xref: /openbmc/linux/fs/locks.c (revision 40867d74c374b235e14d839f3a77f26684feefe5)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/fs/locks.c
4   *
5   * We implement four types of file locks: BSD locks, posix locks, open
6   * file description locks, and leases.  For details about BSD locks,
7   * see the flock(2) man page; for details about the other three, see
8   * fcntl(2).
9   *
10   *
11   * Locking conflicts and dependencies:
12   * If multiple threads attempt to lock the same byte (or flock the same file)
13   * only one can be granted the lock, and other must wait their turn.
14   * The first lock has been "applied" or "granted", the others are "waiting"
15   * and are "blocked" by the "applied" lock..
16   *
17   * Waiting and applied locks are all kept in trees whose properties are:
18   *
19   *	- the root of a tree may be an applied or waiting lock.
20   *	- every other node in the tree is a waiting lock that
21   *	  conflicts with every ancestor of that node.
22   *
23   * Every such tree begins life as a waiting singleton which obviously
24   * satisfies the above properties.
25   *
26   * The only ways we modify trees preserve these properties:
27   *
28   *	1. We may add a new leaf node, but only after first verifying that it
29   *	   conflicts with all of its ancestors.
30   *	2. We may remove the root of a tree, creating a new singleton
31   *	   tree from the root and N new trees rooted in the immediate
32   *	   children.
33   *	3. If the root of a tree is not currently an applied lock, we may
34   *	   apply it (if possible).
35   *	4. We may upgrade the root of the tree (either extend its range,
36   *	   or upgrade its entire range from read to write).
37   *
38   * When an applied lock is modified in a way that reduces or downgrades any
39   * part of its range, we remove all its children (2 above).  This particularly
40   * happens when a lock is unlocked.
41   *
42   * For each of those child trees we "wake up" the thread which is
43   * waiting for the lock so it can continue handling as follows: if the
44   * root of the tree applies, we do so (3).  If it doesn't, it must
45   * conflict with some applied lock.  We remove (wake up) all of its children
46   * (2), and add it is a new leaf to the tree rooted in the applied
47   * lock (1).  We then repeat the process recursively with those
48   * children.
49   *
50   */
51  
52  #include <linux/capability.h>
53  #include <linux/file.h>
54  #include <linux/fdtable.h>
55  #include <linux/fs.h>
56  #include <linux/init.h>
57  #include <linux/security.h>
58  #include <linux/slab.h>
59  #include <linux/syscalls.h>
60  #include <linux/time.h>
61  #include <linux/rcupdate.h>
62  #include <linux/pid_namespace.h>
63  #include <linux/hashtable.h>
64  #include <linux/percpu.h>
65  #include <linux/sysctl.h>
66  
67  #define CREATE_TRACE_POINTS
68  #include <trace/events/filelock.h>
69  
70  #include <linux/uaccess.h>
71  
72  #define IS_POSIX(fl)	(fl->fl_flags & FL_POSIX)
73  #define IS_FLOCK(fl)	(fl->fl_flags & FL_FLOCK)
74  #define IS_LEASE(fl)	(fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
75  #define IS_OFDLCK(fl)	(fl->fl_flags & FL_OFDLCK)
76  #define IS_REMOTELCK(fl)	(fl->fl_pid <= 0)
77  
78  static bool lease_breaking(struct file_lock *fl)
79  {
80  	return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
81  }
82  
83  static int target_leasetype(struct file_lock *fl)
84  {
85  	if (fl->fl_flags & FL_UNLOCK_PENDING)
86  		return F_UNLCK;
87  	if (fl->fl_flags & FL_DOWNGRADE_PENDING)
88  		return F_RDLCK;
89  	return fl->fl_type;
90  }
91  
92  static int leases_enable = 1;
93  static int lease_break_time = 45;
94  
95  #ifdef CONFIG_SYSCTL
96  static struct ctl_table locks_sysctls[] = {
97  	{
98  		.procname	= "leases-enable",
99  		.data		= &leases_enable,
100  		.maxlen		= sizeof(int),
101  		.mode		= 0644,
102  		.proc_handler	= proc_dointvec,
103  	},
104  #ifdef CONFIG_MMU
105  	{
106  		.procname	= "lease-break-time",
107  		.data		= &lease_break_time,
108  		.maxlen		= sizeof(int),
109  		.mode		= 0644,
110  		.proc_handler	= proc_dointvec,
111  	},
112  #endif /* CONFIG_MMU */
113  	{}
114  };
115  
116  static int __init init_fs_locks_sysctls(void)
117  {
118  	register_sysctl_init("fs", locks_sysctls);
119  	return 0;
120  }
121  early_initcall(init_fs_locks_sysctls);
122  #endif /* CONFIG_SYSCTL */
123  
124  /*
125   * The global file_lock_list is only used for displaying /proc/locks, so we
126   * keep a list on each CPU, with each list protected by its own spinlock.
