inode);
378 		break;
379 	default:
380 		return -EINVAL;
381 	}
382 
383 	start += l->l_start;
384 	if (start < 0)
385 		return -EINVAL;
386 	fl->fl_end = OFFSET_MAX;
387 	if (l->l_len > 0) {
388 		fl->fl_end = start + l->l_len - 1;
389 	} else if (l->l_len < 0) {
390 		fl->fl_end = start - 1;
391 		start += l->l_len;
392 		if (start < 0)
393 			return -EINVAL;
394 	}
395 	fl->fl_start = start;	/* we record the absolute position */
396 	if (fl->fl_end < fl->fl_start)
397 		return -EOVERFLOW;
398 
399 	fl->fl_owner = current->files;
400 	fl->fl_pid = current->tgid;
401 	fl->fl_file = filp;
402 	fl->fl_flags = FL_POSIX;
403 	fl->fl_ops = NULL;
404 	fl->fl_lmops = NULL;
405 
406 	return assign_type(fl, l->l_type);
407 }
408 #endif
409 
410 /* default lease lock manager operations */
411 static void lease_break_callback(struct file_lock *fl)
412 {
413 	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
414 }
415 
416 static void lease_release_private_callback(struct file_lock *fl)
417 {
418 	if (!fl->fl_file)
419 		return;
420 
421 	f_delown(fl->fl_file);
422 	fl->fl_file->f_owner.signum = 0;
423 }
424 
425 static const struct lock_manager_operations lease_manager_ops = {
426 	.lm_break = lease_break_callback,
427 	.lm_release_private = lease_release_private_callback,
428 	.lm_change = lease_modify,
429 };
430 
431 /*
432  * Initialize a lease, use the default lock manager operations
433  */
434 static int lease_init(struct file *filp, int type, struct file_lock *fl)
435  {
436 	if (assign_type(fl, type) != 0)
437 		return -EINVAL;
438 
439 	fl->fl_owner = current->files;
440 	fl->fl_pid = current->tgid;
441 
442 	fl->fl_file = filp;
443 	fl->fl_flags = FL_LEASE;
444 	fl->fl_start = 0;
445 	fl->fl_end = OFFSET_MAX;
446 	fl->fl_ops = NULL;
447 	fl->fl_lmops = &lease_manager_ops;
448 	return 0;
449 }
450 
451 /* Allocate a file_lock initialised to this type of lease */
452 static struct file_lock *lease_alloc(struct file *filp, int type)
453 {
454 	struct file_lock *fl = locks_alloc_lock();
455 	int error = -ENOMEM;
456 
457 	if (fl == NULL)
458 		return ERR_PTR(error);
459 
460 	error = lease_init(filp, type, fl);
461 	if (error) {
462 		locks_free_lock(fl);
463 		return ERR_PTR(error);
464 	}
465 	return fl;
466 }
467 
468 /* Check if two locks overlap each other.
469  */
470 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
471 {
472 	return ((fl1->fl_end >= fl2->fl_start) &&
473 		(fl2->fl_end >= fl1->fl_start));
474 }
475 
476 /*
477  * Check whether two locks have the same owner.
478  */
479 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
480 {
481 	if (fl1->fl_lmops && fl1->fl_lmops->lm_compare_owner)
482 		return fl2->fl_lmops == fl1->fl_lmops &&
483 			fl1->fl_lmops->lm_compare_owner(fl1, fl2);
484 	return fl1->fl_owner == fl2->fl_owner;
485 }
486 
487 /* Remove waiter from blocker's block list.
488  * When blocker ends up pointing to itself then the list is empty.
489  */
490 static void __locks_delete_block(struct file_lock *waiter)
491 {
492 	list_del_init(&waiter->fl_block);
493 	list_del_init(&waiter->fl_link);
494 	waiter->fl_next = NULL;
495 }
496 
497 /*
498  */
499 static void locks_delete_block(struct file_lock *waiter)
500 {
501 	lock_flocks();
502 	__locks_delete_block(waiter);
503 	unlock_flocks();
504 }
505 
506 /* Insert waiter into blocker's block list.
507  * We use a circular list so that processes can be easily woken up in
508  * the order they blocked. The documentation doesn't require this but
509  * it seems like the reasonable thing to do.
510  */
511 static void locks_insert_block(struct file_lock *blocker,
512 			       struct file_lock *waiter)
513 {
514 	BUG_ON(!list_empty(&waiter->fl_block));
515 	list_add_tail(&waiter->fl_block, &blocker->fl_block);
516 	waiter->fl_next = blocker;
517 	if (IS_POSIX(blocker))
518 		list_add(&waiter->fl_link, &blocked_list);
519 }
520 
521 /* Wake up processes blocked waiting for blocker.
522  * If told to wait then schedule the processes until the block list
523  * is empty, otherwise empty the block list ourselves.
524  */
525 static void locks_wake_up_blocks(struct file_lock *blocker)
526 {
527 	while (!list_empty(&blocker->fl_block)) {
528 		struct file_lock *waiter;
529 
530 		waiter = list_first_entry(&blocker->fl_block,
531 				struct file_lock, fl_block);
532 		__locks_delete_block(waiter);
533 		if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
534 			waiter->fl_lmops->lm_notify(waiter);
535 		else
536 			wake_up(&waiter->fl_wait);
537 	}
538 }
539 
540 /* Insert file lock fl into an inode's lock list at the position indicated
541  * by pos. At the same time add the lock to the global file lock list.
542  */
543 static void locks_insert_lock(struct file_lock **pos, struct file_lock *fl)
544 {
545 	list_add(&fl->fl_link, &file_lock_list);
546 
547 	fl->fl_nspid = get_pid(task_tgid(current));
548 
549 	/* insert into file's list */
550 	fl->fl_next = *pos;
551 	*pos = fl;
552 }
553 
554 /*
555  * Delete a lock and then free it.
556  * Wake up processes that are blocked waiting for this lock,
557  * notify the FS that the lock has been cleared and
558  * finally free the lock.
559  */
560 static void locks_delete_lock(struct file_lock **thisfl_p)
561 {
562 	struct file_lock *fl = *thisfl_p;
563 
564 	*thisfl_p = fl->fl_next;
565 	fl->fl_next = NULL;
566 	list_del_init(&fl->fl_link);
567 
568 	fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
569 	if (fl->fl_fasync != NULL) {
570 		printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
571 		fl->fl_fasync = NULL;
572 	}
573 
574 	if (fl->fl_nspid) {
575 		put_pid(fl->fl_nspid);
576 		fl->fl_nspid = NULL;
577 	}
578 
579 	locks_wake_up_blocks(fl);
580 	locks_free_lock(fl);
581 }
582 
583 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
584  * checks for shared/exclusive status of overlapping locks.
585  */
586 static int locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl)
587 {
588 	if (sys_fl->fl_type == F_WRLCK)
589 		return 1;
590 	if (caller_fl->fl_type == F_WRLCK)
591 		return 1;
592 	return 0;
593 }
594 
595 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
596  * checking before calling the locks_conflict().
597  */
598 static int posix_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl)
599 {
600 	/* POSIX locks owned by the same process do not conflict with
601 	 * each other.
602 	 */
603 	if (!IS_POSIX(sys_fl) || posix_same_owner(caller_fl, sys_fl))
604 		return (0);
605 
606 	/* Check whether they overlap */
607 	if (!locks_overlap(caller_fl, sys_fl))
608 		return 0;
609 
610 	return (locks_conflict(caller_fl, sys_fl));
611 }
612 
613 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
614  * checking before calling the locks_conflict().
615  */
616 static int flock_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl)
617 {
618 	/* FLOCK locks referring to the same filp do not conflict with
619 	 * each other.
620 	 */
621 	if (!IS_FLOCK(sys_fl) || (caller_fl->fl_file == sys_fl->fl_file))
622 		return (0);
623 	if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND))
624 		return 0;
625 
626 	return (locks_conflict(caller_fl, sys_fl));
627 }
628 
629 void
630 posix_test_lock(struct file *filp, struct file_lock *fl)
631 {
632 	struct file_lock *cfl;
633 
634 	lock_flocks();
635 	for (cfl = filp->f_path.dentry->d_inode->i_flock; cfl; cfl = cfl->fl_next) {
636 		if (!IS_POSIX(cfl))
637 			continue;
638 		if (posix_locks_conflict(fl, cfl))
639 			break;
640 	}
641 	if (cfl) {
642 		__locks_copy_lock(fl, cfl);
643 		if (cfl->fl_nspid)
644 			fl->fl_pid = pid_vnr(cfl->fl_nspid);
645 	} else
646 		fl->fl_type = F_UNLCK;
647 	unlock_flocks();
648 	return;
649 }
650 EXPORT_SYMBOL(posix_test_lock);
651 
652 /*
653  * Deadlock detection:
654  *
655  * We attempt to detect deadlocks that are due purely to posix file
656  * locks.
