1 /* 2 * linux/fs/locks.c 3 * 4 * Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls. 5 * Doug Evans (dje@spiff.uucp), August 07, 1992 6 * 7 * Deadlock detection added. 8 * FIXME: one thing isn't handled yet: 9 * - mandatory locks (requires lots of changes elsewhere) 10 * Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994. 11 * 12 * Miscellaneous edits, and a total rewrite of posix_lock_file() code. 13 * Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994 14 * 15 * Converted file_lock_table to a linked list from an array, which eliminates 16 * the limits on how many active file locks are open. 17 * Chad Page (pageone@netcom.com), November 27, 1994 18 * 19 * Removed dependency on file descriptors. dup()'ed file descriptors now 20 * get the same locks as the original file descriptors, and a close() on 21 * any file descriptor removes ALL the locks on the file for the current 22 * process. Since locks still depend on the process id, locks are inherited 23 * after an exec() but not after a fork(). This agrees with POSIX, and both 24 * BSD and SVR4 practice. 25 * Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995 26 * 27 * Scrapped free list which is redundant now that we allocate locks 28 * dynamically with kmalloc()/kfree(). 29 * Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995 30 * 31 * Implemented two lock personalities - FL_FLOCK and FL_POSIX. 32 * 33 * FL_POSIX locks are created with calls to fcntl() and lockf() through the 34 * fcntl() system call. They have the semantics described above. 35 * 36 * FL_FLOCK locks are created with calls to flock(), through the flock() 37 * system call, which is new. Old C libraries implement flock() via fcntl() 38 * and will continue to use the old, broken implementation. 39 * 40 * FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated 41 * with a file pointer (filp). As a result they can be shared by a parent 42 * process and its children after a fork(). They are removed when the last 43 * file descriptor referring to the file pointer is closed (unless explicitly 44 * unlocked). 45 * 46 * FL_FLOCK locks never deadlock, an existing lock is always removed before 47 * upgrading from shared to exclusive (or vice versa). When this happens 48 * any processes blocked by the current lock are woken up and allowed to 49 * run before the new lock is applied. 50 * Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995 51 * 52 * Removed some race conditions in flock_lock_file(), marked other possible 53 * races. Just grep for FIXME to see them. 54 * Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996. 55 * 56 * Addressed Dmitry's concerns. Deadlock checking no longer recursive. 57 * Lock allocation changed to GFP_ATOMIC as we can't afford to sleep 58 * once we've checked for blocking and deadlocking. 59 * Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996. 60 * 61 * Initial implementation of mandatory locks. SunOS turned out to be 62 * a rotten model, so I implemented the "obvious" semantics. 63 * See 'Documentation/filesystems/mandatory-locking.txt' for details. 64 * Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996. 65 * 66 * Don't allow mandatory locks on mmap()'ed files. Added simple functions to 67 * check if a file has mandatory locks, used by mmap(), open() and creat() to 68 * see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference 69 * Manual, Section 2. 70 * Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996. 71 * 72 * Tidied up block list handling. Added '/proc/locks' interface. 73 * Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996. 74 * 75 * Fixed deadlock condition for pathological code that mixes calls to 76 * flock() and fcntl(). 77 * Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996. 78 * 79 * Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use 80 * for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to 81 * guarantee sensible behaviour in the case where file system modules might 82 * be compiled with different options than the kernel itself. 83 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 84 * 85 * Added a couple of missing wake_up() calls. Thanks to Thomas Meckel 86 * (Thomas.Meckel@mni.fh-giessen.de) for spotting this. 87 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 88 * 89 * Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK 90 * locks. Changed process synchronisation to avoid dereferencing locks that 91 * have already been freed. 92 * Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996. 93 * 94 * Made the block list a circular list to minimise searching in the list. 95 * Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996. 96 * 97 * Made mandatory locking a mount option. Default is not to allow mandatory 98 * locking. 99 * Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996. 100 * 101 * Some adaptations for NFS support. 102 * Olaf Kirch (okir@monad.swb.de), Dec 1996, 103 * 104 * Fixed /proc/locks interface so that we can't overrun the buffer we are handed. 105 * Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997. 106 * 107 * Use slab allocator instead of kmalloc/kfree. 108 * Use generic list implementation from <linux/list.h>. 109 * Sped up posix_locks_deadlock by only considering blocked locks. 110 * Matthew Wilcox <willy@debian.org>, March, 2000. 111 * 112 * Leases and LOCK_MAND 113 * Matthew Wilcox <willy@debian.org>, June, 2000. 114 * Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000. 115 */ 116 117 #include <linux/capability.h> 118 #include <linux/file.h> 119 #include <linux/fdtable.h> 120 #include <linux/fs.h> 121 #include <linux/init.h> 122 #include <linux/module.h> 123 #include <linux/security.h> 124 #include <linux/slab.h> 125 #include <linux/syscalls.h> 126 #include <linux/time.h> 127 #include <linux/rcupdate.h> 128 #include <linux/pid_namespace.h> 129 130 #include <asm/uaccess.h> 131 132 #define IS_POSIX(fl) (fl->fl_flags & FL_POSIX) 133 #define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK) 134 #define IS_LEASE(fl) (fl->fl_flags & FL_LEASE) 135 136 static bool lease_breaking(struct file_lock *fl) 137 { 138 return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); 139 } 140 141 static int target_leasetype(struct file_lock *fl) 142 { 143 if (fl->fl_flags & FL_UNLOCK_PENDING) 144 return F_UNLCK; 145 if (fl->fl_flags & FL_DOWNGRADE_PENDING) 146 return F_RDLCK; 147 return fl->fl_type; 148 } 149 150 int leases_enable = 1; 151 int lease_break_time = 45; 152 153 #define for_each_lock(inode, lockp) \ 154 for (lockp = &inode->i_flock; *lockp != NULL; lockp = &(*lockp)->fl_next) 155 156 static LIST_HEAD(file_lock_list); 157 static LIST_HEAD(blocked_list); 158 static DEFINE_SPINLOCK(file_lock_lock); 159 160 /* 161 * Protects the two list heads above, plus the inode->i_flock list 162 */ 163 void lock_flocks(void) 164 { 165 spin_lock(&file_lock_lock); 166 } 167 EXPORT_SYMBOL_GPL(lock_flocks); 168 169 void unlock_flocks(void) 170 { 171 spin_unlock(&file_lock_lock); 172 } 173 EXPORT_SYMBOL_GPL(unlock_flocks); 174 175 static struct kmem_cache *filelock_cache __read_mostly; 176 177 static void locks_init_lock_heads(struct file_lock *fl) 178 { 179 INIT_LIST_HEAD(&fl->fl_link); 180 INIT_LIST_HEAD(&fl->fl_block); 181 init_waitqueue_head(&fl->fl_wait); 182 } 183 184 /* Allocate an empty lock structure. */ 185 struct file_lock *locks_alloc_lock(void) 186 { 187 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); 188 189 if (fl) 190 locks_init_lock_heads(fl); 191 192 return fl; 193 } 194 EXPORT_SYMBOL_GPL(locks_alloc_lock); 195 196 void locks_release_private(struct file_lock *fl) 197 { 198 if (fl->fl_ops) { 199 if (fl->fl_ops->fl_release_private) 200 fl->fl_ops->fl_release_private(fl); 201 fl->fl_ops = NULL; 202 } 203 if (fl->fl_lmops) { 204 if (fl->fl_lmops->lm_release_private) 205 fl->fl_lmops->lm_release_private(fl); 206 fl->fl_lmops = NULL; 207 } 208 209 } 210 EXPORT_SYMBOL_GPL(locks_release_private); 211 212 /* Free a lock which is not in use. */ 213 void locks_free_lock(struct file_lock *fl) 214 { 215 BUG_ON(waitqueue_active(&fl->fl_wait)); 216 BUG_ON(!list_empty(&fl->fl_block)); 217 BUG_ON(!list_empty(&fl->fl_link)); 218 219 locks_release_private(fl); 220 kmem_cache_free(filelock_cache, fl); 221 } 222 EXPORT_SYMBOL(locks_free_lock); 223 224 void locks_init_lock(struct file_lock *fl) 225 { 226 memset(fl, 0, sizeof(struct file_lock)); 227 locks_init_lock_heads(fl); 228 } 229 230 EXPORT_SYMBOL(locks_init_lock); 231 232 static void locks_copy_private(struct file_lock *new, struct file_lock *fl) 233 { 234 if (fl->fl_ops) { 235 if (fl->fl_ops->fl_copy_lock) 236 fl->fl_ops->fl_copy_lock(new, fl); 237 new->fl_ops = fl->fl_ops; 238 } 239 if (fl->fl_lmops) 240 new->fl_lmops = fl->fl_lmops; 241 } 242 243 /* 244 * Initialize a new lock from an existing file_lock structure. 