127   * Global serialization is done using file_rwsem.
128   *
129   * Note that alterations to the list also require that the relevant flc_lock is
130   * held.
131   */
132  struct file_lock_list_struct {
133  	spinlock_t		lock;
134  	struct hlist_head	hlist;
135  };
136  static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
137  DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
138  
139  
140  /*
141   * The blocked_hash is used to find POSIX lock loops for deadlock detection.
142   * It is protected by blocked_lock_lock.
143   *
144   * We hash locks by lockowner in order to optimize searching for the lock a
145   * particular lockowner is waiting on.
146   *
147   * FIXME: make this value scale via some heuristic? We generally will want more
148   * buckets when we have more lockowners holding locks, but that's a little
149   * difficult to determine without knowing what the workload will look like.
150   */
151  #define BLOCKED_HASH_BITS	7
152  static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
153  
154  /*
155   * This lock protects the blocked_hash. Generally, if you're accessing it, you
156   * want to be holding this lock.
157   *
158   * In addition, it also protects the fl->fl_blocked_requests list, and the
159   * fl->fl_blocker pointer for file_lock structures that are acting as lock
160   * requests (in contrast to those that are acting as records of acquired locks).
161   *
162   * Note that when we acquire this lock in order to change the above fields,
163   * we often hold the flc_lock as well. In certain cases, when reading the fields
164   * protected by this lock, we can skip acquiring it iff we already hold the
165   * flc_lock.
166   */
167  static DEFINE_SPINLOCK(blocked_lock_lock);
168  
169  static struct kmem_cache *flctx_cache __read_mostly;
170  static struct kmem_cache *filelock_cache __read_mostly;
171  
172  static struct file_lock_context *
173  locks_get_lock_context(struct inode *inode, int type)
174  {
175  	struct file_lock_context *ctx;
176  
177  	/* paired with cmpxchg() below */
178  	ctx = smp_load_acquire(&inode->i_flctx);
179  	if (likely(ctx) || type == F_UNLCK)
180  		goto out;
181  
182  	ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
183  	if (!ctx)
184  		goto out;
185  
186  	spin_lock_init(&ctx->flc_lock);
187  	INIT_LIST_HEAD(&ctx->flc_flock);
188  	INIT_LIST_HEAD(&ctx->flc_posix);
189  	INIT_LIST_HEAD(&ctx->flc_lease);
190  
191  	/*
192  	 * Assign the pointer if it's not already assigned. If it is, then
193  	 * free the context we just allocated.