657  *
658  * We assume that a task can be waiting for at most one lock at a time.
659  * So for any acquired lock, the process holding that lock may be
660  * waiting on at most one other lock.  That lock in turns may be held by
661  * someone waiting for at most one other lock.  Given a requested lock
662  * caller_fl which is about to wait for a conflicting lock block_fl, we
663  * follow this chain of waiters to ensure we are not about to create a
664  * cycle.
665  *
666  * Since we do this before we ever put a process to sleep on a lock, we
667  * are ensured that there is never a cycle; that is what guarantees that
668  * the while() loop in posix_locks_deadlock() eventually completes.
669  *
670  * Note: the above assumption may not be true when handling lock
671  * requests from a broken NFS client. It may also fail in the presence
672  * of tasks (such as posix threads) sharing the same open file table.
673  *
674  * To handle those cases, we just bail out after a few iterations.
675  */
676 
677 #define MAX_DEADLK_ITERATIONS 10
678 
679 /* Find a lock that the owner of the given block_fl is blocking on. */
680 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
681 {
682 	struct file_lock *fl;
683 
684 	list_for_each_entry(fl, &blocked_list, fl_link) {
685 		if (posix_same_owner(fl, block_fl))
686 			return fl->fl_next;
687 	}
688 	return NULL;
689 }
690 
691 static int posix_locks_deadlock(struct file_lock *caller_fl,
692 				struct file_lock *block_fl)
693 {
694 	int i = 0;
695 
696 	while ((block_fl = what_owner_is_waiting_for(block_fl))) {
697 		if (i++ > MAX_DEADLK_ITERATIONS)
698 			return 0;
699 		if (posix_same_owner(caller_fl, block_fl))
700 			return 1;
701 	}
702 	return 0;
703 }
704 
705 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
706  * after any leases, but before any posix locks.
707  *
708  * Note that if called with an FL_EXISTS argument, the caller may determine
709  * whether or not a lock was successfully freed by testing the return
710  * value for -ENOENT.
711  */
712 static int flock_lock_file(struct file *filp, struct file_lock *request)
713 {
714 	struct file_lock *new_fl = NULL;
715 	struct file_lock **before;
716 	struct inode * inode = filp->f_path.dentry->d_inode;
717 	int error = 0;
718 	int found = 0;
719 
720 	if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
721 		new_fl = locks_alloc_lock();
722 		if (!new_fl)
723 			return -ENOMEM;
724 	}
725 
726 	lock_flocks();
727 	if (request->fl_flags & FL_ACCESS)
728 		goto find_conflict;
729 
730 	for_each_lock(inode, before) {
731 		struct file_lock *fl = *before;
732 		if (IS_POSIX(fl))
733 			break;
734 		if (IS_LEASE(fl))
735 			continue;
736 		if (filp != fl->fl_file)
737 			continue;
738 		if (request->fl_type == fl->fl_type)
739 			goto out;
740 		found = 1;
741 		locks_delete_lock(before);
742 		break;
743 	}
744 
745 	if (request->fl_type == F_UNLCK) {
746 		if ((request->fl_flags & FL_EXISTS) && !found)
747 			error = -ENOENT;
748 		goto out;
749 	}
750 
751 	/*
752 	 * If a higher-priority process was blocked on the old file lock,
753 	 * give it the opportunity to lock the file.
754 	 */
755 	if (found) {
756 		unlock_flocks();
757 		cond_resched();
758 		lock_flocks();
759 	}
760 
761 find_conflict:
762 	for_each_lock(inode, before) {
763 		struct file_lock *fl = *before;
764 		if (IS_POSIX(fl))
765 			break;
766 		if (IS_LEASE(fl))
767 			continue;
768 		if (!flock_locks_conflict(request, fl))
769 			continue;
770 		error = -EAGAIN;
771 		if (!(request->fl_flags & FL_SLEEP))
772 			goto out;
773 		error = FILE_LOCK_DEFERRED;
774 		locks_insert_block(fl, request);
775 		goto out;
776 	}
777 	if (request->fl_flags & FL_ACCESS)
778 		goto out;
779 	locks_copy_lock(new_fl, request);
780 	locks_insert_lock(before, new_fl);
781 	new_fl = NULL;
782 	error = 0;
783 
784 out:
785 	unlock_flocks();
786 	if (new_fl)
787 		locks_free_lock(new_fl);
788 	return error;
789 }
790 
791 static int __posix_lock_file(struct inode *inode, struct file_lock *request, struct file_lock *conflock)
792 {
793 	struct file_lock *fl;
794 	struct file_lock *new_fl = NULL;
795 	struct file_lock *new_fl2 = NULL;
796 	struct file_lock *left = NULL;
797 	struct file_lock *right = NULL;
798 	struct file_lock **before;
799 	int error, added = 0;
800 
801 	/*
802 	 * We may need two file_lock structures for this operation,
803 	 * so we get them in advance to avoid races.
804 	 *
805 	 * In some cases we can be sure, that no new locks will be needed
806 	 */
807 	if (!(request->fl_flags & FL_ACCESS) &&
808 	    (request->fl_type != F_UNLCK ||
809 	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
810 		new_fl = locks_alloc_lock();
811 		new_fl2 = locks_alloc_lock();
812 	}
813 
814 	lock_flocks();
815 	if (request->fl_type != F_UNLCK) {
816 		for_each_lock(inode, before) {
817 			fl = *before;
818 			if (!IS_POSIX(fl))
819 				continue;
820 			if (!posix_locks_conflict(request, fl))
821 				continue;
822 			if (conflock)
823 				__locks_copy_lock(conflock, fl);
824 			error = -EAGAIN;
825 			if (!(request->fl_flags & FL_SLEEP))
826 				goto out;
827 			error = -EDEADLK;
828 			if (posix_locks_deadlock(request, fl))
829 				goto out;
830 			error = FILE_LOCK_DEFERRED;
831 			locks_insert_block(fl, request);
832 			goto out;
833   		}
834   	}
835 
836 	/* If we're just looking for a conflict, we're done. */
837 	error = 0;
838 	if (request->fl_flags & FL_ACCESS)
839 		goto out;
840 
841 	/*
842 	 * Find the first old lock with the same owner as the new lock.
843 	 */
844 
845 	before = &inode->i_flock;
846 
847 	/* First skip locks owned by other processes.  */
848 	while ((fl = *before) && (!IS_POSIX(fl) ||
849 				  !posix_same_owner(request, fl))) {
850 		before = &fl->fl_next;
851 	}
852 
853 	/* Process locks with this owner.  */
854 	while ((fl = *before) && posix_same_owner(request, fl)) {
855 		/* Detect adjacent or overlapping regions (if same lock type)
856 		 */
857 		if (request->fl_type == fl->fl_type) {
858 			/* In all comparisons of start vs end, use
859 			 * "start - 1" rather than "end + 1". If end
860 			 * is OFFSET_MAX, end + 1 will become negative.
861 			 */
862 			if (fl->fl_end < request->fl_start - 1)
863 				goto next_lock;
864 			/* If the next lock in the list has entirely bigger
865 			 * addresses than the new one, insert the lock here.
866 			 */
867 			if (fl->fl_start - 1 > request->fl_end)
868 				break;
869 
870 			/* If we come here, the new and old lock are of the
871 			 * same type and adjacent or overlapping. Make one
872 			 * lock yielding from the lower start address of both
873 			 * locks to the higher end address.
874 			 */
875 			if (fl->fl_start > request->fl_start)
876 				fl->fl_start = request->fl_start;
877 			else
878 				request->fl_start = fl->fl_start;
879 			if (fl->fl_end < request->fl_end)
880 				fl->fl_end = request->fl_end;
881 			else
882 				request->fl_end = fl->fl_end;
883 			if (added) {
884 				locks_delete_lock(before);
885 				continue;
886 			}
887 			request = fl;
888 			added = 1;
889 		}
890 		else {
891 			/* Processing for different lock types is a bit
892 			 * more complex.