245 */ 246 void __locks_copy_lock(struct file_lock *new, const struct file_lock *fl) 247 { 248 new->fl_owner = fl->fl_owner; 249 new->fl_pid = fl->fl_pid; 250 new->fl_file = NULL; 251 new->fl_flags = fl->fl_flags; 252 new->fl_type = fl->fl_type; 253 new->fl_start = fl->fl_start; 254 new->fl_end = fl->fl_end; 255 new->fl_ops = NULL; 256 new->fl_lmops = NULL; 257 } 258 EXPORT_SYMBOL(__locks_copy_lock); 259 260 void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 261 { 262 locks_release_private(new); 263 264 __locks_copy_lock(new, fl); 265 new->fl_file = fl->fl_file; 266 new->fl_ops = fl->fl_ops; 267 new->fl_lmops = fl->fl_lmops; 268 269 locks_copy_private(new, fl); 270 } 271 272 EXPORT_SYMBOL(locks_copy_lock); 273 274 static inline int flock_translate_cmd(int cmd) { 275 if (cmd & LOCK_MAND) 276 return cmd & (LOCK_MAND | LOCK_RW); 277 switch (cmd) { 278 case LOCK_SH: 279 return F_RDLCK; 280 case LOCK_EX: 281 return F_WRLCK; 282 case LOCK_UN: 283 return F_UNLCK; 284 } 285 return -EINVAL; 286 } 287 288 /* Fill in a file_lock structure with an appropriate FLOCK lock. */ 289 static int flock_make_lock(struct file *filp, struct file_lock **lock, 290 unsigned int cmd) 291 { 292 struct file_lock *fl; 293 int type = flock_translate_cmd(cmd); 294 if (type < 0) 295 return type; 296 297 fl = locks_alloc_lock(); 298 if (fl == NULL) 299 return -ENOMEM; 300 301 fl->fl_file = filp; 302 fl->fl_pid = current->tgid; 303 fl->fl_flags = FL_FLOCK; 304 fl->fl_type = type; 305 fl->fl_end = OFFSET_MAX; 306 307 *lock = fl; 308 return 0; 309 } 310 311 static int assign_type(struct file_lock *fl, int type) 312 { 313 switch (type) { 314 case F_RDLCK: 315 case F_WRLCK: 316 case F_UNLCK: 317 fl->fl_type = type; 318 break; 319 default: 320 return -EINVAL; 321 } 322 return 0; 323 } 324 325 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 326 * style lock. 327 */ 328 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 329 struct flock *l) 330 { 331 off_t start, end; 332 333 switch (l->l_whence) { 334 case SEEK_SET: 335 start = 0; 336 break; 337 case SEEK_CUR: 338 start = filp->f_pos; 339 break; 340 case SEEK_END: 341 start = i_size_read(filp->f_path.dentry->d_inode); 342 break; 343 default: 344 return -EINVAL; 345 } 346 347 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 348 POSIX-2001 defines it. */ 349 start += l->l_start; 350 if (start < 0) 351 return -EINVAL; 352 fl->fl_end = OFFSET_MAX; 353 if (l->l_len > 0) { 354 end = start + l->l_len - 1; 355 fl->fl_end = end; 356 } else if (l->l_len < 0) { 357 end = start - 1; 358 fl->fl_end = end; 359 start += l->l_len; 360 if (start < 0) 361 return -EINVAL; 362 } 363 fl->fl_start = start; /* we record the absolute position */ 364 if (fl->fl_end < fl->fl_start) 365 return -EOVERFLOW; 366 367 fl->fl_owner = current->files; 368 fl->fl_pid = current->tgid; 369 fl->fl_file = filp; 370 fl->fl_flags = FL_POSIX; 371 fl->fl_ops = NULL; 372 fl->fl_lmops = NULL; 373 374 return assign_type(fl, l->l_type); 375 } 376 377 #if BITS_PER_LONG == 32 378 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 379 struct flock64 *l) 380 { 381 loff_t start; 382 383 switch (l->l_whence) { 384 case SEEK_SET: 385 start = 0; 386 break; 387 case SEEK_CUR: 388 start = filp->f_pos; 389 break; 390 case SEEK_END: 391 start = i_size_read(filp->f_path.dentry->d_inode); 392 break; 393 default: 394 return -EINVAL; 395 } 396 397 start += l->l_start; 398 if (start < 0) 399 return -EINVAL; 400 fl->fl_end = OFFSET_MAX; 401 if (l->l_len > 0) { 402 fl->fl_end = start + l->l_len - 1; 403 } else if (l->l_len < 0) { 404 fl->fl_end = start - 1; 405 start += l->l_len; 406 if (start < 0) 407 return -EINVAL; 408 } 409 fl->fl_start = start; /* we record the absolute position */ 410 if (fl->fl_end < fl->fl_start) 411 return -EOVERFLOW; 412 413 fl->fl_owner = current->files; 414 fl->fl_pid = current->tgid; 415 fl->fl_file = filp; 416 fl->fl_flags = FL_POSIX; 417 fl->fl_ops = NULL; 418 fl->fl_lmops = NULL; 419 420 return assign_type(fl, l->l_type); 421 } 422 #endif 423 424 /* default lease lock manager operations */ 425 static void lease_break_callback(struct file_lock *fl) 426 { 427 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 428 } 429 430 static void lease_release_private_callback(struct file_lock *fl) 431 { 432 if (!fl->fl_file) 433 return; 434 435 f_delown(fl->fl_file); 436 fl->fl_file->f_owner.signum = 0; 437 } 438 439 static const struct lock_manager_operations lease_manager_ops = { 440 .lm_break = lease_break_callback, 441 .lm_release_private = lease_release_private_callback, 442 .lm_change = lease_modify, 443 }; 444 445 /* 446 * Initialize a lease, use the default lock manager operations 447 */ 448 static int lease_init(struct file *filp, int type, struct file_lock *fl) 449 { 450 if (assign_type(fl, type) != 0) 451 return -EINVAL; 452 453 fl->fl_owner = current->files; 454 fl->fl_pid = current->tgid; 455 456 fl->fl_file = filp; 457 fl->fl_flags = FL_LEASE; 458 fl->fl_start = 0; 459 fl->fl_end = OFFSET_MAX; 460 fl->fl_ops = NULL; 461 fl->fl_lmops = &lease_manager_ops; 462 return 0; 463 } 464 465 /* Allocate a file_lock initialised to this type of lease */ 466 static struct file_lock *lease_alloc(struct file *filp, int type) 467 { 468 struct file_lock *fl = locks_alloc_lock(); 469 int error = -ENOMEM; 470 471 if (fl == NULL) 472 return ERR_PTR(error); 473 474 error = lease_init(filp, type, fl); 475 if (error) { 476 locks_free_lock(fl); 477 return ERR_PTR(error); 478 } 479 return fl; 480 } 481 482 /* Check if two locks overlap each other. 483 */ 484 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 485 { 486 return ((fl1->fl_end >= fl2->fl_start) && 487 (fl2->fl_end >= fl1->fl_start)); 488 } 489 490 /* 491 * Check whether two locks have the same owner. 492 */ 493 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2) 494 { 495 if (fl1->fl_lmops && fl1->fl_lmops->lm_compare_owner) 496 return fl2->fl_lmops == fl1->fl_lmops && 497 fl1->fl_lmops->lm_compare_owner(fl1, fl2); 498 return fl1->fl_owner == fl2->fl_owner; 499 } 500 501 /* Remove waiter from blocker's block list. 502 * When blocker ends up pointing to itself then the list is empty. 503 */ 504 static void __locks_delete_block(struct file_lock *waiter) 505 { 506 list_del_init(&waiter->fl_block); 507 list_del_init(&waiter->fl_link); 508 waiter->fl_next = NULL; 509 } 510 511 /* 512 */ 513 static void locks_delete_block(struct file_lock *waiter) 514 { 515 lock_flocks(); 516 __locks_delete_block(waiter); 517 unlock_flocks(); 518 } 519 520 /* Insert waiter into blocker's block list. 521 * We use a circular list so that processes can be easily woken up in 522 * the order they blocked. The documentation doesn't require this but 523 * it seems like the reasonable thing to do. 524 */ 525 static void locks_insert_block(struct file_lock *blocker, 526 struct file_lock *waiter) 527 { 528 BUG_ON(!list_empty(&waiter->fl_block)); 529 list_add_tail(&waiter->fl_block, &blocker->fl_block); 530 waiter->fl_next = blocker; 531 if (IS_POSIX(blocker)) 532 list_add(&waiter->fl_link, &blocked_list); 533 } 534 535 /* Wake up processes blocked waiting for blocker. 536 * If told to wait then schedule the processes until the block list 537 * is empty, otherwise empty the block list ourselves. 