194  	 */
195  	if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
196  		kmem_cache_free(flctx_cache, ctx);
197  		ctx = smp_load_acquire(&inode->i_flctx);
198  	}
199  out:
200  	trace_locks_get_lock_context(inode, type, ctx);
201  	return ctx;
202  }
203  
204  static void
205  locks_dump_ctx_list(struct list_head *list, char *list_type)
206  {
207  	struct file_lock *fl;
208  
209  	list_for_each_entry(fl, list, fl_list) {
210  		pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
211  	}
212  }
213  
214  static void
215  locks_check_ctx_lists(struct inode *inode)
216  {
217  	struct file_lock_context *ctx = inode->i_flctx;
218  
219  	if (unlikely(!list_empty(&ctx->flc_flock) ||
220  		     !list_empty(&ctx->flc_posix) ||
221  		     !list_empty(&ctx->flc_lease))) {
222  		pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
223  			MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
224  			inode->i_ino);
225  		locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
226  		locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
227  		locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
228  	}
229  }
230  
231  static void
232  locks_check_ctx_file_list(struct file *filp, struct list_head *list,
233  				char *list_type)
234  {
235  	struct file_lock *fl;
236  	struct inode *inode = locks_inode(filp);
237  
238  	list_for_each_entry(fl, list, fl_list)
239  		if (fl->fl_file == filp)
240  			pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
241  				" fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
242  				list_type, MAJOR(inode->i_sb->s_dev),
243  				MINOR(inode->i_sb->s_dev), inode->i_ino,
244  				fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
245  }
246  
247  void
248  locks_free_lock_context(struct inode *inode)
249  {
250  	struct file_lock_context *ctx = inode->i_flctx;
251  
252  	if (unlikely(ctx)) {
253  		locks_check_ctx_lists(inode);
254  		kmem_cache_free(flctx_cache, ctx);
255  	}
256  }
257  
258  static void locks_init_lock_heads(struct file_lock *fl)
259  {
260  	INIT_HLIST_NODE(&fl->fl_link);
261  	INIT_LIST_HEAD(&fl->fl_list);
262  	INIT_LIST_HEAD(&fl->fl_blocked_requests);
263  	INIT_LIST_HEAD(&fl->fl_blocked_member);
264  	init_waitqueue_head(&fl->fl_wait);
265  }
266  
267  /* Allocate an empty lock structure. */
268  struct file_lock *locks_alloc_lock(void)
269  {
270  	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
271  
272  	if (fl)
273  		locks_init_lock_heads(fl);
274  
275  	return fl;
276  }
277  EXPORT_SYMBOL_GPL(locks_alloc_lock);
278  
279  void locks_release_private(struct file_lock *fl)
280  {
281  	BUG_ON(waitqueue_active(&fl->fl_wait));
282  	BUG_ON(!list_empty(&fl->fl_list));
283  	BUG_ON(!list_empty(&fl->fl_blocked_requests));
284  	BUG_ON(!list_empty(&fl->fl_blocked_member));
285  	BUG_ON(!hlist_unhashed(&fl->fl_link));
286  
287  	if (fl->fl_ops) {
288  		if (fl->fl_ops->fl_release_private)
289  			fl->fl_ops->fl_release_private(fl);
290  		fl->fl_ops = NULL;
291  	}
292  
293  	if (fl->fl_lmops) {
294  		if (fl->fl_lmops->lm_put_owner) {
295  			fl->fl_lmops->lm_put_owner(fl->fl_owner);
296  			fl->fl_owner = NULL;
297  		}
298  		fl->fl_lmops = NULL;
299  	}
300  }
301  EXPORT_SYMBOL_GPL(locks_release_private);
302  
303  /* Free a lock which is not in use. */
304  void locks_free_lock(struct file_lock *fl)
305  {
306  	locks_release_private(fl);
307  	kmem_cache_free(filelock_cache, fl);
308  }
309  EXPORT_SYMBOL(locks_free_lock);
310  
311  static void
312  locks_dispose_list(struct list_head *dispose)
313  {
314  	struct file_lock *fl;
315  
316  	while (!list_empty(dispose)) {
317  		fl = list_first_entry(dispose, struct file_lock, fl_list);
318  		list_del_init(&fl->fl_list);
319  		locks_free_lock(fl);
320  	}
321  }
322  
323  void locks_init_lock(struct file_lock *fl)
324  {
325  	memset(fl, 0, sizeof(struct file_lock));
326  	locks_init_lock_heads(fl);
327  }
328  EXPORT_SYMBOL(locks_init_lock);
329  
330  /*
331   * Initialize a new lock from an existing file_lock structure.