893 			 */
894 			if (fl->fl_end < request->fl_start)
895 				goto next_lock;
896 			if (fl->fl_start > request->fl_end)
897 				break;
898 			if (request->fl_type == F_UNLCK)
899 				added = 1;
900 			if (fl->fl_start < request->fl_start)
901 				left = fl;
902 			/* If the next lock in the list has a higher end
903 			 * address than the new one, insert the new one here.
904 			 */
905 			if (fl->fl_end > request->fl_end) {
906 				right = fl;
907 				break;
908 			}
909 			if (fl->fl_start >= request->fl_start) {
910 				/* The new lock completely replaces an old
911 				 * one (This may happen several times).
912 				 */
913 				if (added) {
914 					locks_delete_lock(before);
915 					continue;
916 				}
917 				/* Replace the old lock with the new one.
918 				 * Wake up anybody waiting for the old one,
919 				 * as the change in lock type might satisfy
920 				 * their needs.
921 				 */
922 				locks_wake_up_blocks(fl);
923 				fl->fl_start = request->fl_start;
924 				fl->fl_end = request->fl_end;
925 				fl->fl_type = request->fl_type;
926 				locks_release_private(fl);
927 				locks_copy_private(fl, request);
928 				request = fl;
929 				added = 1;
930 			}
931 		}
932 		/* Go on to next lock.
933 		 */
934 	next_lock:
935 		before = &fl->fl_next;
936 	}
937 
938 	/*
939 	 * The above code only modifies existing locks in case of
940 	 * merging or replacing.  If new lock(s) need to be inserted
941 	 * all modifications are done bellow this, so it's safe yet to
942 	 * bail out.
943 	 */
944 	error = -ENOLCK; /* "no luck" */
945 	if (right && left == right && !new_fl2)
946 		goto out;
947 
948 	error = 0;
949 	if (!added) {
950 		if (request->fl_type == F_UNLCK) {
951 			if (request->fl_flags & FL_EXISTS)
952 				error = -ENOENT;
953 			goto out;
954 		}
955 
956 		if (!new_fl) {
957 			error = -ENOLCK;
958 			goto out;
959 		}
960 		locks_copy_lock(new_fl, request);
961 		locks_insert_lock(before, new_fl);
962 		new_fl = NULL;
963 	}
964 	if (right) {
965 		if (left == right) {
966 			/* The new lock breaks the old one in two pieces,
967 			 * so we have to use the second new lock.
968 			 */
969 			left = new_fl2;
970 			new_fl2 = NULL;
971 			locks_copy_lock(left, right);
972 			locks_insert_lock(before, left);
973 		}
974 		right->fl_start = request->fl_end + 1;
975 		locks_wake_up_blocks(right);
976 	}
977 	if (left) {
978 		left->fl_end = request->fl_start - 1;
979 		locks_wake_up_blocks(left);
980 	}
981  out:
982 	unlock_flocks();
983 	/*
984 	 * Free any unused locks.
985 	 */
986 	if (new_fl)
987 		locks_free_lock(new_fl);
988 	if (new_fl2)
989 		locks_free_lock(new_fl2);
990 	return error;
991 }
992 
993 /**
994  * posix_lock_file - Apply a POSIX-style lock to a file
995  * @filp: The file to apply the lock to
996  * @fl: The lock to be applied
997  * @conflock: Place to return a copy of the conflicting lock, if found.
998  *
999  * Add a POSIX style lock to a file.
1000  * We merge adjacent & overlapping locks whenever possible.
1001  * POSIX locks are sorted by owner task, then by starting address
1002  *
1003  * Note that if called with an FL_EXISTS argument, the caller may determine
1004  * whether or not a lock was successfully freed by testing the return
1005  * value for -ENOENT.
1006  */
1007 int posix_lock_file(struct file *filp, struct file_lock *fl,
1008 			struct file_lock *conflock)
1009 {
1010 	return __posix_lock_file(filp->f_path.dentry->d_inode, fl, conflock);
1011 }
1012 EXPORT_SYMBOL(posix_lock_file);
1013 
1014 /**
1015  * posix_lock_file_wait - Apply a POSIX-style lock to a file
1016  * @filp: The file to apply the lock to
1017  * @fl: The lock to be applied
1018  *
1019  * Add a POSIX style lock to a file.
1020  * We merge adjacent & overlapping locks whenever possible.
1021  * POSIX locks are sorted by owner task, then by starting address
1022  */
1023 int posix_lock_file_wait(struct file *filp, struct file_lock *fl)
1024 {
1025 	int error;
1026 	might_sleep ();
1027 	for (;;) {
1028 		error = posix_lock_file(filp, fl, NULL);
1029 		if (error != FILE_LOCK_DEFERRED)
1030 			break;
1031 		error = wait_event_interruptible(fl->fl_wait, !fl->fl_next);
1032 		if (!error)
1033 			continue;
1034 
1035 		locks_delete_block(fl);
1036 		break;
1037 	}
1038 	return error;
1039 }
1040 EXPORT_SYMBOL(posix_lock_file_wait);
1041 
1042 /**
1043  * locks_mandatory_locked - Check for an active lock
1044  * @inode: the file to check
1045  *
1046  * Searches the inode's list of locks to find any POSIX locks which conflict.
1047  * This function is called from locks_verify_locked() only.
1048  */
1049 int locks_mandatory_locked(struct inode *inode)
1050 {
1051 	fl_owner_t owner = current->files;
1052 	struct file_lock *fl;
1053 
1054 	/*
1055 	 * Search the lock list for this inode for any POSIX locks.
1056 	 */
1057 	lock_flocks();
1058 	for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) {
1059 		if (!IS_POSIX(fl))
1060 			continue;
1061 		if (fl->fl_owner != owner)
1062 			break;
1063 	}
1064 	unlock_flocks();
1065 	return fl ? -EAGAIN : 0;
1066 }
1067 
1068 /**
1069  * locks_mandatory_area - Check for a conflicting lock
1070  * @read_write: %FLOCK_VERIFY_WRITE for exclusive access, %FLOCK_VERIFY_READ
1071  *		for shared
1072  * @inode:      the file to check
1073  * @filp:       how the file was opened (if it was)
1074  * @offset:     start of area to check
1075  * @count:      length of area to check
1076  *
1077  * Searches the inode's list of locks to find any POSIX locks which conflict.
1078  * This function is called from rw_verify_area() and
1079  * locks_verify_truncate().
1080  */
1081 int locks_mandatory_area(int read_write, struct inode *inode,
1082 			 struct file *filp, loff_t offset,
1083 			 size_t count)
1084 {
1085 	struct file_lock fl;
1086 	int error;
1087 
1088 	locks_init_lock(&fl);
1089 	fl.fl_owner = current->files;
1090 	fl.fl_pid = current->tgid;
1091 	fl.fl_file = filp;
1092 	fl.fl_flags = FL_POSIX | FL_ACCESS;
1093 	if (filp && !(filp->f_flags & O_NONBLOCK))
1094 		fl.fl_flags |= FL_SLEEP;
1095 	fl.fl_type = (read_write == FLOCK_VERIFY_WRITE) ? F_WRLCK : F_RDLCK;
1096 	fl.fl_start = offset;
1097 	fl.fl_end = offset + count - 1;
1098 
1099 	for (;;) {
1100 		error = __posix_lock_file(inode, &fl, NULL);
1101 		if (error != FILE_LOCK_DEFERRED)
1102 			break;
1103 		error = wait_event_interruptible(fl.fl_wait, !fl.fl_next);
1104 		if (!error) {
1105 			/*
1106 			 * If we've been sleeping someone might have
1107 			 * changed the permissions behind our back.