538 */ 539 static void locks_wake_up_blocks(struct file_lock *blocker) 540 { 541 while (!list_empty(&blocker->fl_block)) { 542 struct file_lock *waiter; 543 544 waiter = list_first_entry(&blocker->fl_block, 545 struct file_lock, fl_block); 546 __locks_delete_block(waiter); 547 if (waiter->fl_lmops && waiter->fl_lmops->lm_notify) 548 waiter->fl_lmops->lm_notify(waiter); 549 else 550 wake_up(&waiter->fl_wait); 551 } 552 } 553 554 /* Insert file lock fl into an inode's lock list at the position indicated 555 * by pos. At the same time add the lock to the global file lock list. 556 */ 557 static void locks_insert_lock(struct file_lock **pos, struct file_lock *fl) 558 { 559 list_add(&fl->fl_link, &file_lock_list); 560 561 fl->fl_nspid = get_pid(task_tgid(current)); 562 563 /* insert into file's list */ 564 fl->fl_next = *pos; 565 *pos = fl; 566 } 567 568 /* 569 * Delete a lock and then free it. 570 * Wake up processes that are blocked waiting for this lock, 571 * notify the FS that the lock has been cleared and 572 * finally free the lock. 573 */ 574 static void locks_delete_lock(struct file_lock **thisfl_p) 575 { 576 struct file_lock *fl = *thisfl_p; 577 578 *thisfl_p = fl->fl_next; 579 fl->fl_next = NULL; 580 list_del_init(&fl->fl_link); 581 582 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync); 583 if (fl->fl_fasync != NULL) { 584 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 585 fl->fl_fasync = NULL; 586 } 587 588 if (fl->fl_nspid) { 589 put_pid(fl->fl_nspid); 590 fl->fl_nspid = NULL; 591 } 592 593 locks_wake_up_blocks(fl); 594 locks_free_lock(fl); 595 } 596 597 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality 598 * checks for shared/exclusive status of overlapping locks. 599 */ 600 static int locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 601 { 602 if (sys_fl->fl_type == F_WRLCK) 603 return 1; 604 if (caller_fl->fl_type == F_WRLCK) 605 return 1; 606 return 0; 607 } 608 609 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 610 * checking before calling the locks_conflict(). 611 */ 612 static int posix_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 613 { 614 /* POSIX locks owned by the same process do not conflict with 615 * each other. 616 */ 617 if (!IS_POSIX(sys_fl) || posix_same_owner(caller_fl, sys_fl)) 618 return (0); 619 620 /* Check whether they overlap */ 621 if (!locks_overlap(caller_fl, sys_fl)) 622 return 0; 623 624 return (locks_conflict(caller_fl, sys_fl)); 625 } 626 627 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 628 * checking before calling the locks_conflict(). 629 */ 630 static int flock_locks_conflict(struct file_lock *caller_fl, struct file_lock *sys_fl) 631 { 632 /* FLOCK locks referring to the same filp do not conflict with 633 * each other. 634 */ 635 if (!IS_FLOCK(sys_fl) || (caller_fl->fl_file == sys_fl->fl_file)) 636 return (0); 637 if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND)) 638 return 0; 639 640 return (locks_conflict(caller_fl, sys_fl)); 641 } 642 643 void 644 posix_test_lock(struct file *filp, struct file_lock *fl) 645 { 646 struct file_lock *cfl; 647 648 lock_flocks(); 649 for (cfl = filp->f_path.dentry->d_inode->i_flock; cfl; cfl = cfl->fl_next) { 650 if (!IS_POSIX(cfl)) 651 continue; 652 if (posix_locks_conflict(fl, cfl)) 653 break; 654 } 655 if (cfl) { 656 __locks_copy_lock(fl, cfl); 657 if (cfl->fl_nspid) 658 fl->fl_pid = pid_vnr(cfl->fl_nspid); 659 } else 660 fl->fl_type = F_UNLCK; 661 unlock_flocks(); 662 return; 663 } 664 EXPORT_SYMBOL(posix_test_lock); 665 666 /* 667 * Deadlock detection: 668 * 669 * We attempt to detect deadlocks that are due purely to posix file 670 * locks. 671 * 672 * We assume that a task can be waiting for at most one lock at a time. 673 * So for any acquired lock, the process holding that lock may be 674 * waiting on at most one other lock. That lock in turns may be held by 675 * someone waiting for at most one other lock. Given a requested lock 676 * caller_fl which is about to wait for a conflicting lock block_fl, we 677 * follow this chain of waiters to ensure we are not about to create a 678 * cycle. 679 * 680 * Since we do this before we ever put a process to sleep on a lock, we 681 * are ensured that there is never a cycle; that is what guarantees that 682 * the while() loop in posix_locks_deadlock() eventually completes. 683 * 684 * Note: the above assumption may not be true when handling lock 685 * requests from a broken NFS client. It may also fail in the presence 686 * of tasks (such as posix threads) sharing the same open file table. 687 * 688 * To handle those cases, we just bail out after a few iterations. 689 */ 690 691 #define MAX_DEADLK_ITERATIONS 10 692 693 /* Find a lock that the owner of the given block_fl is blocking on. */ 694 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl) 695 { 696 struct file_lock *fl; 697 698 list_for_each_entry(fl, &blocked_list, fl_link) { 699 if (posix_same_owner(fl, block_fl)) 700 return fl->fl_next; 701 } 702 return NULL; 703 } 704 705 static int posix_locks_deadlock(struct file_lock *caller_fl, 706 struct file_lock *block_fl) 707 { 708 int i = 0; 709 710 while ((block_fl = what_owner_is_waiting_for(block_fl))) { 711 if (i++ > MAX_DEADLK_ITERATIONS) 712 return 0; 713 if (posix_same_owner(caller_fl, block_fl)) 714 return 1; 715 } 716 return 0; 717 } 718 719 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 720 * after any leases, but before any posix locks. 721 * 722 * Note that if called with an FL_EXISTS argument, the caller may determine 723 * whether or not a lock was successfully freed by testing the return 724 * value for -ENOENT. 725 */ 726 static int flock_lock_file(struct file *filp, struct file_lock *request) 727 { 728 struct file_lock *new_fl = NULL; 729 struct file_lock **before; 730 struct inode * inode = filp->f_path.dentry->d_inode; 731 int error = 0; 732 int found = 0; 733 734 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) { 735 new_fl = locks_alloc_lock(); 736 if (!new_fl) 737 return -ENOMEM; 738 } 739 740 lock_flocks(); 741 if (request->fl_flags & FL_ACCESS) 742 goto find_conflict; 743 744 for_each_lock(inode, before) { 745 struct file_lock *fl = *before; 746 if (IS_POSIX(fl)) 747 break; 748 if (IS_LEASE(fl)) 749 continue; 750 if (filp != fl->fl_file) 751 continue; 752 if (request->fl_type == fl->fl_type) 753 goto out; 754 found = 1; 755 locks_delete_lock(before); 756 break; 757 } 758 759 if (request->fl_type == F_UNLCK) { 760 if ((request->fl_flags & FL_EXISTS) && !found) 761 error = -ENOENT; 762 goto out; 763 } 764 765 /* 766 * If a higher-priority process was blocked on the old file lock, 767 * give it the opportunity to lock the file. 768 */ 769 if (found) { 770 unlock_flocks(); 771 cond_resched(); 772 lock_flocks(); 773 } 774 775 find_conflict: 776 for_each_lock(inode, before) { 777 struct file_lock *fl = *before; 778 if (IS_POSIX(fl)) 779 break; 780 if (IS_LEASE(fl)) 781 continue; 782 if (!flock_locks_conflict(request, fl)) 783 continue; 784 error = -EAGAIN; 785 if (!(request->fl_flags & FL_SLEEP)) 786 goto out; 787 error = FILE_LOCK_DEFERRED; 788 locks_insert_block(fl, request); 789 goto out; 790 } 791 if (request->fl_flags & FL_ACCESS) 792 goto out; 793 locks_copy_lock(new_fl, request); 794 locks_insert_lock(before, new_fl); 795 new_fl = NULL; 796 error = 0; 797 798 out: 799 unlock_flocks(); 800 if (new_fl) 801 locks_free_lock(new_fl); 802 return error; 803 } 804 805 static int __posix_lock_file(struct inode *inode, struct file_lock *request, struct file_lock *conflock) 806 { 807 struct file_lock *fl; 808 struct file_lock *new_fl = NULL; 809 struct file_lock *new_fl2 = NULL; 810 struct file_lock *left = NULL; 811 struct file_lock *right = NULL; 812 struct file_lock **before; 813 int error, added = 0; 814 815 /* 816 * We may need two file_lock structures for this operation, 817 * so we get them in advance to avoid races. 818 * 819 * In some cases we can be sure, that no new locks will be needed 820 */ 821 if (!(request->fl_flags & FL_ACCESS) && 822 (request->fl_type != F_UNLCK || 823 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 824 new_fl = locks_alloc_lock(); 825 new_fl2 = locks_alloc_lock(); 826 } 827 828 lock_flocks(); 829 if (request->fl_type != F_UNLCK) { 830 for_each_lock(inode, before) { 831 fl = *before; 832 if (!IS_POSIX(fl)) 833 continue; 834 if (!posix_locks_conflict(request, fl)) 835 continue; 836 if (conflock) 837 __locks_copy_lock(conflock, fl); 838 error = -EAGAIN; 839 if (!(request->fl_flags & FL_SLEEP)) 840 goto out; 841 error = -EDEADLK; 842 if (posix_locks_deadlock(request, fl)) 843 goto out; 844 error = FILE_LOCK_DEFERRED; 845 locks_insert_block(fl, request); 846 goto out; 847 } 848 } 849 850 /* If we're just looking for a conflict, we're done. */ 851 error = 0; 852 if (request->fl_flags & FL_ACCESS) 853 goto out; 854 855 /* 856 * Find the first old lock with the same owner as the new lock. 857 */ 858 859 before = &inode->i_flock; 860 861 /* First skip locks owned by other processes. */ 862 while ((fl = *before) && (!IS_POSIX(fl) || 863 !posix_same_owner(request, fl))) { 864 before = &fl->fl_next; 865 } 866 867 /* Process locks with this owner. */ 868 while ((fl = *before) && posix_same_owner(request, fl)) { 869 /* Detect adjacent or overlapping regions (if same lock type) 870 */ 871 if (request->fl_type == fl->fl_type) { 872 /* In all comparisons of start vs end, use 873 * "start - 1" rather than "end + 1". If end 874 * is OFFSET_MAX, end + 1 will become negative. 