332   */
333  void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
334  {
335  	new->fl_owner = fl->fl_owner;
336  	new->fl_pid = fl->fl_pid;
337  	new->fl_file = NULL;
338  	new->fl_flags = fl->fl_flags;
339  	new->fl_type = fl->fl_type;
340  	new->fl_start = fl->fl_start;
341  	new->fl_end = fl->fl_end;
342  	new->fl_lmops = fl->fl_lmops;
343  	new->fl_ops = NULL;
344  
345  	if (fl->fl_lmops) {
346  		if (fl->fl_lmops->lm_get_owner)
347  			fl->fl_lmops->lm_get_owner(fl->fl_owner);
348  	}
349  }
350  EXPORT_SYMBOL(locks_copy_conflock);
351  
352  void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
353  {
354  	/* "new" must be a freshly-initialized lock */
355  	WARN_ON_ONCE(new->fl_ops);
356  
357  	locks_copy_conflock(new, fl);
358  
359  	new->fl_file = fl->fl_file;
360  	new->fl_ops = fl->fl_ops;
361  
362  	if (fl->fl_ops) {
363  		if (fl->fl_ops->fl_copy_lock)
364  			fl->fl_ops->fl_copy_lock(new, fl);
365  	}
366  }
367  EXPORT_SYMBOL(locks_copy_lock);
368  
369  static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
370  {
371  	struct file_lock *f;
372  
373  	/*
374  	 * As ctx->flc_lock is held, new requests cannot be added to
375  	 * ->fl_blocked_requests, so we don't need a lock to check if it
376  	 * is empty.
377  	 */
378  	if (list_empty(&fl->fl_blocked_requests))
379  		return;
380  	spin_lock(&blocked_lock_lock);
381  	list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests);
382  	list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member)
383  		f->fl_blocker = new;
384  	spin_unlock(&blocked_lock_lock);
385  }
386  
387  static inline int flock_translate_cmd(int cmd) {
388  	switch (cmd) {
389  	case LOCK_SH:
390  		return F_RDLCK;
391  	case LOCK_EX:
392  		return F_WRLCK;
393  	case LOCK_UN:
394  		return F_UNLCK;
395  	}
396  	return -EINVAL;
397  }
398  
399  /* Fill in a file_lock structure with an appropriate FLOCK lock. */
400  static struct file_lock *
401  flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl)
402  {
403  	int type = flock_translate_cmd(cmd);
404  
405  	if (type < 0)
406  		return ERR_PTR(type);
407  
408  	if (fl == NULL) {
409  		fl = locks_alloc_lock();
410  		if (fl == NULL)
411  			return ERR_PTR(-ENOMEM);
412  	} else {
413  		locks_init_lock(fl);
414  	}
415  
416  	fl->fl_file = filp;
417  	fl->fl_owner = filp;
418  	fl->fl_pid = current->tgid;
419  	fl->fl_flags = FL_FLOCK;
420  	fl->fl_type = type;
421  	fl->fl_end = OFFSET_MAX;
422  
423  	return fl;
424  }
425  
426  static int assign_type(struct file_lock *fl, long type)
427  {
428  	switch (type) {
429  	case F_RDLCK:
430  	case F_WRLCK:
431  	case F_UNLCK:
432  		fl->fl_type = type;
433  		break;
434  	default:
435  		return -EINVAL;
436  	}
437  	return 0;
438  }
439  
440  static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
441  				 struct flock64 *l)
442  {
443  	switch (l->l_whence) {
444  	case SEEK_SET:
445  		fl->fl_start = 0;
446  		break;
447  	case SEEK_CUR:
448  		fl->fl_start = filp->f_pos;
449  		break;
450  	case SEEK_END:
451  		fl->fl_start = i_size_read(file_inode(filp));
452  		break;
453  	default:
454  		return -EINVAL;
455  	}
456  	if (l->l_start > OFFSET_MAX - fl->fl_start)
457  		return -EOVERFLOW;
458  	fl->fl_start += l->l_start;
459  	if (fl->fl_start < 0)
460  		return -EINVAL;
461  