1108 			 */
1109 			if (__mandatory_lock(inode))
1110 				continue;
1111 		}
1112 
1113 		locks_delete_block(&fl);
1114 		break;
1115 	}
1116 
1117 	return error;
1118 }
1119 
1120 EXPORT_SYMBOL(locks_mandatory_area);
1121 
1122 /* We already had a lease on this file; just change its type */
1123 int lease_modify(struct file_lock **before, int arg)
1124 {
1125 	struct file_lock *fl = *before;
1126 	int error = assign_type(fl, arg);
1127 
1128 	if (error)
1129 		return error;
1130 	locks_wake_up_blocks(fl);
1131 	if (arg == F_UNLCK)
1132 		locks_delete_lock(before);
1133 	return 0;
1134 }
1135 
1136 EXPORT_SYMBOL(lease_modify);
1137 
1138 static void time_out_leases(struct inode *inode)
1139 {
1140 	struct file_lock **before;
1141 	struct file_lock *fl;
1142 
1143 	before = &inode->i_flock;
1144 	while ((fl = *before) && IS_LEASE(fl) && (fl->fl_type & F_INPROGRESS)) {
1145 		if ((fl->fl_break_time == 0)
1146 				|| time_before(jiffies, fl->fl_break_time)) {
1147 			before = &fl->fl_next;
1148 			continue;
1149 		}
1150 		lease_modify(before, fl->fl_type & ~F_INPROGRESS);
1151 		if (fl == *before)	/* lease_modify may have freed fl */
1152 			before = &fl->fl_next;
1153 	}
1154 }
1155 
1156 /**
1157  *	__break_lease	-	revoke all outstanding leases on file
1158  *	@inode: the inode of the file to return
1159  *	@mode: the open mode (read or write)
1160  *
1161  *	break_lease (inlined for speed) has checked there already is at least
1162  *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1163  *	a call to open() or truncate().  This function can sleep unless you
1164  *	specified %O_NONBLOCK to your open().
1165  */
1166 int __break_lease(struct inode *inode, unsigned int mode)
1167 {
1168 	int error = 0, future;
1169 	struct file_lock *new_fl, *flock;
1170 	struct file_lock *fl;
1171 	unsigned long break_time;
1172 	int i_have_this_lease = 0;
1173 	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1174 
1175 	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1176 
1177 	lock_flocks();
1178 
1179 	time_out_leases(inode);
1180 
1181 	flock = inode->i_flock;
1182 	if ((flock == NULL) || !IS_LEASE(flock))
1183 		goto out;
1184 
1185 	for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next)
1186 		if (fl->fl_owner == current->files)
1187 			i_have_this_lease = 1;
1188 
1189 	if (want_write) {
1190 		/* If we want write access, we have to revoke any lease. */
1191 		future = F_UNLCK | F_INPROGRESS;
1192 	} else if (flock->fl_type & F_INPROGRESS) {
1193 		/* If the lease is already being broken, we just leave it */
1194 		future = flock->fl_type;
1195 	} else if (flock->fl_type & F_WRLCK) {
1196 		/* Downgrade the exclusive lease to a read-only lease. */
1197 		future = F_RDLCK | F_INPROGRESS;
1198 	} else {
1199 		/* the existing lease was read-only, so we can read too. */
1200 		goto out;
1201 	}
1202 
1203 	if (IS_ERR(new_fl) && !i_have_this_lease
1204 			&& ((mode & O_NONBLOCK) == 0)) {
1205 		error = PTR_ERR(new_fl);
1206 		goto out;
1207 	}
1208 
1209 	break_time = 0;
1210 	if (lease_break_time > 0) {
1211 		break_time = jiffies + lease_break_time * HZ;
1212 		if (break_time == 0)
1213 			break_time++;	/* so that 0 means no break time */
1214 	}
1215 
1216 	for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next) {
1217 		if (fl->fl_type != future) {
1218 			fl->fl_type = future;
1219 			fl->fl_break_time = break_time;
1220 			/* lease must have lmops break callback */
1221 			fl->fl_lmops->lm_break(fl);
1222 		}
1223 	}
1224 
1225 	if (i_have_this_lease || (mode & O_NONBLOCK)) {
1226 		error = -EWOULDBLOCK;
1227 		goto out;
1228 	}
1229 
1230 restart:
1231 	break_time = flock->fl_break_time;
1232 	if (break_time != 0) {
1233 		break_time -= jiffies;
1234 		if (break_time == 0)
1235 			break_time++;
1236 	}
1237 	locks_insert_block(flock, new_fl);
1238 	unlock_flocks();
1239 	error = wait_event_interruptible_timeout(new_fl->fl_wait,
1240 						!new_fl->fl_next, break_time);
1241 	lock_flocks();
1242 	__locks_delete_block(new_fl);
1243 	if (error >= 0) {
1244 		if (error == 0)
1245 			time_out_leases(inode);
1246 		/* Wait for the next lease that has not been broken yet */
1247 		for (flock = inode->i_flock; flock && IS_LEASE(flock);
1248 				flock = flock->fl_next) {
1249 			if (flock->fl_type & F_INPROGRESS)
1250 				goto restart;
1251 		}
1252 		error = 0;
1253 	}
1254 
1255 out:
1256 	unlock_flocks();
1257 	if (!IS_ERR(new_fl))
1258 		locks_free_lock(new_fl);
1259 	return error;
1260 }
1261 
1262 EXPORT_SYMBOL(__break_lease);
1263 
1264 /**
1265  *	lease_get_mtime - get the last modified time of an inode
1266  *	@inode: the inode
1267  *      @time:  pointer to a timespec which will contain the last modified time
1268  *
1269  * This is to force NFS clients to flush their caches for files with
1270  * exclusive leases.  The justification is that if someone has an
1271  * exclusive lease, then they could be modifying it.
1272  */
1273 void lease_get_mtime(struct inode *inode, struct timespec *time)
1274 {
1275 	struct file_lock *flock = inode->i_flock;
1276 	if (flock && IS_LEASE(flock) && (flock->fl_type & F_WRLCK))
1277 		*time = current_fs_time(inode->i_sb);
1278 	else
1279 		*time = inode->i_mtime;
1280 }
1281 
1282 EXPORT_SYMBOL(lease_get_mtime);
1283 
1284 /**
1285  *	fcntl_getlease - Enquire what lease is currently active
1286  *	@filp: the file
1287  *
1288  *	The value returned by this function will be one of
1289  *	(if no lease break is pending):
1290  *
1291  *	%F_RDLCK to indicate a shared lease is held.
1292  *
1293  *	%F_WRLCK to indicate an exclusive lease is held.
1294  *
1295  *	%F_UNLCK to indicate no lease is held.
1296  *
1297  *	(if a lease break is pending):
1298  *
1299  *	%F_RDLCK to indicate an exclusive lease needs to be
1300  *		changed to a shared lease (or removed).
1301  *
1302  *	%F_UNLCK to indicate the lease needs to be removed.
1303  *
1304  *	XXX: sfr & willy disagree over whether F_INPROGRESS
1305  *	should be returned to userspace.
1306  */
1307 int fcntl_getlease(struct file *filp)
1308 {
1309 	struct file_lock *fl;
1310 	int type = F_UNLCK;
1311 
1312 	lock_flocks();
1313 	time_out_leases(filp->f_path.dentry->d_inode);
1314 	for (fl = filp->f_path.dentry->d_inode->i_flock; fl && IS_LEASE(fl);
1315 			fl = fl->fl_next) {
1316 		if (fl->fl_file == filp) {
1317 			type = fl->fl_type & ~F_INPROGRESS;
1318 			break;
1319 		}
1320 	}
1321 	unlock_flocks();
1322 	return type;
1323 }
1324 
1325 /**
1326  *	generic_setlease	-	sets a lease on an open file
1327  *	@filp: file pointer
1328  *	@arg: type of lease to obtain
1329  *	@flp: input - file_lock to use, output - file_lock inserted
1330  *
1331  *	The (input) flp->fl_lmops->lm_break function is required
1332  *	by break_lease().
1333  *
1334  *	Called with file_lock_lock held.
1335  */
1336 int generic_setlease(struct file *filp, long arg, struct file_lock **flp)
1337 {
1338 	struct file_lock *fl, **before, **my_before = NULL, *lease;
1339 	struct dentry *dentry = filp->f_path.dentry;
1340 	struct inode *inode = dentry->d_inode;
1341 	int error, rdlease_count = 0, wrlease_count = 0;
1342 
1343 	lease = *flp;
1344 
1345 	error = -EACCES;
1346 	if ((current_fsuid() != inode->i_uid) && !capable(CAP_LEASE))
1347 		goto out;
1348 	error = -EINVAL;
1349 	if (!S_ISREG(inode->i_mode))
1350 		goto out;
1351 	error = security_file_lock(filp, arg);
1352 	if (error)
1353 		goto out;
1354 
1355 	time_out_leases(inode);
1356 
1357 	BUG_ON(!(*flp)->fl_lmops->lm_break);
1358 
1359 	if (arg != F_UNLCK) {
1360 		error = -EAGAIN;
1361 		if ((arg == F_RDLCK) && (atomic_read(&inode->i_writecount) > 0))
1362 			goto out;
1363 		if ((arg == F_WRLCK)
1364 		    && ((dentry->d_count > 1)
1365 			|| (atomic_read(&inode->i_count) > 1)))
1366 			goto out;
1367 	}
1368 
1369 	/*
1370 	 * At this point, we know that if there is an exclusive
1371 	 * lease on this file, then we hold it on this filp
1372 	 * (otherwise our open of this file would have blocked).