875 */ 876 if (fl->fl_end < request->fl_start - 1) 877 goto next_lock; 878 /* If the next lock in the list has entirely bigger 879 * addresses than the new one, insert the lock here. 880 */ 881 if (fl->fl_start - 1 > request->fl_end) 882 break; 883 884 /* If we come here, the new and old lock are of the 885 * same type and adjacent or overlapping. Make one 886 * lock yielding from the lower start address of both 887 * locks to the higher end address. 888 */ 889 if (fl->fl_start > request->fl_start) 890 fl->fl_start = request->fl_start; 891 else 892 request->fl_start = fl->fl_start; 893 if (fl->fl_end < request->fl_end) 894 fl->fl_end = request->fl_end; 895 else 896 request->fl_end = fl->fl_end; 897 if (added) { 898 locks_delete_lock(before); 899 continue; 900 } 901 request = fl; 902 added = 1; 903 } 904 else { 905 /* Processing for different lock types is a bit 906 * more complex. 907 */ 908 if (fl->fl_end < request->fl_start) 909 goto next_lock; 910 if (fl->fl_start > request->fl_end) 911 break; 912 if (request->fl_type == F_UNLCK) 913 added = 1; 914 if (fl->fl_start < request->fl_start) 915 left = fl; 916 /* If the next lock in the list has a higher end 917 * address than the new one, insert the new one here. 918 */ 919 if (fl->fl_end > request->fl_end) { 920 right = fl; 921 break; 922 } 923 if (fl->fl_start >= request->fl_start) { 924 /* The new lock completely replaces an old 925 * one (This may happen several times). 926 */ 927 if (added) { 928 locks_delete_lock(before); 929 continue; 930 } 931 /* Replace the old lock with the new one. 932 * Wake up anybody waiting for the old one, 933 * as the change in lock type might satisfy 934 * their needs. 935 */ 936 locks_wake_up_blocks(fl); 937 fl->fl_start = request->fl_start; 938 fl->fl_end = request->fl_end; 939 fl->fl_type = request->fl_type; 940 locks_release_private(fl); 941 locks_copy_private(fl, request); 942 request = fl; 943 added = 1; 944 } 945 } 946 /* Go on to next lock. 947 */ 948 next_lock: 949 before = &fl->fl_next; 950 } 951 952 /* 953 * The above code only modifies existing locks in case of 954 * merging or replacing. If new lock(s) need to be inserted 955 * all modifications are done bellow this, so it's safe yet to 956 * bail out. 957 */ 958 error = -ENOLCK; /* "no luck" */ 959 if (right && left == right && !new_fl2) 960 goto out; 961 962 error = 0; 963 if (!added) { 964 if (request->fl_type == F_UNLCK) { 965 if (request->fl_flags & FL_EXISTS) 966 error = -ENOENT; 967 goto out; 968 } 969 970 if (!new_fl) { 971 error = -ENOLCK; 972 goto out; 973 } 974 locks_copy_lock(new_fl, request); 975 locks_insert_lock(before, new_fl); 976 new_fl = NULL; 977 } 978 if (right) { 979 if (left == right) { 980 /* The new lock breaks the old one in two pieces, 981 * so we have to use the second new lock. 982 */ 983 left = new_fl2; 984 new_fl2 = NULL; 985 locks_copy_lock(left, right); 986 locks_insert_lock(before, left); 987 } 988 right->fl_start = request->fl_end + 1; 989 locks_wake_up_blocks(right); 990 } 991 if (left) { 992 left->fl_end = request->fl_start - 1; 993 locks_wake_up_blocks(left); 994 } 995 out: 996 unlock_flocks(); 997 /* 998 * Free any unused locks. 999 */ 1000 if (new_fl) 1001 locks_free_lock(new_fl); 1002 if (new_fl2) 1003 locks_free_lock(new_fl2); 1004 return error; 1005 } 1006 1007 /** 1008 * posix_lock_file - Apply a POSIX-style lock to a file 1009 * @filp: The file to apply the lock to 1010 * @fl: The lock to be applied 1011 * @conflock: Place to return a copy of the conflicting lock, if found. 1012 * 1013 * Add a POSIX style lock to a file. 1014 * We merge adjacent & overlapping locks whenever possible. 1015 * POSIX locks are sorted by owner task, then by starting address 1016 * 1017 * Note that if called with an FL_EXISTS argument, the caller may determine 1018 * whether or not a lock was successfully freed by testing the return 1019 * value for -ENOENT. 1020 */ 1021 int posix_lock_file(struct file *filp, struct file_lock *fl, 1022 struct file_lock *conflock) 1023 { 1024 return __posix_lock_file(filp->f_path.dentry->d_inode, fl, conflock); 1025 } 1026 EXPORT_SYMBOL(posix_lock_file); 1027 1028 /** 1029 * posix_lock_file_wait - Apply a POSIX-style lock to a file 1030 * @filp: The file to apply the lock to 1031 * @fl: The lock to be applied 1032 * 1033 * Add a POSIX style lock to a file. 1034 * We merge adjacent & overlapping locks whenever possible. 1035 * POSIX locks are sorted by owner task, then by starting address 1036 */ 1037 int posix_lock_file_wait(struct file *filp, struct file_lock *fl) 1038 { 1039 int error; 1040 might_sleep (); 1041 for (;;) { 1042 error = posix_lock_file(filp, fl, NULL); 1043 if (error != FILE_LOCK_DEFERRED) 1044 break; 1045 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1046 if (!error) 1047 continue; 1048 1049 locks_delete_block(fl); 1050 break; 1051 } 1052 return error; 1053 } 1054 EXPORT_SYMBOL(posix_lock_file_wait); 1055 1056 /** 1057 * locks_mandatory_locked - Check for an active lock 1058 * @inode: the file to check 1059 * 1060 * Searches the inode's list of locks to find any POSIX locks which conflict. 1061 * This function is called from locks_verify_locked() only. 1062 */ 1063 int locks_mandatory_locked(struct inode *inode) 1064 { 1065 fl_owner_t owner = current->files; 1066 struct file_lock *fl; 1067 1068 /* 1069 * Search the lock list for this inode for any POSIX locks. 1070 */ 1071 lock_flocks(); 1072 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 1073 if (!IS_POSIX(fl)) 1074 continue; 1075 if (fl->fl_owner != owner) 1076 break; 1077 } 1078 unlock_flocks(); 1079 return fl ? -EAGAIN : 0; 1080 } 1081 1082 /** 1083 * locks_mandatory_area - Check for a conflicting lock 1084 * @read_write: %FLOCK_VERIFY_WRITE for exclusive access, %FLOCK_VERIFY_READ 1085 * for shared 1086 * @inode: the file to check 1087 * @filp: how the file was opened (if it was) 1088 * @offset: start of area to check 1089 * @count: length of area to check 1090 * 1091 * Searches the inode's list of locks to find any POSIX locks which conflict. 1092 * This function is called from rw_verify_area() and 1093 * locks_verify_truncate(). 1094 */ 1095 int locks_mandatory_area(int read_write, struct inode *inode, 1096 struct file *filp, loff_t offset, 1097 size_t count) 1098 { 1099 struct file_lock fl; 1100 int error; 1101 1102 locks_init_lock(&fl); 1103 fl.fl_owner = current->files; 1104 fl.fl_pid = current->tgid; 1105 fl.fl_file = filp; 1106 fl.fl_flags = FL_POSIX | FL_ACCESS; 1107 if (filp && !(filp->f_flags & O_NONBLOCK)) 1108 fl.fl_flags |= FL_SLEEP; 1109 fl.fl_type = (read_write == FLOCK_VERIFY_WRITE) ? F_WRLCK : F_RDLCK; 1110 fl.fl_start = offset; 1111 fl.fl_end = offset + count - 1; 1112 1113 for (;;) { 1114 error = __posix_lock_file(inode, &fl, NULL); 1115 if (error != FILE_LOCK_DEFERRED) 1116 break; 1117 error = wait_event_interruptible(fl.fl_wait, !fl.fl_next); 1118 if (!error) { 1119 /* 1120 * If we've been sleeping someone might have 1121 * changed the permissions behind our back. 1122 */ 1123 if (__mandatory_lock(inode)) 1124 continue; 1125 } 1126 1127 locks_delete_block(&fl); 1128 break; 1129 } 1130 1131 return error; 1132 } 1133 1134 EXPORT_SYMBOL(locks_mandatory_area); 1135 1136 static void lease_clear_pending(struct file_lock *fl, int arg) 1137 { 1138 switch (arg) { 1139 case F_UNLCK: 1140 fl->fl_flags &= ~FL_UNLOCK_PENDING; 1141 /* fall through: */ 1142 case F_RDLCK: 1143 fl->fl_flags &= ~FL_DOWNGRADE_PENDING; 1144 } 1145 } 1146 1147 /* We already had a lease on this file; just change its type */ 1148 int lease_modify(struct file_lock **before, int arg) 1149 { 1150 struct file_lock *fl = *before; 1151 int error = assign_type(fl, arg); 1152 1153 if (error) 1154 return error; 1155 lease_clear_pending(fl, arg); 1156 locks_wake_up_blocks(fl); 1157 if (arg == F_UNLCK) 1158 locks_delete_lock(before); 1159 return 0; 1160 } 1161 1162 EXPORT_SYMBOL(lease_modify); 1163 1164 static bool past_time(unsigned long then) 1165 { 1166 if (!then) 1167 /* 0 is a special value meaning "this never expires": */ 1168 return false; 1169 return time_after(jiffies, then); 1170 } 1171 1172 static void time_out_leases(struct inode *inode) 1173 { 1174 struct file_lock **before; 1175 struct file_lock *fl; 1176 1177 before = &inode->i_flock; 1178 while ((fl = *before) && IS_LEASE(fl) && lease_breaking(fl)) { 1179 if (past_time(fl->fl_downgrade_time)) 1180 lease_modify(before, F_RDLCK); 1181 if (past_time(fl->fl_break_time)) 1182 lease_modify(before, F_UNLCK); 1183 if (fl == *before) /* lease_modify may have freed fl */ 1184 before = &fl->fl_next; 1185 } 1186 } 1187 1188 /** 1189 * __break_lease - revoke all outstanding leases on file 1190 * @inode: the inode of the file to return 1191 * @mode: the open mode (read or write) 1192 * 1193 * break_lease (inlined for speed) has checked there already is at least 1194 * some kind of lock (maybe a lease) on this file. Leases are broken on 1195 * a call to open() or truncate(). This function can sleep unless you 1196 * specified %O_NONBLOCK to your open(). 