462  	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
463  	   POSIX-2001 defines it. */
464  	if (l->l_len > 0) {
465  		if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
466  			return -EOVERFLOW;
467  		fl->fl_end = fl->fl_start + (l->l_len - 1);
468  
469  	} else if (l->l_len < 0) {
470  		if (fl->fl_start + l->l_len < 0)
471  			return -EINVAL;
472  		fl->fl_end = fl->fl_start - 1;
473  		fl->fl_start += l->l_len;
474  	} else
475  		fl->fl_end = OFFSET_MAX;
476  
477  	fl->fl_owner = current->files;
478  	fl->fl_pid = current->tgid;
479  	fl->fl_file = filp;
480  	fl->fl_flags = FL_POSIX;
481  	fl->fl_ops = NULL;
482  	fl->fl_lmops = NULL;
483  
484  	return assign_type(fl, l->l_type);
485  }
486  
487  /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
488   * style lock.
489   */
490  static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
491  			       struct flock *l)
492  {
493  	struct flock64 ll = {
494  		.l_type = l->l_type,
495  		.l_whence = l->l_whence,
496  		.l_start = l->l_start,
497  		.l_len = l->l_len,
498  	};
499  
500  	return flock64_to_posix_lock(filp, fl, &ll);
501  }
502  
503  /* default lease lock manager operations */
504  static bool
505  lease_break_callback(struct file_lock *fl)
506  {
507  	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
508  	return false;
509  }
510  
511  static void
512  lease_setup(struct file_lock *fl, void **priv)
513  {
514  	struct file *filp = fl->fl_file;
515  	struct fasync_struct *fa = *priv;
516  
517  	/*
518  	 * fasync_insert_entry() returns the old entry if any. If there was no
519  	 * old entry, then it used "priv" and inserted it into the fasync list.
520  	 * Clear the pointer to indicate that it shouldn't be freed.
521  	 */
522  	if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
523  		*priv = NULL;
524  
525  	__f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
526  }
527  
528  static const struct lock_manager_operations lease_manager_ops = {
529  	.lm_break = lease_break_callback,
530  	.lm_change = lease_modify,
531  	.lm_setup = lease_setup,
532  };
533  
534  /*
535   * Initialize a lease, use the default lock manager operations
536   */
537  static int lease_init(struct file *filp, long type, struct file_lock *fl)
538  {
539  	if (assign_type(fl, type) != 0)
540  		return -EINVAL;
541  
542  	fl->fl_owner = filp;
543  	fl->fl_pid = current->tgid;
544  
545  	fl->fl_file = filp;
546  	fl->fl_flags = FL_LEASE;
547  	fl->fl_start = 0;
548  	fl->fl_end = OFFSET_MAX;
549  	fl->fl_ops = NULL;
550  	fl->fl_lmops = &lease_manager_ops;
551  	return 0;
552  }
553  
554  /* Allocate a file_lock initialised to this type of lease */
555  static struct file_lock *lease_alloc(struct file *filp, long type)
556  {
557  	struct file_lock *fl = locks_alloc_lock();
558  	int error = -ENOMEM;
559  
560  	if (fl == NULL)
561  		return ERR_PTR(error);
562  
563  	error = lease_init(filp, type, fl);
564  	if (error) {
565  		locks_free_lock(fl);
566  		return ERR_PTR(error);
567  	}
568  	return fl;
569  }
570  
571  /* Check if two locks overlap each other.
572   */
573  static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
574  {
575  	return ((fl1->fl_end >= fl2->fl_start) &&
576  		(fl2->fl_end >= fl1->fl_start));
577  }
578  
579  /*
580   * Check whether two locks have the same owner.