1373 	 * And if we are trying to acquire an exclusive lease,
1374 	 * then the file is not open by anyone (including us)
1375 	 * except for this filp.
1376 	 */
1377 	for (before = &inode->i_flock;
1378 			((fl = *before) != NULL) && IS_LEASE(fl);
1379 			before = &fl->fl_next) {
1380 		if (fl->fl_file == filp)
1381 			my_before = before;
1382 		else if (fl->fl_type == (F_INPROGRESS | F_UNLCK))
1383 			/*
1384 			 * Someone is in the process of opening this
1385 			 * file for writing so we may not take an
1386 			 * exclusive lease on it.
1387 			 */
1388 			wrlease_count++;
1389 		else
1390 			rdlease_count++;
1391 	}
1392 
1393 	error = -EAGAIN;
1394 	if ((arg == F_RDLCK && (wrlease_count > 0)) ||
1395 	    (arg == F_WRLCK && ((rdlease_count + wrlease_count) > 0)))
1396 		goto out;
1397 
1398 	if (my_before != NULL) {
1399 		error = lease->fl_lmops->lm_change(my_before, arg);
1400 		if (!error)
1401 			*flp = *my_before;
1402 		goto out;
1403 	}
1404 
1405 	if (arg == F_UNLCK)
1406 		goto out;
1407 
1408 	error = -EINVAL;
1409 	if (!leases_enable)
1410 		goto out;
1411 
1412 	locks_insert_lock(before, lease);
1413 	return 0;
1414 
1415 out:
1416 	return error;
1417 }
1418 EXPORT_SYMBOL(generic_setlease);
1419 
1420 static int __vfs_setlease(struct file *filp, long arg, struct file_lock **lease)
1421 {
1422 	if (filp->f_op && filp->f_op->setlease)
1423 		return filp->f_op->setlease(filp, arg, lease);
1424 	else
1425 		return generic_setlease(filp, arg, lease);
1426 }
1427 
1428 /**
1429  *	vfs_setlease        -       sets a lease on an open file
1430  *	@filp: file pointer
1431  *	@arg: type of lease to obtain
1432  *	@lease: file_lock to use
1433  *
1434  *	Call this to establish a lease on the file.
1435  *	The (*lease)->fl_lmops->lm_break operation must be set; if not,
1436  *	break_lease will oops!
1437  *
1438  *	This will call the filesystem's setlease file method, if
1439  *	defined.  Note that there is no getlease method; instead, the
1440  *	filesystem setlease method should call back to setlease() to
1441  *	add a lease to the inode's lease list, where fcntl_getlease() can
1442  *	find it.  Since fcntl_getlease() only reports whether the current
1443  *	task holds a lease, a cluster filesystem need only do this for
1444  *	leases held by processes on this node.
1445  *
1446  *	There is also no break_lease method; filesystems that
1447  *	handle their own leases should break leases themselves from the
1448  *	filesystem's open, create, and (on truncate) setattr methods.
1449  *
1450  *	Warning: the only current setlease methods exist only to disable
1451  *	leases in certain cases.  More vfs changes may be required to
1452  *	allow a full filesystem lease implementation.
1453  */
1454 
1455 int vfs_setlease(struct file *filp, long arg, struct file_lock **lease)
1456 {
1457 	int error;
1458 
1459 	lock_flocks();
1460 	error = __vfs_setlease(filp, arg, lease);
1461 	unlock_flocks();
1462 
1463 	return error;
1464 }
1465 EXPORT_SYMBOL_GPL(vfs_setlease);
1466 
1467 static int do_fcntl_delete_lease(struct file *filp)
1468 {
1469 	struct file_lock fl, *flp = &fl;
1470 
1471 	lease_init(filp, F_UNLCK, flp);
1472 
1473 	return vfs_setlease(filp, F_UNLCK, &flp);
1474 }
1475 
1476 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg)
1477 {
1478 	struct file_lock *fl, *ret;
1479 	struct fasync_struct *new;
1480 	int error;
1481 
1482 	fl = lease_alloc(filp, arg);
1483 	if (IS_ERR(fl))
1484 		return PTR_ERR(fl);
1485 
1486 	new = fasync_alloc();
1487 	if (!new) {
1488 		locks_free_lock(fl);
1489 		return -ENOMEM;
1490 	}
1491 	ret = fl;
1492 	lock_flocks();
1493 	error = __vfs_setlease(filp, arg, &ret);
1494 	if (error) {
1495 		unlock_flocks();
1496 		locks_free_lock(fl);
1497 		goto out_free_fasync;
1498 	}
1499 	if (ret != fl)
1500 		locks_free_lock(fl);
1501 
1502 	/*
1503 	 * fasync_insert_entry() returns the old entry if any.
1504 	 * If there was no old entry, then it used 'new' and
1505 	 * inserted it into the fasync list. Clear new so that
1506 	 * we don't release it here.
1507 	 */
1508 	if (!fasync_insert_entry(fd, filp, &ret->fl_fasync, new))
1509 		new = NULL;
1510 
1511 	error = __f_setown(filp, task_pid(current), PIDTYPE_PID, 0);
1512 	unlock_flocks();
1513 
1514 out_free_fasync:
1515 	if (new)
1516 		fasync_free(new);
1517 	return error;
1518 }
1519 
1520 /**
1521  *	fcntl_setlease	-	sets a lease on an open file
1522  *	@fd: open file descriptor
1523  *	@filp: file pointer
1524  *	@arg: type of lease to obtain
1525  *
1526  *	Call this fcntl to establish a lease on the file.
1527  *	Note that you also need to call %F_SETSIG to
1528  *	receive a signal when the lease is broken.
1529  */
1530 int fcntl_setlease(unsigned int fd, struct file *filp, long arg)
1531 {
1532 	if (arg == F_UNLCK)
1533 		return do_fcntl_delete_lease(filp);
1534 	return do_fcntl_add_lease(fd, filp, arg);
1535 }
1536 
1537 /**
1538  * flock_lock_file_wait - Apply a FLOCK-style lock to a file
1539  * @filp: The file to apply the lock to
1540  * @fl: The lock to be applied
1541  *
1542  * Add a FLOCK style lock to a file.
1543  */
1544 int flock_lock_file_wait(struct file *filp, struct file_lock *fl)
1545 {
1546 	int error;
1547 	might_sleep();
1548 	for (;;) {
1549 		error = flock_lock_file(filp, fl);
1550 		if (error != FILE_LOCK_DEFERRED)
1551 			break;
1552 		error = wait_event_interruptible(fl->fl_wait, !fl->fl_next);
1553 		if (!error)
1554 			continue;
1555 
1556 		locks_delete_block(fl);
1557 		break;
1558 	}
1559 	return error;
1560 }
1561 
1562 EXPORT_SYMBOL(flock_lock_file_wait);
1563 
1564 /**
1565  *	sys_flock: - flock() system call.
1566  *	@fd: the file descriptor to lock.
1567  *	@cmd: the type of lock to apply.
1568  *
1569  *	Apply a %FL_FLOCK style lock to an open file descriptor.
1570  *	The @cmd can be one of
1571  *
1572  *	%LOCK_SH -- a shared lock.
1573  *
1574  *	%LOCK_EX -- an exclusive lock.
1575  *
1576  *	%LOCK_UN -- remove an existing lock.
1577  *
1578  *	%LOCK_MAND -- a `mandatory' flock.  This exists to emulate Windows Share Modes.
1579  *
1580  *	%LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other
1581  *	processes read and write access respectively.