1197 */ 1198 int __break_lease(struct inode *inode, unsigned int mode) 1199 { 1200 int error = 0; 1201 struct file_lock *new_fl, *flock; 1202 struct file_lock *fl; 1203 unsigned long break_time; 1204 int i_have_this_lease = 0; 1205 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1206 1207 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1208 1209 lock_flocks(); 1210 1211 time_out_leases(inode); 1212 1213 flock = inode->i_flock; 1214 if ((flock == NULL) || !IS_LEASE(flock)) 1215 goto out; 1216 1217 if (!locks_conflict(flock, new_fl)) 1218 goto out; 1219 1220 for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next) 1221 if (fl->fl_owner == current->files) 1222 i_have_this_lease = 1; 1223 1224 if (IS_ERR(new_fl) && !i_have_this_lease 1225 && ((mode & O_NONBLOCK) == 0)) { 1226 error = PTR_ERR(new_fl); 1227 goto out; 1228 } 1229 1230 break_time = 0; 1231 if (lease_break_time > 0) { 1232 break_time = jiffies + lease_break_time * HZ; 1233 if (break_time == 0) 1234 break_time++; /* so that 0 means no break time */ 1235 } 1236 1237 for (fl = flock; fl && IS_LEASE(fl); fl = fl->fl_next) { 1238 if (want_write) { 1239 if (fl->fl_flags & FL_UNLOCK_PENDING) 1240 continue; 1241 fl->fl_flags |= FL_UNLOCK_PENDING; 1242 fl->fl_break_time = break_time; 1243 } else { 1244 if (lease_breaking(flock)) 1245 continue; 1246 fl->fl_flags |= FL_DOWNGRADE_PENDING; 1247 fl->fl_downgrade_time = break_time; 1248 } 1249 fl->fl_lmops->lm_break(fl); 1250 } 1251 1252 if (i_have_this_lease || (mode & O_NONBLOCK)) { 1253 error = -EWOULDBLOCK; 1254 goto out; 1255 } 1256 1257 restart: 1258 break_time = flock->fl_break_time; 1259 if (break_time != 0) { 1260 break_time -= jiffies; 1261 if (break_time == 0) 1262 break_time++; 1263 } 1264 locks_insert_block(flock, new_fl); 1265 unlock_flocks(); 1266 error = wait_event_interruptible_timeout(new_fl->fl_wait, 1267 !new_fl->fl_next, break_time); 1268 lock_flocks(); 1269 __locks_delete_block(new_fl); 1270 if (error >= 0) { 1271 if (error == 0) 1272 time_out_leases(inode); 1273 /* 1274 * Wait for the next conflicting lease that has not been 1275 * broken yet 1276 */ 1277 for (flock = inode->i_flock; flock && IS_LEASE(flock); 1278 flock = flock->fl_next) { 1279 if (locks_conflict(new_fl, flock)) 1280 goto restart; 1281 } 1282 error = 0; 1283 } 1284 1285 out: 1286 unlock_flocks(); 1287 if (!IS_ERR(new_fl)) 1288 locks_free_lock(new_fl); 1289 return error; 1290 } 1291 1292 EXPORT_SYMBOL(__break_lease); 1293 1294 /** 1295 * lease_get_mtime - get the last modified time of an inode 1296 * @inode: the inode 1297 * @time: pointer to a timespec which will contain the last modified time 1298 * 1299 * This is to force NFS clients to flush their caches for files with 1300 * exclusive leases. The justification is that if someone has an 1301 * exclusive lease, then they could be modifying it. 1302 */ 1303 void lease_get_mtime(struct inode *inode, struct timespec *time) 1304 { 1305 struct file_lock *flock = inode->i_flock; 1306 if (flock && IS_LEASE(flock) && (flock->fl_type & F_WRLCK)) 1307 *time = current_fs_time(inode->i_sb); 1308 else 1309 *time = inode->i_mtime; 1310 } 1311 1312 EXPORT_SYMBOL(lease_get_mtime); 1313 1314 /** 1315 * fcntl_getlease - Enquire what lease is currently active 1316 * @filp: the file 1317 * 1318 * The value returned by this function will be one of 1319 * (if no lease break is pending): 1320 * 1321 * %F_RDLCK to indicate a shared lease is held. 1322 * 1323 * %F_WRLCK to indicate an exclusive lease is held. 1324 * 1325 * %F_UNLCK to indicate no lease is held. 1326 * 1327 * (if a lease break is pending): 1328 * 1329 * %F_RDLCK to indicate an exclusive lease needs to be 1330 * changed to a shared lease (or removed). 1331 * 1332 * %F_UNLCK to indicate the lease needs to be removed. 1333 * 1334 * XXX: sfr & willy disagree over whether F_INPROGRESS 1335 * should be returned to userspace. 1336 */ 1337 int fcntl_getlease(struct file *filp) 1338 { 1339 struct file_lock *fl; 1340 int type = F_UNLCK; 1341 1342 lock_flocks(); 1343 time_out_leases(filp->f_path.dentry->d_inode); 1344 for (fl = filp->f_path.dentry->d_inode->i_flock; fl && IS_LEASE(fl); 1345 fl = fl->fl_next) { 1346 if (fl->fl_file == filp) { 1347 type = target_leasetype(fl); 1348 break; 1349 } 1350 } 1351 unlock_flocks(); 1352 return type; 1353 } 1354 1355 int generic_add_lease(struct file *filp, long arg, struct file_lock **flp) 1356 { 1357 struct file_lock *fl, **before, **my_before = NULL, *lease; 1358 struct dentry *dentry = filp->f_path.dentry; 1359 struct inode *inode = dentry->d_inode; 1360 int error; 1361 1362 lease = *flp; 1363 1364 error = -EAGAIN; 1365 if ((arg == F_RDLCK) && (atomic_read(&inode->i_writecount) > 0)) 1366 goto out; 1367 if ((arg == F_WRLCK) 1368 && ((dentry->d_count > 1) 1369 || (atomic_read(&inode->i_count) > 1))) 1370 goto out; 1371 1372 /* 1373 * At this point, we know that if there is an exclusive 1374 * lease on this file, then we hold it on this filp 1375 * (otherwise our open of this file would have blocked). 1376 * And if we are trying to acquire an exclusive lease, 1377 * then the file is not open by anyone (including us) 1378 * except for this filp. 1379 */ 1380 error = -EAGAIN; 1381 for (before = &inode->i_flock; 1382 ((fl = *before) != NULL) && IS_LEASE(fl); 1383 before = &fl->fl_next) { 1384 if (fl->fl_file == filp) { 1385 my_before = before; 1386 continue; 1387 } 1388 /* 1389 * No exclusive leases if someone else has a lease on 1390 * this file: 1391 */ 1392 if (arg == F_WRLCK) 1393 goto out; 1394 /* 1395 * Modifying our existing lease is OK, but no getting a 1396 * new lease if someone else is opening for write: 1397 */ 1398 if (fl->fl_flags & FL_UNLOCK_PENDING) 1399 goto out; 1400 } 1401 1402 if (my_before != NULL) { 1403 error = lease->fl_lmops->lm_change(my_before, arg); 1404 if (!error) 1405 *flp = *my_before; 1406 goto out; 1407 } 1408 1409 error = -EINVAL; 1410 if (!leases_enable) 1411 goto out; 1412 1413 locks_insert_lock(before, lease); 1414 return 0; 1415 1416 out: 1417 return error; 1418 } 1419 1420 int generic_delete_lease(struct file *filp, struct file_lock **flp) 1421 { 1422 struct file_lock *fl, **before; 1423 struct dentry *dentry = filp->f_path.dentry; 1424 struct inode *inode = dentry->d_inode; 1425 1426 for (before = &inode->i_flock; 1427 ((fl = *before) != NULL) && IS_LEASE(fl); 1428 before = &fl->fl_next) { 1429 if (fl->fl_file != filp) 1430 continue; 1431 return (*flp)->fl_lmops->lm_change(before, F_UNLCK); 1432 } 1433 return -EAGAIN; 1434 } 1435 1436 /** 1437 * generic_setlease - sets a lease on an open file 1438 * @filp: file pointer 1439 * @arg: type of lease to obtain 1440 * @flp: input - file_lock to use, output - file_lock inserted 1441 * 1442 * The (input) flp->fl_lmops->lm_break function is required 1443 * by break_lease(). 1444 * 1445 * Called with file_lock_lock held. 1446 */ 1447 int generic_setlease(struct file *filp, long arg, struct file_lock **flp) 1448 { 1449 struct dentry *dentry = filp->f_path.dentry; 1450 struct inode *inode = dentry->d_inode; 1451 int error; 1452 1453 if ((current_fsuid() != inode->i_uid) && !capable(CAP_LEASE)) 1454 return -EACCES; 1455 if (!S_ISREG(inode->i_mode)) 1456 return -EINVAL; 1457 error = security_file_lock(filp, arg); 1458 if (error) 1459 return error; 1460 1461 time_out_leases(inode); 1462 1463 BUG_ON(!