581   */
582  static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
583  {
584  	return fl1->fl_owner == fl2->fl_owner;
585  }
586  
587  /* Must be called with the flc_lock held! */
588  static void locks_insert_global_locks(struct file_lock *fl)
589  {
590  	struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
591  
592  	percpu_rwsem_assert_held(&file_rwsem);
593  
594  	spin_lock(&fll->lock);
595  	fl->fl_link_cpu = smp_processor_id();
596  	hlist_add_head(&fl->fl_link, &fll->hlist);
597  	spin_unlock(&fll->lock);
598  }
599  
600  /* Must be called with the flc_lock held! */
601  static void locks_delete_global_locks(struct file_lock *fl)
602  {
603  	struct file_lock_list_struct *fll;
604  
605  	percpu_rwsem_assert_held(&file_rwsem);
606  
607  	/*
608  	 * Avoid taking lock if already unhashed. This is safe since this check
609  	 * is done while holding the flc_lock, and new insertions into the list
610  	 * also require that it be held.
611  	 */
612  	if (hlist_unhashed(&fl->fl_link))
613  		return;
614  
615  	fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu);
616  	spin_lock(&fll->lock);
617  	hlist_del_init(&fl->fl_link);
618  	spin_unlock(&fll->lock);
619  }
620  
621  static unsigned long
622  posix_owner_key(struct file_lock *fl)
623  {
624  	return (unsigned long)fl->fl_owner;
625  }
626  
627  static void locks_insert_global_blocked(struct file_lock *waiter)
628  {
629  	lockdep_assert_held(&blocked_lock_lock);
630  
631  	hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter));
632  }
633  
634  static void locks_delete_global_blocked(struct file_lock *waiter)
635  {
636  	lockdep_assert_held(&blocked_lock_lock);
637  
638  	hash_del(&waiter->fl_link);
639  }
640  
641  /* Remove waiter from blocker's block list.
642   * When blocker ends up pointing to itself then the list is empty.
643   *
644   * Must be called with blocked_lock_lock held.
645   */
646  static void __locks_delete_block(struct file_lock *waiter)
647  {
648  	locks_delete_global_blocked(waiter);
649  	list_del_init(&waiter->fl_blocked_member);
650  }
651  
652  static void __locks_wake_up_blocks(struct file_lock *blocker)
653  {
654  	while (!list_empty(&blocker->fl_blocked_requests)) {
655  		struct file_lock *waiter;
656  
657  		waiter = list_first_entry(&blocker->fl_blocked_requests,
658  					  struct file_lock, fl_blocked_member);
659  		__locks_delete_block(waiter);
660  		if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
661  			waiter->fl_lmops->lm_notify(waiter);
662  		else
663  			wake_up(&waiter->fl_wait);
664  
665  		/*
666  		 * The setting of fl_blocker to NULL marks the "done"
667  		 * point in deleting a block. Paired with acquire at the top
668  		 * of locks_delete_block().
669  		 */
670  		smp_store_release(&waiter->fl_blocker, NULL);
671  	}
672  }
673  
674  /**
675   *	locks_delete_block - stop waiting for a file lock
676   *	@waiter: the lock which was waiting
677   *
678   *	lockd/nfsd need to disconnect the lock while working on it.
679   */
680  int locks_delete_block(struct file_lock *waiter)
681  {
682  	int status = -ENOENT;
683  
684  	/*
685  	 * If fl_blocker is NULL, it won't be set again as this thread "owns"
686  	 * the lock and is the only one that might try to claim the lock.
687  	 *
688  	 * We use acquire/release to manage fl_blocker so that we can
689  	 * optimize away taking the blocked_lock_lock in many cases.
690  	 *
691  	 * The smp_load_acquire guarantees two things:
692  	 *
693  	 * 1/ that fl_blocked_requests can be tested locklessly. If something
694  	 * was recently added to that list it must have been in a locked region
695  	 * *before* the locked region when fl_blocker was set to NULL.