1582  */
1583 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
1584 {
1585 	struct file *filp;
1586 	struct file_lock *lock;
1587 	int can_sleep, unlock;
1588 	int error;
1589 
1590 	error = -EBADF;
1591 	filp = fget(fd);
1592 	if (!filp)
1593 		goto out;
1594 
1595 	can_sleep = !(cmd & LOCK_NB);
1596 	cmd &= ~LOCK_NB;
1597 	unlock = (cmd == LOCK_UN);
1598 
1599 	if (!unlock && !(cmd & LOCK_MAND) &&
1600 	    !(filp->f_mode & (FMODE_READ|FMODE_WRITE)))
1601 		goto out_putf;
1602 
1603 	error = flock_make_lock(filp, &lock, cmd);
1604 	if (error)
1605 		goto out_putf;
1606 	if (can_sleep)
1607 		lock->fl_flags |= FL_SLEEP;
1608 
1609 	error = security_file_lock(filp, lock->fl_type);
1610 	if (error)
1611 		goto out_free;
1612 
1613 	if (filp->f_op && filp->f_op->flock)
1614 		error = filp->f_op->flock(filp,
1615 					  (can_sleep) ? F_SETLKW : F_SETLK,
1616 					  lock);
1617 	else
1618 		error = flock_lock_file_wait(filp, lock);
1619 
1620  out_free:
1621 	locks_free_lock(lock);
1622 
1623  out_putf:
1624 	fput(filp);
1625  out:
1626 	return error;
1627 }
1628 
1629 /**
1630  * vfs_test_lock - test file byte range lock
1631  * @filp: The file to test lock for
1632  * @fl: The lock to test; also used to hold result
1633  *
1634  * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
1635  * setting conf->fl_type to something other than F_UNLCK.
1636  */
1637 int vfs_test_lock(struct file *filp, struct file_lock *fl)
1638 {
1639 	if (filp->f_op && filp->f_op->lock)
1640 		return filp->f_op->lock(filp, F_GETLK, fl);
1641 	posix_test_lock(filp, fl);
1642 	return 0;
1643 }
1644 EXPORT_SYMBOL_GPL(vfs_test_lock);
1645 
1646 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
1647 {
1648 	flock->l_pid = fl->fl_pid;
1649 #if BITS_PER_LONG == 32
1650 	/*
1651 	 * Make sure we can represent the posix lock via
1652 	 * legacy 32bit flock.
1653 	 */
1654 	if (fl->fl_start > OFFT_OFFSET_MAX)
1655 		return -EOVERFLOW;
1656 	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
1657 		return -EOVERFLOW;
1658 #endif
1659 	flock->l_start = fl->fl_start;
1660 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
1661 		fl->fl_end - fl->fl_start + 1;
1662 	flock->l_whence = 0;
1663 	flock->l_type = fl->fl_type;
1664 	return 0;
1665 }
1666 
1667 #if BITS_PER_LONG == 32
1668 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
1669 {
1670 	flock->l_pid = fl->fl_pid;
1671 	flock->l_start = fl->fl_start;
1672 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
1673 		fl->fl_end - fl->fl_start + 1;
1674 	flock->l_whence = 0;
1675 	flock->l_type = fl->fl_type;
1676 }
1677 #endif
1678 
1679 /* Report the first existing lock that would conflict with l.
1680  * This implements the F_GETLK command of fcntl().
1681  */
1682 int fcntl_getlk(struct file *filp, struct flock __user *l)
1683 {
1684 	struct file_lock file_lock;
1685 	struct flock flock;
1686 	int error;
1687 
1688 	error = -EFAULT;
1689 	if (copy_from_user(&flock, l, sizeof(flock)))
1690 		goto out;
1691 	error = -EINVAL;
1692 	if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK))
1693 		goto out;
1694 
1695 	error = flock_to_posix_lock(filp, &file_lock, &flock);
1696 	if (error)
1697 		goto out;
1698 
1699 	error = vfs_test_lock(filp, &file_lock);
1700 	if (error)
1701 		goto out;
1702 
1703 	flock.l_type = file_lock.fl_type;
1704 	if (file_lock.fl_type != F_UNLCK) {
1705 		error = posix_lock_to_flock(&flock, &file_lock);
1706 		if (error)
1707 			goto out;
1708 	}
1709 	error = -EFAULT;
1710 	if (!copy_to_user(l, &flock, sizeof(flock)))
1711 		error = 0;
1712 out:
1713 	return error;
1714 }
1715 
1716 /**
1717  * vfs_lock_file - file byte range lock
1718  * @filp: The file to apply the lock to
1719  * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
1720  * @fl: The lock to be applied
1721  * @conf: Place to return a copy of the conflicting lock, if found.
1722  *
1723  * A caller that doesn't care about the conflicting lock may pass NULL
1724  * as the final argument.
1725  *
1726  * If the filesystem defines a private ->lock() method, then @conf will
1727  * be left unchanged; so a caller that cares should initialize it to
1728  * some acceptable default.
1729  *
1730  * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
1731  * locks, the ->lock() interface may return asynchronously, before the lock has
1732  * been granted or denied by the underlying filesystem, if (and only if)
1733  * lm_grant is set. Callers expecting ->lock() to return asynchronously
1734  * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if)
1735  * the request is for a blocking lock. When ->lock() does return asynchronously,
1736  * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock
1737  * request completes.
1738  * If the request is for non-blocking lock the file system should return
1739  * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
1740  * with the result. If the request timed out the callback routine will return a
1741  * nonzero return code and the file system should release the lock. The file
1742  * system is also responsible to keep a corresponding posix lock when it
1743  * grants a lock so the VFS can find out which locks are locally held and do
1744  * the correct lock cleanup when required.
1745  * The underlying filesystem must not drop the kernel lock or call
1746  * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
1747  * return code.
1748  */
1749 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
1750 {
1751 	if (filp->f_op && filp->f_op->lock)
1752 		return filp->f_op->lock(filp, cmd, fl);
1753 	else
1754 		return posix_lock_file(filp, fl, conf);
1755 }
1756 EXPORT_SYMBOL_GPL(vfs_lock_file);
1757 
1758 static int do_lock_file_wait(struct file *filp, unsigned int cmd,
1759 			     struct file_lock *fl)
1760 {
1761 	int error;
1762 
1763 	error = security_file_lock(filp, fl->fl_type);
1764 	if (error)
1765 		return error;
1766 
1767 	for (;;) {
1768 		error = vfs_lock_file(filp, cmd, fl, NULL);
1769 		if (error != FILE_LOCK_DEFERRED)
1770 			break;
1771 		error = wait_event_interruptible(fl->fl_wait, !fl->fl_next);
1772 		if (!error)
1773 			continue;
1774 
1775 		locks_delete_block(fl);
1776 		break;
1777 	}
1778 
1779 	return error;
1780 }
1781 
1782 /* Apply the lock described by l to an open file descriptor.
1783  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
1784  */
1785 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
1786 		struct flock __user *l)
1787 {
1788 	struct file_lock *file_lock = locks_alloc_lock();
1789 	struct flock flock;
1790 	struct inode *inode;
1791 	struct file *f;
1792 	int error;
1793 
1794 	if (file_lock == NULL)
1795 		return -ENOLCK;
1796 
1797 	/*
1798 	 * This might block, so we do it before checking the inode.
1799 	 */
1800 	error = -EFAULT;
1801 	if (copy_from_user(&flock, l, sizeof(flock)))
1802 		goto out;
1803 
1804 	inode = filp->f_path.dentry->d_inode;
1805 
1806 	/* Don't allow mandatory locks on files that may be memory mapped
1807 	 * and shared.
1808 	 */
1809 	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
1810 		error = -EAGAIN;
1811 		goto out;
1812 	}
1813 
1814 again:
1815 	error = flock_to_posix_lock(filp, file_lock, &flock);
1816 	if (error)
1817 		goto out;
1818 	if (cmd == F_SETLKW) {
1819 		file_lock->fl_flags |= FL_SLEEP;
1820 	}
1821 
1822 	error = -EBADF;
1823 	switch (flock.l_type) {
1824 	case F_RDLCK:
1825 		if (!(filp->f_mode & FMODE_READ))
1826 			goto out;
1827 		break;
1828 	case F_WRLCK:
1829 		if (!(filp->f_mode & FMODE_WRITE))
1830 			goto out;
1831 		break;
1832 	case F_UNLCK:
1833 		break;
1834 	default:
1835 		error = -EINVAL;
1836 		goto out;
1837 	}
1838 
1839 	error = do_lock_file_wait(filp, cmd, file_lock);
1840 
1841 	/*
1842 	 * Attempt to detect a close/fcntl race and recover by
1843 	 * releasing the lock that was just acquired.