(*flp)->fl_lmops->lm_break); 1464 1465 switch (arg) { 1466 case F_UNLCK: 1467 return generic_delete_lease(filp, flp); 1468 case F_RDLCK: 1469 case F_WRLCK: 1470 return generic_add_lease(filp, arg, flp); 1471 default: 1472 BUG(); 1473 } 1474 } 1475 EXPORT_SYMBOL(generic_setlease); 1476 1477 static int __vfs_setlease(struct file *filp, long arg, struct file_lock **lease) 1478 { 1479 if (filp->f_op && filp->f_op->setlease) 1480 return filp->f_op->setlease(filp, arg, lease); 1481 else 1482 return generic_setlease(filp, arg, lease); 1483 } 1484 1485 /** 1486 * vfs_setlease - sets a lease on an open file 1487 * @filp: file pointer 1488 * @arg: type of lease to obtain 1489 * @lease: file_lock to use 1490 * 1491 * Call this to establish a lease on the file. 1492 * The (*lease)->fl_lmops->lm_break operation must be set; if not, 1493 * break_lease will oops! 1494 * 1495 * This will call the filesystem's setlease file method, if 1496 * defined. Note that there is no getlease method; instead, the 1497 * filesystem setlease method should call back to setlease() to 1498 * add a lease to the inode's lease list, where fcntl_getlease() can 1499 * find it. Since fcntl_getlease() only reports whether the current 1500 * task holds a lease, a cluster filesystem need only do this for 1501 * leases held by processes on this node. 1502 * 1503 * There is also no break_lease method; filesystems that 1504 * handle their own leases should break leases themselves from the 1505 * filesystem's open, create, and (on truncate) setattr methods. 1506 * 1507 * Warning: the only current setlease methods exist only to disable 1508 * leases in certain cases. More vfs changes may be required to 1509 * allow a full filesystem lease implementation. 1510 */ 1511 1512 int vfs_setlease(struct file *filp, long arg, struct file_lock **lease) 1513 { 1514 int error; 1515 1516 lock_flocks(); 1517 error = __vfs_setlease(filp, arg, lease); 1518 unlock_flocks(); 1519 1520 return error; 1521 } 1522 EXPORT_SYMBOL_GPL(vfs_setlease); 1523 1524 static int do_fcntl_delete_lease(struct file *filp) 1525 { 1526 struct file_lock fl, *flp = &fl; 1527 1528 lease_init(filp, F_UNLCK, flp); 1529 1530 return vfs_setlease(filp, F_UNLCK, &flp); 1531 } 1532 1533 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg) 1534 { 1535 struct file_lock *fl, *ret; 1536 struct fasync_struct *new; 1537 int error; 1538 1539 fl = lease_alloc(filp, arg); 1540 if (IS_ERR(fl)) 1541 return PTR_ERR(fl); 1542 1543 new = fasync_alloc(); 1544 if (!new) { 1545 locks_free_lock(fl); 1546 return -ENOMEM; 1547 } 1548 ret = fl; 1549 lock_flocks(); 1550 error = __vfs_setlease(filp, arg, &ret); 1551 if (error) { 1552 unlock_flocks(); 1553 locks_free_lock(fl); 1554 goto out_free_fasync; 1555 } 1556 if (ret != fl) 1557 locks_free_lock(fl); 1558 1559 /* 1560 * fasync_insert_entry() returns the old entry if any. 1561 * If there was no old entry, then it used 'new' and 1562 * inserted it into the fasync list. Clear new so that 1563 * we don't release it here. 1564 */ 1565 if (!fasync_insert_entry(fd, filp, &ret->fl_fasync, new)) 1566 new = NULL; 1567 1568 error = __f_setown(filp, task_pid(current), PIDTYPE_PID, 0); 1569 unlock_flocks(); 1570 1571 out_free_fasync: 1572 if (new) 1573 fasync_free(new); 1574 return error; 1575 } 1576 1577 /** 1578 * fcntl_setlease - sets a lease on an open file 1579 * @fd: open file descriptor 1580 * @filp: file pointer 1581 * @arg: type of lease to obtain 1582 * 1583 * Call this fcntl to establish a lease on the file. 1584 * Note that you also need to call %F_SETSIG to 1585 * receive a signal when the lease is broken. 1586 */ 1587 int fcntl_setlease(unsigned int fd, struct file *filp, long arg) 1588 { 1589 if (arg == F_UNLCK) 1590 return do_fcntl_delete_lease(filp); 1591 return do_fcntl_add_lease(fd, filp, arg); 1592 } 1593 1594 /** 1595 * flock_lock_file_wait - Apply a FLOCK-style lock to a file 1596 * @filp: The file to apply the lock to 1597 * @fl: The lock to be applied 1598 * 1599 * Add a FLOCK style lock to a file. 1600 */ 1601 int flock_lock_file_wait(struct file *filp, struct file_lock *fl) 1602 { 1603 int error; 1604 might_sleep(); 1605 for (;;) { 1606 error = flock_lock_file(filp, fl); 1607 if (error != FILE_LOCK_DEFERRED) 1608 break; 1609 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1610 if (!error) 1611 continue; 1612 1613 locks_delete_block(fl); 1614 break; 1615 } 1616 return error; 1617 } 1618 1619 EXPORT_SYMBOL(flock_lock_file_wait); 1620 1621 /** 1622 * sys_flock: - flock() system call. 1623 * @fd: the file descriptor to lock. 1624 * @cmd: the type of lock to apply. 1625 * 1626 * Apply a %FL_FLOCK style lock to an open file descriptor. 1627 * The @cmd can be one of 1628 * 1629 * %LOCK_SH -- a shared lock. 1630 * 1631 * %LOCK_EX -- an exclusive lock. 1632 * 1633 * %LOCK_UN -- remove an existing lock. 1634 * 1635 * %LOCK_MAND -- a `mandatory' flock. This exists to emulate Windows Share Modes. 1636 * 1637 * %LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other 1638 * processes read and write access respectively. 1639 */ 1640 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 1641 { 1642 struct file *filp; 1643 struct file_lock *lock; 1644 int can_sleep, unlock; 1645 int error; 1646 1647 error = -EBADF; 1648 filp = fget(fd); 1649 if (!filp) 1650 goto out; 1651 1652 can_sleep = !(cmd & LOCK_NB); 1653 cmd &= ~LOCK_NB; 1654 unlock = (cmd == LOCK_UN); 1655 1656 if (!unlock && !(cmd & LOCK_MAND) && 1657 !(filp->f_mode & (FMODE_READ|FMODE_WRITE))) 1658 goto out_putf; 1659 1660 error = flock_make_lock(filp, &lock, cmd); 1661 if (error) 1662 goto out_putf; 1663 if (can_sleep) 1664 lock->fl_flags |= FL_SLEEP; 1665 1666 error = security_file_lock(filp, lock->fl_type); 1667 if (error) 1668 goto out_free; 1669 1670 if (filp->f_op && filp->f_op->flock) 1671 error = filp->f_op->flock(filp, 1672 (can_sleep) ? F_SETLKW : F_SETLK, 1673 lock); 1674 else 1675 error = flock_lock_file_wait(filp, lock); 1676 1677 out_free: 1678 locks_free_lock(lock); 1679 1680 out_putf: 1681 fput(filp); 1682 out: 1683 return error; 1684 } 1685 1686 /** 1687 * vfs_test_lock - test file byte range lock 1688 * @filp: The file to test lock for 1689 * @fl: The lock to test; also used to hold result 1690 * 1691 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 1692 * setting conf->fl_type to something other than F_UNLCK. 1693 */ 1694 int vfs_test_lock(struct file *filp, struct file_lock *fl) 1695 { 1696 if (filp->f_op && filp->f_op->lock) 1697 return filp->f_op->lock(filp, F_GETLK, fl); 1698 posix_test_lock(filp, fl); 1699 return 0; 1700 } 1701 EXPORT_SYMBOL_GPL(vfs_test_lock); 1702 1703 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 1704 { 1705 flock->l_pid = fl->fl_pid; 1706 #if BITS_PER_LONG == 32 1707 /* 1708 * Make sure we can represent the posix lock via 1709 * legacy 32bit flock. 1710 */ 1711 if (fl->fl_start > OFFT_OFFSET_MAX) 1712 return -EOVERFLOW; 1713 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 1714 return -EOVERFLOW; 1715 #endif 1716 flock->l_start = fl->fl_start; 1717 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 1718 fl->fl_end - fl->fl_start + 1; 1719 flock->l_whence = 0; 1720 flock->l_type = fl->fl_type; 1721 return 0; 1722 } 1723 1724 #if BITS_PER_LONG == 32 1725 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 1726 { 1727 flock->l_pid = fl->fl_pid; 1728 flock->l_start = fl->fl_start; 1729 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 1730 fl->fl_end - fl->fl_start + 1; 1731 flock->l_whence = 0; 1732 flock->l_type = fl->fl_type; 1733 } 1734 #endif 1735 1736 /* Report the first existing lock that would conflict with l. 1737 * This implements the F_GETLK command of fcntl(). 1738 */ 1739 int fcntl_getlk(struct file *filp, struct flock __user *l) 1740 { 1741 struct file_lock file_lock; 1742 struct flock flock; 1743 int error; 1744 1745 error = -EFAULT; 1746 if (copy_from_user(&flock, l, sizeof(flock))) 1747 goto out; 1748 error = -EINVAL; 1749 if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK)) 1750 goto out; 1751 1752 error = flock_to_posix_lock(filp, &file_lock, &flock); 1753 if (error) 1754 goto out; 1755 1756 error = vfs_test_lock(filp, &file_lock); 1757 if (error) 1758 goto out; 1759 1760 flock.l_type = file_lock.fl_type; 1761 if (file_lock.fl_type != F_UNLCK) { 1762 error = posix_lock_to_flock(&flock, &file_lock); 1763 if (error) 1764 goto out; 1765 } 1766 error = -EFAULT; 1767 if (!copy_to_user(l, &flock, sizeof(flock))) 1768 error = 0; 1769 out: 1770 return error; 1771 } 1772 1773 /** 1774 * vfs_lock_file - file byte range lock 1775 * @filp: The file to apply the lock to 1776 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 1777 * @fl: The lock to be applied 1778 * @conf: Place to return a copy of the conflicting lock, if found. 