696  	 *
697  	 * 2/ that no other thread is accessing 'waiter', so it is safe to free
698  	 * it.  __locks_wake_up_blocks is careful not to touch waiter after
699  	 * fl_blocker is released.
700  	 *
701  	 * If a lockless check of fl_blocker shows it to be NULL, we know that
702  	 * no new locks can be inserted into its fl_blocked_requests list, and
703  	 * can avoid doing anything further if the list is empty.
704  	 */
705  	if (!smp_load_acquire(&waiter->fl_blocker) &&
706  	    list_empty(&waiter->fl_blocked_requests))
707  		return status;
708  
709  	spin_lock(&blocked_lock_lock);
710  	if (waiter->fl_blocker)
711  		status = 0;
712  	__locks_wake_up_blocks(waiter);
713  	__locks_delete_block(waiter);
714  
715  	/*
716  	 * The setting of fl_blocker to NULL marks the "done" point in deleting
717  	 * a block. Paired with acquire at the top of this function.
718  	 */
719  	smp_store_release(&waiter->fl_blocker, NULL);
720  	spin_unlock(&blocked_lock_lock);
721  	return status;
722  }
723  EXPORT_SYMBOL(locks_delete_block);
724  
725  /* Insert waiter into blocker's block list.
726   * We use a circular list so that processes can be easily woken up in
727   * the order they blocked. The documentation doesn't require this but
728   * it seems like the reasonable thing to do.
729   *
730   * Must be called with both the flc_lock and blocked_lock_lock held. The
731   * fl_blocked_requests list itself is protected by the blocked_lock_lock,
732   * but by ensuring that the flc_lock is also held on insertions we can avoid
733   * taking the blocked_lock_lock in some cases when we see that the
734   * fl_blocked_requests list is empty.
735   *
736   * Rather than just adding to the list, we check for conflicts with any existing
737   * waiters, and add beneath any waiter that blocks the new waiter.
738   * Thus wakeups don't happen until needed.
739   */
740  static void __locks_insert_block(struct file_lock *blocker,
741  				 struct file_lock *waiter,
742  				 bool conflict(struct file_lock *,
743  					       struct file_lock *))
744  {
745  	struct file_lock *fl;
746  	BUG_ON(!list_empty(&waiter->fl_blocked_member));
747  
748  new_blocker:
749  	list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member)
750  		if (conflict(fl, waiter)) {
751  			blocker =  fl;
752  			goto new_blocker;
753  		}
754  	waiter->fl_blocker = blocker;
755  	list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests);
756  	if (IS_POSIX(blocker) && !IS_OFDLCK(blocker))
757  		locks_insert_global_blocked(waiter);
758  
759  	/* The requests in waiter->fl_blocked are known to conflict with
760  	 * waiter, but might not conflict with blocker, or the requests
761  	 * and lock which block it.  So they all need to be woken.
762  	 */
763  	__locks_wake_up_blocks(waiter);
764  }
765  
766  /* Must be called with flc_lock held. */
767  static void locks_insert_block(struct file_lock *blocker,
768  			       struct file_lock *waiter,
769  			       bool conflict(struct file_lock *,
770  					     struct file_lock *))
771  {
772  	spin_lock(&blocked_lock_lock);
773  	__locks_insert_block(blocker, waiter, conflict);
774  	spin_unlock(&blocked_lock_lock);
775  }
776  
777  /*
778   * Wake up processes blocked waiting for blocker.
779   *
780   * Must be called with the inode->flc_lock held!
781   */
782  static void locks_wake_up_blocks(struct file_lock *blocker)
783  {
784  	/*
785  	 * Avoid taking global lock if list is empty. This is safe since new
786  	 * blocked requests are only added to the list under the flc_lock, and
787  	 * the flc_lock is always held here. Note that removal from the
788  	 * fl_blocked_requests list does not require the flc_lock, so we must
789  	 * recheck list_empty() after acquiring the blocked_lock_lock.