1844 	 */
1845 	/*
1846 	 * we need that spin_lock here - it prevents reordering between
1847 	 * update of inode->i_flock and check for it done in close().
1848 	 * rcu_read_lock() wouldn't do.
1849 	 */
1850 	spin_lock(&current->files->file_lock);
1851 	f = fcheck(fd);
1852 	spin_unlock(&current->files->file_lock);
1853 	if (!error && f != filp && flock.l_type != F_UNLCK) {
1854 		flock.l_type = F_UNLCK;
1855 		goto again;
1856 	}
1857 
1858 out:
1859 	locks_free_lock(file_lock);
1860 	return error;
1861 }
1862 
1863 #if BITS_PER_LONG == 32
1864 /* Report the first existing lock that would conflict with l.
1865  * This implements the F_GETLK command of fcntl().
1866  */
1867 int fcntl_getlk64(struct file *filp, struct flock64 __user *l)
1868 {
1869 	struct file_lock file_lock;
1870 	struct flock64 flock;
1871 	int error;
1872 
1873 	error = -EFAULT;
1874 	if (copy_from_user(&flock, l, sizeof(flock)))
1875 		goto out;
1876 	error = -EINVAL;
1877 	if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK))
1878 		goto out;
1879 
1880 	error = flock64_to_posix_lock(filp, &file_lock, &flock);
1881 	if (error)
1882 		goto out;
1883 
1884 	error = vfs_test_lock(filp, &file_lock);
1885 	if (error)
1886 		goto out;
1887 
1888 	flock.l_type = file_lock.fl_type;
1889 	if (file_lock.fl_type != F_UNLCK)
1890 		posix_lock_to_flock64(&flock, &file_lock);
1891 
1892 	error = -EFAULT;
1893 	if (!copy_to_user(l, &flock, sizeof(flock)))
1894 		error = 0;
1895 
1896 out:
1897 	return error;
1898 }
1899 
1900 /* Apply the lock described by l to an open file descriptor.
1901  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
1902  */
1903 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
1904 		struct flock64 __user *l)
1905 {
1906 	struct file_lock *file_lock = locks_alloc_lock();
1907 	struct flock64 flock;
1908 	struct inode *inode;
1909 	struct file *f;
1910 	int error;
1911 
1912 	if (file_lock == NULL)
1913 		return -ENOLCK;
1914 
1915 	/*
1916 	 * This might block, so we do it before checking the inode.
1917 	 */
1918 	error = -EFAULT;
1919 	if (copy_from_user(&flock, l, sizeof(flock)))
1920 		goto out;
1921 
1922 	inode = filp->f_path.dentry->d_inode;
1923 
1924 	/* Don't allow mandatory locks on files that may be memory mapped
1925 	 * and shared.
1926 	 */
1927 	if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) {
1928 		error = -EAGAIN;
1929 		goto out;
1930 	}
1931 
1932 again:
1933 	error = flock64_to_posix_lock(filp, file_lock, &flock);
1934 	if (error)
1935 		goto out;
1936 	if (cmd == F_SETLKW64) {
1937 		file_lock->fl_flags |= FL_SLEEP;
1938 	}
1939 
1940 	error = -EBADF;
1941 	switch (flock.l_type) {
1942 	case F_RDLCK:
1943 		if (!(filp->f_mode & FMODE_READ))
1944 			goto out;
1945 		break;
1946 	case F_WRLCK:
1947 		if (!(filp->f_mode & FMODE_WRITE))
1948 			goto out;
1949 		break;
1950 	case F_UNLCK:
1951 		break;
1952 	default:
1953 		error = -EINVAL;
1954 		goto out;
1955 	}
1956 
1957 	error = do_lock_file_wait(filp, cmd, file_lock);
1958 
1959 	/*
1960 	 * Attempt to detect a close/fcntl race and recover by
1961 	 * releasing the lock that was just acquired.
1962 	 */
1963 	spin_lock(&current->files->file_lock);
1964 	f = fcheck(fd);
1965 	spin_unlock(&current->files->file_lock);
1966 	if (!error && f != filp && flock.l_type != F_UNLCK) {
1967 		flock.l_type = F_UNLCK;
1968 		goto again;
1969 	}
1970 
1971 out:
1972 	locks_free_lock(file_lock);
1973 	return error;
1974 }
1975 #endif /* BITS_PER_LONG == 32 */
1976 
1977 /*
1978  * This function is called when the file is being removed
1979  * from the task's fd array.  POSIX locks belonging to this task
1980  * are deleted at this time.
1981  */
1982 void locks_remove_posix(struct file *filp, fl_owner_t owner)
1983 {
1984 	struct file_lock lock;
1985 
1986 	/*
1987 	 * If there are no locks held on this file, we don't need to call
1988 	 * posix_lock_file().  Another process could be setting a lock on this
1989 	 * file at the same time, but we wouldn't remove that lock anyway.
1990 	 */
1991 	if (!filp->f_path.dentry->d_inode->i_flock)
1992 		return;
1993 
1994 	lock.fl_type = F_UNLCK;
1995 	lock.fl_flags = FL_POSIX | FL_CLOSE;
1996 	lock.fl_start = 0;
1997 	lock.fl_end = OFFSET_MAX;
1998 	lock.fl_owner = owner;
1999 	lock.fl_pid = current->tgid;
2000 	lock.fl_file = filp;
2001 	lock.fl_ops = NULL;
2002 	lock.fl_lmops = NULL;
2003 
2004 	vfs_lock_file(filp, F_SETLK, &lock, NULL);
2005 
2006 	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2007 		lock.fl_ops->fl_release_private(&lock);
2008 }
2009 
2010 EXPORT_SYMBOL(locks_remove_posix);
2011 
2012 /*
2013  * This function is called on the last close of an open file.
2014  */
2015 void locks_remove_flock(struct file *filp)
2016 {
2017 	struct inode * inode = filp->f_path.dentry->d_inode;
2018 	struct file_lock *fl;
2019 	struct file_lock **before;
2020 
2021 	if (!inode->i_flock)
2022 		return;
2023 
2024 	if (filp->f_op && filp->f_op->flock) {
2025 		struct file_lock fl = {
2026 			.fl_pid = current->tgid,
2027 			.fl_file = filp,
2028 			.fl_flags = FL_FLOCK,
2029 			.fl_type = F_UNLCK,
2030 			.fl_end = OFFSET_MAX,
2031 		};
2032 		filp->f_op->flock(filp, F_SETLKW, &fl);
2033 		if (fl.fl_ops && fl.fl_ops->fl_release_private)
2034 			fl.fl_ops->fl_release_private(&fl);
2035 	}
2036 
2037 	lock_flocks();
2038 	before = &inode->i_flock;
2039 
2040 	while ((fl = *before) != NULL) {
2041 		if (fl->fl_file == filp) {
2042 			if (IS_FLOCK(fl)) {
2043 				locks_delete_lock(before);
2044 				continue;
2045 			}
2046 			if (IS_LEASE(fl)) {
2047 				lease_modify(before, F_UNLCK);
2048 				continue;
2049 			}
2050 			/* What? */
2051 			BUG();
2052  		}
2053 		before = &fl->fl_next;
2054 	}
2055 	unlock_flocks();
2056 }
2057 
2058 /**
2059  *	posix_unblock_lock - stop waiting for a file lock
2060  *      @filp:   how the file was opened
2061  *	@waiter: the lock which was waiting
2062  *
2063  *	lockd needs to block waiting for locks.