1779 * 1780 * A caller that doesn't care about the conflicting lock may pass NULL 1781 * as the final argument. 1782 * 1783 * If the filesystem defines a private ->lock() method, then @conf will 1784 * be left unchanged; so a caller that cares should initialize it to 1785 * some acceptable default. 1786 * 1787 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 1788 * locks, the ->lock() interface may return asynchronously, before the lock has 1789 * been granted or denied by the underlying filesystem, if (and only if) 1790 * lm_grant is set. Callers expecting ->lock() to return asynchronously 1791 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if) 1792 * the request is for a blocking lock. When ->lock() does return asynchronously, 1793 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock 1794 * request completes. 1795 * If the request is for non-blocking lock the file system should return 1796 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 1797 * with the result. If the request timed out the callback routine will return a 1798 * nonzero return code and the file system should release the lock. The file 1799 * system is also responsible to keep a corresponding posix lock when it 1800 * grants a lock so the VFS can find out which locks are locally held and do 1801 * the correct lock cleanup when required. 1802 * The underlying filesystem must not drop the kernel lock or call 1803 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED 1804 * return code. 1805 */ 1806 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 1807 { 1808 if (filp->f_op && filp->f_op->lock) 1809 return filp->f_op->lock(filp, cmd, fl); 1810 else 1811 return posix_lock_file(filp, fl, conf); 1812 } 1813 EXPORT_SYMBOL_GPL(vfs_lock_file); 1814 1815 static int do_lock_file_wait(struct file *filp, unsigned int cmd, 1816 struct file_lock *fl) 1817 { 1818 int error; 1819 1820 error = security_file_lock(filp, fl->fl_type); 1821 if (error) 1822 return error; 1823 1824 for (;;) { 1825 error = vfs_lock_file(filp, cmd, fl, NULL); 1826 if (error != FILE_LOCK_DEFERRED) 1827 break; 1828 error = wait_event_interruptible(fl->fl_wait, !fl->fl_next); 1829 if (!error) 1830 continue; 1831 1832 locks_delete_block(fl); 1833 break; 1834 } 1835 1836 return error; 1837 } 1838 1839 /* Apply the lock described by l to an open file descriptor. 1840 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 1841 */ 1842 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 1843 struct flock __user *l) 1844 { 1845 struct file_lock *file_lock = locks_alloc_lock(); 1846 struct flock flock; 1847 struct inode *inode; 1848 struct file *f; 1849 int error; 1850 1851 if (file_lock == NULL) 1852 return -ENOLCK; 1853 1854 /* 1855 * This might block, so we do it before checking the inode. 1856 */ 1857 error = -EFAULT; 1858 if (copy_from_user(&flock, l, sizeof(flock))) 1859 goto out; 1860 1861 inode = filp->f_path.dentry->d_inode; 1862 1863 /* Don't allow mandatory locks on files that may be memory mapped 1864 * and shared. 1865 */ 1866 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 1867 error = -EAGAIN; 1868 goto out; 1869 } 1870 1871 again: 1872 error = flock_to_posix_lock(filp, file_lock, &flock); 1873 if (error) 1874 goto out; 1875 if (cmd == F_SETLKW) { 1876 file_lock->fl_flags |= FL_SLEEP; 1877 } 1878 1879 error = -EBADF; 1880 switch (flock.l_type) { 1881 case F_RDLCK: 1882 if (!(filp->f_mode & FMODE_READ)) 1883 goto out; 1884 break; 1885 case F_WRLCK: 1886 if (!(filp->f_mode & FMODE_WRITE)) 1887 goto out; 1888 break; 1889 case F_UNLCK: 1890 break; 1891 default: 1892 error = -EINVAL; 1893 goto out; 1894 } 1895 1896 error = do_lock_file_wait(filp, cmd, file_lock); 1897 1898 /* 1899 * Attempt to detect a close/fcntl race and recover by 1900 * releasing the lock that was just acquired. 1901 */ 1902 /* 1903 * we need that spin_lock here - it prevents reordering between 1904 * update of inode->i_flock and check for it done in close(). 1905 * rcu_read_lock() wouldn't do. 1906 */ 1907 spin_lock(¤t->files->file_lock); 1908 f = fcheck(fd); 1909 spin_unlock(¤t->files->file_lock); 1910 if (!error && f != filp && flock.l_type != F_UNLCK) { 1911 flock.l_type = F_UNLCK; 1912 goto again; 1913 } 1914 1915 out: 1916 locks_free_lock(file_lock); 1917 return error; 1918 } 1919 1920 #if BITS_PER_LONG == 32 1921 /* Report the first existing lock that would conflict with l. 1922 * This implements the F_GETLK command of fcntl(). 1923 */ 1924 int fcntl_getlk64(struct file *filp, struct flock64 __user *l) 1925 { 1926 struct file_lock file_lock; 1927 struct flock64 flock; 1928 int error; 1929 1930 error = -EFAULT; 1931 if (copy_from_user(&flock, l, sizeof(flock))) 1932 goto out; 1933 error = -EINVAL; 1934 if ((flock.l_type != F_RDLCK) && (flock.l_type != F_WRLCK)) 1935 goto out; 1936 1937 error = flock64_to_posix_lock(filp, &file_lock, &flock); 1938 if (error) 1939 goto out; 1940 1941 error = vfs_test_lock(filp, &file_lock); 1942 if (error) 1943 goto out; 1944 1945 flock.l_type = file_lock.fl_type; 1946 if (file_lock.fl_type != F_UNLCK) 1947 posix_lock_to_flock64(&flock, &file_lock); 1948 1949 error = -EFAULT; 1950 if (!copy_to_user(l, &flock, sizeof(flock))) 1951 error = 0; 1952 1953 out: 1954 return error; 1955 } 1956 1957 /* Apply the lock described by l to an open file descriptor. 1958 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 1959 */ 1960 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 1961 struct flock64 __user *l) 1962 { 1963 struct file_lock *file_lock = locks_alloc_lock(); 1964 struct flock64 flock; 1965 struct inode *inode; 1966 struct file *f; 1967 int error; 1968 1969 if (file_lock == NULL) 1970 return -ENOLCK; 1971 1972 /* 1973 * This might block, so we do it before checking the inode. 1974 */ 1975 error = -EFAULT; 1976 if (copy_from_user(&flock, l, sizeof(flock))) 1977 goto out; 1978 1979 inode = filp->f_path.dentry->d_inode; 1980 1981 /* Don't allow mandatory locks on files that may be memory mapped 1982 * and shared. 1983 */ 1984 if (mandatory_lock(inode) && mapping_writably_mapped(filp->f_mapping)) { 1985 error = -EAGAIN; 1986 goto out; 1987 } 1988 1989 again: 1990 error = flock64_to_posix_lock(filp, file_lock, &flock); 1991 if (error) 1992 goto out; 1993 if (cmd == F_SETLKW64) { 1994 file_lock->fl_flags |= FL_SLEEP; 1995 } 1996 1997 error = -EBADF; 1998 switch (flock.l_type) { 1999 case F_RDLCK: 2000 if (!(filp->f_mode & FMODE_READ)) 2001 goto out; 2002 break; 2003 case F_WRLCK: 2004 if (!(filp->f_mode & FMODE_WRITE)) 2005 goto out; 2006 break; 2007 case F_UNLCK: 2008 break; 2009 default: 2010 error = -EINVAL; 2011 goto out; 2012 } 2013 2014 error = do_lock_file_wait(filp, cmd, file_lock); 2015 2016 /* 2017 * Attempt to detect a close/fcntl race and recover by 2018 * releasing the lock that was just acquired. 2019 */ 2020 spin_lock(¤t->files->file_lock); 2021 f = fcheck(fd); 2022 spin_unlock(¤t->files->file_lock); 2023 if (!error && f != filp && flock.l_type != F_UNLCK) { 2024 flock.l_type = F_UNLCK; 2025 goto again; 2026 } 2027 2028 out: 2029 locks_free_lock(file_lock); 2030 return error; 2031 } 2032 #endif /* BITS_PER_LONG == 32 */ 2033 2034 /* 2035 * This function is called when the file is being removed 2036 * from the task's fd array. POSIX locks belonging to this task 2037 * are deleted at this time. 2038 */ 2039 void locks_remove_posix(struct file *filp, fl_owner_t owner) 2040 { 2041 struct file_lock lock; 2042 2043 /* 2044 * If there are no locks held on this file, we don't need to call 2045 * posix_lock_file(). Another process could be setting a lock on this 2046 * file at the same time, but we wouldn't remove that lock anyway. 