2064  */
2065 int
2066 posix_unblock_lock(struct file *filp, struct file_lock *waiter)
2067 {
2068 	int status = 0;
2069 
2070 	lock_flocks();
2071 	if (waiter->fl_next)
2072 		__locks_delete_block(waiter);
2073 	else
2074 		status = -ENOENT;
2075 	unlock_flocks();
2076 	return status;
2077 }
2078 
2079 EXPORT_SYMBOL(posix_unblock_lock);
2080 
2081 /**
2082  * vfs_cancel_lock - file byte range unblock lock
2083  * @filp: The file to apply the unblock to
2084  * @fl: The lock to be unblocked
2085  *
2086  * Used by lock managers to cancel blocked requests
2087  */
2088 int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2089 {
2090 	if (filp->f_op && filp->f_op->lock)
2091 		return filp->f_op->lock(filp, F_CANCELLK, fl);
2092 	return 0;
2093 }
2094 
2095 EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2096 
2097 #ifdef CONFIG_PROC_FS
2098 #include <linux/proc_fs.h>
2099 #include <linux/seq_file.h>
2100 
2101 static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2102 			    loff_t id, char *pfx)
2103 {
2104 	struct inode *inode = NULL;
2105 	unsigned int fl_pid;
2106 
2107 	if (fl->fl_nspid)
2108 		fl_pid = pid_vnr(fl->fl_nspid);
2109 	else
2110 		fl_pid = fl->fl_pid;
2111 
2112 	if (fl->fl_file != NULL)
2113 		inode = fl->fl_file->f_path.dentry->d_inode;
2114 
2115 	seq_printf(f, "%lld:%s ", id, pfx);
2116 	if (IS_POSIX(fl)) {
2117 		seq_printf(f, "%6s %s ",
2118 			     (fl->fl_flags & FL_ACCESS) ? "ACCESS" : "POSIX ",
2119 			     (inode == NULL) ? "*NOINODE*" :
2120 			     mandatory_lock(inode) ? "MANDATORY" : "ADVISORY ");
2121 	} else if (IS_FLOCK(fl)) {
2122 		if (fl->fl_type & LOCK_MAND) {
2123 			seq_printf(f, "FLOCK  MSNFS     ");
2124 		} else {
2125 			seq_printf(f, "FLOCK  ADVISORY  ");
2126 		}
2127 	} else if (IS_LEASE(fl)) {
2128 		seq_printf(f, "LEASE  ");
2129 		if (fl->fl_type & F_INPROGRESS)
2130 			seq_printf(f, "BREAKING  ");
2131 		else if (fl->fl_file)
2132 			seq_printf(f, "ACTIVE    ");
2133 		else
2134 			seq_printf(f, "BREAKER   ");
2135 	} else {
2136 		seq_printf(f, "UNKNOWN UNKNOWN  ");
2137 	}
2138 	if (fl->fl_type & LOCK_MAND) {
2139 		seq_printf(f, "%s ",
2140 			       (fl->fl_type & LOCK_READ)
2141 			       ? (fl->fl_type & LOCK_WRITE) ? "RW   " : "READ "
2142 			       : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE ");
2143 	} else {
2144 		seq_printf(f, "%s ",
2145 			       (fl->fl_type & F_INPROGRESS)
2146 			       ? (fl->fl_type & F_UNLCK) ? "UNLCK" : "READ "
2147 			       : (fl->fl_type & F_WRLCK) ? "WRITE" : "READ ");
2148 	}
2149 	if (inode) {
2150 #ifdef WE_CAN_BREAK_LSLK_NOW
2151 		seq_printf(f, "%d %s:%ld ", fl_pid,
2152 				inode->i_sb->s_id, inode->i_ino);
2153 #else
2154 		/* userspace relies on this representation of dev_t ;-( */
2155 		seq_printf(f, "%d %02x:%02x:%ld ", fl_pid,
2156 				MAJOR(inode->i_sb->s_dev),
2157 				MINOR(inode->i_sb->s_dev), inode->i_ino);
2158 #endif
2159 	} else {
2160 		seq_printf(f, "%d <none>:0 ", fl_pid);
2161 	}
2162 	if (IS_POSIX(fl)) {
2163 		if (fl->fl_end == OFFSET_MAX)
2164 			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2165 		else
2166 			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2167 	} else {
2168 		seq_printf(f, "0 EOF\n");
2169 	}
2170 }
2171 
2172 static int locks_show(struct seq_file *f, void *v)
2173 {
2174 	struct file_lock *fl, *bfl;
2175 
2176 	fl = list_entry(v, struct file_lock, fl_link);
2177 
2178 	lock_get_status(f, fl, *((loff_t *)f->private), "");
2179 
2180 	list_for_each_entry(bfl, &fl->fl_block, fl_block)
2181 		lock_get_status(f, bfl, *((loff_t *)f->private), " ->");
2182 
2183 	return 0;
2184 }
2185 
2186 static void *locks_start(struct seq_file *f, loff_t *pos)
2187 {
2188 	loff_t *p = f->private;
2189 
2190 	lock_flocks();
2191 	*p = (*pos + 1);
2192 	return seq_list_start(&file_lock_list, *pos);
2193 }
2194 
2195 static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2196 {
2197 	loff_t *p = f->private;
2198 	++*p;
2199 	return seq_list_next(v, &file_lock_list, pos);
2200 }
2201 
2202 static void locks_stop(struct seq_file *f, void *v)
2203 {
2204 	unlock_flocks();
2205 }
2206 
2207 static const struct seq_operations locks_seq_operations = {
2208 	.start	= locks_start,
2209 	.next	= locks_next,
2210 	.stop	= locks_stop,
2211 	.show	= locks_show,
2212 };
2213 
2214 static int locks_open(struct inode *inode, struct file *filp)
2215 {
2216 	return seq_open_private(filp, &locks_seq_operations, sizeof(loff_t));
2217 }
2218 
2219 static const struct file_operations proc_locks_operations = {
2220 	.open		= locks_open,
2221 	.read		= seq_read,
2222 	.llseek		= seq_lseek,
2223 	.release	= seq_release_private,
2224 };
2225 
2226 static int __init proc_locks_init(void)
2227 {
2228 	proc_create("locks", 0, NULL, &proc_locks_operations);
2229 	return 0;
2230 }
2231 module_init(proc_locks_init);
2232 #endif
2233 
2234 /**
2235  *	lock_may_read - checks that the region is free of locks
2236  *	@inode: the inode that is being read
2237  *	@start: the first byte to read
2238  *	@len: the number of bytes to read
2239  *
2240  *	Emulates Windows locking requirements.  Whole-file
2241  *	mandatory locks (share modes) can prohibit a read and
2242  *	byte-range POSIX locks can prohibit a read if they overlap.
2243  *
2244  *	N.B. this function is only ever called
2245  *	from knfsd and ownership of locks is never checked.
2246  */
2247 int lock_may_read(struct inode *inode, loff_t start, unsigned long len)
2248 {
2249 	struct file_lock *fl;
2250 	int result = 1;
2251 	lock_flocks();
2252 	for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) {
2253 		if (IS_POSIX(fl)) {
2254 			if (fl->fl_type == F_RDLCK)
2255 				continue;
2256 			if ((fl->fl_end < start) || (fl->fl_start > (start + len)))
2257 				continue;
2258 		} else if (IS_FLOCK(fl)) {
2259 			if (!(fl->fl_type & LOCK_MAND))
2260 				continue;
2261 			if (fl->fl_type & LOCK_READ)
2262 				continue;
2263 		} else
2264 			continue;
2265 		result = 0;
2266 		break;
2267 	}
2268 	unlock_flocks();
2269 	return result;
2270 }
2271 
2272 EXPORT_SYMBOL(lock_may_read);
2273 
2274 /**
2275  *	lock_may_write - checks that the region is free of locks
2276  *	@inode: the inode that is being written
2277  *	@start: the first byte to write
2278  *	@len: the number of bytes to write
2279  *
2280  *	Emulates Windows locking requirements.  Whole-file
2281  *	mandatory locks (share modes) can prohibit a write and
2282  *	byte-range POSIX locks can prohibit a write if they overlap.
2283  *
2284  *	N.B. this function is only ever called
2285  *	from knfsd and ownership of locks is never checked.
2286  */
2287 int lock_may_write(struct inode *inode, loff_t start, unsigned long len)
2288 {
2289 	struct file_lock *fl;
2290 	int result = 1;
2291 	lock_flocks();
2292 	for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) {
2293 		if (IS_POSIX(fl)) {
2294 			if ((fl->fl_end < start) || (fl->fl_start > (start + len)))
2295 				continue;
2296 		} else if (IS_FLOCK(fl)) {
2297 			if (!(fl->fl_type & LOCK_MAND))
2298 				continue;
2299 			if (fl->fl_type & LOCK_WRITE)
2300 				continue;
2301 		} else
2302 			continue;
2303 		result = 0;
2304 		break;
2305 	}
2306 	unlock_flocks();
2307 	return result;
2308 }
2309 
2310 EXPORT_SYMBOL(lock_may_write);
2311 
2312 static int __init filelock_init(void)
2313 {
2314 	filelock_cache = kmem_cache_create("file_lock_cache",
2315 			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
2316 
2317 	return 0;
2318 }
2319 
2320 core_initcall(filelock_init);
2321