2047 */ 2048 if (!filp->f_path.dentry->d_inode->i_flock) 2049 return; 2050 2051 lock.fl_type = F_UNLCK; 2052 lock.fl_flags = FL_POSIX | FL_CLOSE; 2053 lock.fl_start = 0; 2054 lock.fl_end = OFFSET_MAX; 2055 lock.fl_owner = owner; 2056 lock.fl_pid = current->tgid; 2057 lock.fl_file = filp; 2058 lock.fl_ops = NULL; 2059 lock.fl_lmops = NULL; 2060 2061 vfs_lock_file(filp, F_SETLK, &lock, NULL); 2062 2063 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2064 lock.fl_ops->fl_release_private(&lock); 2065 } 2066 2067 EXPORT_SYMBOL(locks_remove_posix); 2068 2069 /* 2070 * This function is called on the last close of an open file. 2071 */ 2072 void locks_remove_flock(struct file *filp) 2073 { 2074 struct inode * inode = filp->f_path.dentry->d_inode; 2075 struct file_lock *fl; 2076 struct file_lock **before; 2077 2078 if (!inode->i_flock) 2079 return; 2080 2081 if (filp->f_op && filp->f_op->flock) { 2082 struct file_lock fl = { 2083 .fl_pid = current->tgid, 2084 .fl_file = filp, 2085 .fl_flags = FL_FLOCK, 2086 .fl_type = F_UNLCK, 2087 .fl_end = OFFSET_MAX, 2088 }; 2089 filp->f_op->flock(filp, F_SETLKW, &fl); 2090 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2091 fl.fl_ops->fl_release_private(&fl); 2092 } 2093 2094 lock_flocks(); 2095 before = &inode->i_flock; 2096 2097 while ((fl = *before) != NULL) { 2098 if (fl->fl_file == filp) { 2099 if (IS_FLOCK(fl)) { 2100 locks_delete_lock(before); 2101 continue; 2102 } 2103 if (IS_LEASE(fl)) { 2104 lease_modify(before, F_UNLCK); 2105 continue; 2106 } 2107 /* What? */ 2108 BUG(); 2109 } 2110 before = &fl->fl_next; 2111 } 2112 unlock_flocks(); 2113 } 2114 2115 /** 2116 * posix_unblock_lock - stop waiting for a file lock 2117 * @filp: how the file was opened 2118 * @waiter: the lock which was waiting 2119 * 2120 * lockd needs to block waiting for locks. 2121 */ 2122 int 2123 posix_unblock_lock(struct file *filp, struct file_lock *waiter) 2124 { 2125 int status = 0; 2126 2127 lock_flocks(); 2128 if (waiter->fl_next) 2129 __locks_delete_block(waiter); 2130 else 2131 status = -ENOENT; 2132 unlock_flocks(); 2133 return status; 2134 } 2135 2136 EXPORT_SYMBOL(posix_unblock_lock); 2137 2138 /** 2139 * vfs_cancel_lock - file byte range unblock lock 2140 * @filp: The file to apply the unblock to 2141 * @fl: The lock to be unblocked 2142 * 2143 * Used by lock managers to cancel blocked requests 2144 */ 2145 int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2146 { 2147 if (filp->f_op && filp->f_op->lock) 2148 return filp->f_op->lock(filp, F_CANCELLK, fl); 2149 return 0; 2150 } 2151 2152 EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2153 2154 #ifdef CONFIG_PROC_FS 2155 #include <linux/proc_fs.h> 2156 #include <linux/seq_file.h> 2157 2158 static void lock_get_status(struct seq_file *f, struct file_lock *fl, 2159 loff_t id, char *pfx) 2160 { 2161 struct inode *inode = NULL; 2162 unsigned int fl_pid; 2163 2164 if (fl->fl_nspid) 2165 fl_pid = pid_vnr(fl->fl_nspid); 2166 else 2167 fl_pid = fl->fl_pid; 2168 2169 if (fl->fl_file != NULL) 2170 inode = fl->fl_file->f_path.dentry->d_inode; 2171 2172 seq_printf(f, "%lld:%s ", id, pfx); 2173 if (IS_POSIX(fl)) { 2174 seq_printf(f, "%6s %s ", 2175 (fl->fl_flags & FL_ACCESS) ? "ACCESS" : "POSIX ", 2176 (inode == NULL) ? "*NOINODE*" : 2177 mandatory_lock(inode) ? "MANDATORY" : "ADVISORY "); 2178 } else if (IS_FLOCK(fl)) { 2179 if (fl->fl_type & LOCK_MAND) { 2180 seq_printf(f, "FLOCK MSNFS "); 2181 } else { 2182 seq_printf(f, "FLOCK ADVISORY "); 2183 } 2184 } else if (IS_LEASE(fl)) { 2185 seq_printf(f, "LEASE "); 2186 if (lease_breaking(fl)) 2187 seq_printf(f, "BREAKING "); 2188 else if (fl->fl_file) 2189 seq_printf(f, "ACTIVE "); 2190 else 2191 seq_printf(f, "BREAKER "); 2192 } else { 2193 seq_printf(f, "UNKNOWN UNKNOWN "); 2194 } 2195 if (fl->fl_type & LOCK_MAND) { 2196 seq_printf(f, "%s ", 2197 (fl->fl_type & LOCK_READ) 2198 ? (fl->fl_type & LOCK_WRITE) ? "RW " : "READ " 2199 : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE "); 2200 } else { 2201 seq_printf(f, "%s ", 2202 (lease_breaking(fl)) 2203 ? (fl->fl_type & F_UNLCK) ? "UNLCK" : "READ " 2204 : (fl->fl_type & F_WRLCK) ? "WRITE" : "READ "); 2205 } 2206 if (inode) { 2207 #ifdef WE_CAN_BREAK_LSLK_NOW 2208 seq_printf(f, "%d %s:%ld ", fl_pid, 2209 inode->i_sb->s_id, inode->i_ino); 2210 #else 2211 /* userspace relies on this representation of dev_t ;-( */ 2212 seq_printf(f, "%d %02x:%02x:%ld ", fl_pid, 2213 MAJOR(inode->i_sb->s_dev), 2214 MINOR(inode->i_sb->s_dev), inode->i_ino); 2215 #endif 2216 } else { 2217 seq_printf(f, "%d <none>:0 ", fl_pid); 2218 } 2219 if (IS_POSIX(fl)) { 2220 if (fl->fl_end == OFFSET_MAX) 2221 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2222 else 2223 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2224 } else { 2225 seq_printf(f, "0 EOF\n"); 2226 } 2227 } 2228 2229 static int locks_show(struct seq_file *f, void *v) 2230 { 2231 struct file_lock *fl, *bfl; 2232 2233 fl = list_entry(v, struct file_lock, fl_link); 2234 2235 lock_get_status(f, fl, *((loff_t *)f->private), ""); 2236 2237 list_for_each_entry(bfl, &fl->fl_block, fl_block) 2238 lock_get_status(f, bfl, *((loff_t *)f->private), " ->"); 2239 2240 return 0; 2241 } 2242 2243 static void *locks_start(struct seq_file *f, loff_t *pos) 2244 { 2245 loff_t *p = f->private; 2246 2247 lock_flocks(); 2248 *p = (*pos + 1); 2249 return seq_list_start(&file_lock_list, *pos); 2250 } 2251 2252 static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 2253 { 2254 loff_t *p = f->private; 2255 ++*p; 2256 return seq_list_next(v, &file_lock_list, pos); 2257 } 2258 2259 static void locks_stop(struct seq_file *f, void *v) 2260 { 2261 unlock_flocks(); 2262 } 2263 2264 static const struct seq_operations locks_seq_operations = { 2265 .start = locks_start, 2266 .next = locks_next, 2267 .stop = locks_stop, 2268 .show = locks_show, 2269 }; 2270 2271 static int locks_open(struct inode *inode, struct file *filp) 2272 { 2273 return seq_open_private(filp, &locks_seq_operations, sizeof(loff_t)); 2274 } 2275 2276 static const struct file_operations proc_locks_operations = { 2277 .open = locks_open, 2278 .read = seq_read, 2279 .llseek = seq_lseek, 2280 .release = seq_release_private, 2281 }; 2282 2283 static int __init proc_locks_init(void) 2284 { 2285 proc_create("locks", 0, NULL, &proc_locks_operations); 2286 return 0; 2287 } 2288 module_init(proc_locks_init); 2289 #endif 2290 2291 /** 2292 * lock_may_read - checks that the region is free of locks 2293 * @inode: the inode that is being read 2294 * @start: the first byte to read 2295 * @len: the number of bytes to read 2296 * 2297 * Emulates Windows locking requirements. Whole-file 2298 * mandatory locks (share modes) can prohibit a read and 2299 * byte-range POSIX locks can prohibit a read if they overlap. 2300 * 2301 * N.B. this function is only ever called 2302 * from knfsd and ownership of locks is never checked. 2303 */ 2304 int lock_may_read(struct inode *inode, loff_t start, unsigned long len) 2305 { 2306 struct file_lock *fl; 2307 int result = 1; 2308 lock_flocks(); 2309 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 2310 if (IS_POSIX(fl)) { 2311 if (fl->fl_type == F_RDLCK) 2312 continue; 2313 if ((fl->fl_end < start) || (fl->fl_start > (start + len))) 2314 continue; 2315 } else if (IS_FLOCK(fl)) { 2316 if (!(fl->fl_type & LOCK_MAND)) 2317 continue; 2318 if (fl->fl_type & LOCK_READ) 2319 continue; 2320 } else 2321 continue; 2322 result = 0; 2323 break; 2324 } 2325 unlock_flocks(); 2326 return result; 2327 } 2328 2329 EXPORT_SYMBOL(lock_may_read); 2330 2331 /** 2332 * lock_may_write - checks that the region is free of locks 2333 * @inode: the inode that is being written 2334 * @start: the first byte to write 2335 * @len: the number of bytes to write 2336 * 2337 * Emulates Windows locking requirements. Whole-file 2338 * mandatory locks (share modes) can prohibit a write and 2339 * byte-range POSIX locks can prohibit a write if they overlap. 2340 * 2341 * N.B. this function is only ever called 2342 * from knfsd and ownership of locks is never checked. 2343 */ 2344 int lock_may_write(struct inode *inode, loff_t start, unsigned long len) 2345 { 2346 struct file_lock *fl; 2347 int result = 1; 2348 lock_flocks(); 2349 for (fl = inode->i_flock; fl != NULL; fl = fl->fl_next) { 2350 if (IS_POSIX(fl)) { 2351 if ((fl->fl_end < start) || (fl->fl_start > (start + len))) 2352 continue; 2353 } else if (IS_FLOCK(fl)) { 2354 if (!(fl->fl_type & LOCK_MAND)) 2355 continue; 2356 if (fl->fl_type & LOCK_WRITE) 2357 continue; 2358 } else 2359 continue; 2360 result = 0; 2361 break; 2362 } 2363 unlock_flocks(); 2364 return result; 2365 } 2366 2367 EXPORT_SYMBOL(lock_may_write); 2368 2369 static int __init filelock_init(void) 2370 { 2371 filelock_cache = kmem_cache_create("file_lock_cache", 2372 sizeof(struct file_lock), 0, SLAB_PANIC, NULL); 2373 2374 return 0; 2375 } 2376 2377 core_initcall(filelock_init); 2378