790  	 */
791  	if (list_empty(&blocker->fl_blocked_requests))
792  		return;
793  
794  	spin_lock(&blocked_lock_lock);
795  	__locks_wake_up_blocks(blocker);
796  	spin_unlock(&blocked_lock_lock);
797  }
798  
799  static void
800  locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before)
801  {
802  	list_add_tail(&fl->fl_list, before);
803  	locks_insert_global_locks(fl);
804  }
805  
806  static void
807  locks_unlink_lock_ctx(struct file_lock *fl)
808  {
809  	locks_delete_global_locks(fl);
810  	list_del_init(&fl->fl_list);
811  	locks_wake_up_blocks(fl);
812  }
813  
814  static void
815  locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose)
816  {
817  	locks_unlink_lock_ctx(fl);
818  	if (dispose)
819  		list_add(&fl->fl_list, dispose);
820  	else
821  		locks_free_lock(fl);
822  }
823  
824  /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
825   * checks for shared/exclusive status of overlapping locks.
826   */
827  static bool locks_conflict(struct file_lock *caller_fl,
828  			   struct file_lock *sys_fl)
829  {
830  	if (sys_fl->fl_type == F_WRLCK)
831  		return true;
832  	if (caller_fl->fl_type == F_WRLCK)
833  		return true;
834  	return false;
835  }
836  
837  /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
838   * checking before calling the locks_conflict().
839   */
840  static bool posix_locks_conflict(struct file_lock *caller_fl,
841  				 struct file_lock *sys_fl)
842  {
843  	/* POSIX locks owned by the same process do not conflict with
844  	 * each other.
845  	 */
846  	if (posix_same_owner(caller_fl, sys_fl))
847  		return false;
848  
849  	/* Check whether they overlap */
850  	if (!locks_overlap(caller_fl, sys_fl))
851  		return false;
852  
853  	return locks_conflict(caller_fl, sys_fl);
854  }
855  
856  /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
857   * checking before calling the locks_conflict().
858   */
859  static bool flock_locks_conflict(struct file_lock *caller_fl,
860  				 struct file_lock *sys_fl)
861  {
862  	/* FLOCK locks referring to the same filp do not conflict with
863  	 * each other.
864  	 */
865  	if (caller_fl->fl_file == sys_fl->fl_file)
866  		return false;
867  
868  	return locks_conflict(caller_fl, sys_fl);
869  }
870  
871  void
872  posix_test_lock(struct file *filp, struct file_lock *fl)
873  {
874  	struct file_lock *cfl;
875  	struct file_lock_context *ctx;
876  	struct inode *inode = locks_inode(filp);
877  
878  	ctx = smp_load_acquire(&inode->i_flctx);
879  	if (!ctx || list_empty_careful(&ctx->flc_posix)) {
880  		fl->fl_type = F_UNLCK;
881  		return;
882  	}
883  
884  	spin_lock(&ctx->flc_lock);
885  	list_for_each_entry(cfl, &ctx->flc_posix, fl_list) {
886  		if (posix_locks_conflict(fl, cfl)) {
887  			locks_copy_conflock(fl, cfl);
888  			goto out;
889  		}
890  	}
891  	fl->fl_type = F_UNLCK;
892  out:
893  	spin_unlock(&ctx->flc_lock);
894  	return;
895  }
896  EXPORT_SYMBOL(posix_test_lock);
897  
898  /*
899   * Deadlock detection:
900   *
901   * We attempt to detect deadlocks that are due purely to posix file
902   * locks.
903   *
904   * We assume that a task can be waiting for at most one lock at a time.
905   * So for any acquired lock, the process holding that lock may be
906   * waiting on at most one other lock.  That lock in turns may be held by
907   * someone waiting for at most one other lock.  Given a requested lock
908   * caller_fl which is about to wait for a conflicting lock block_fl, we
909   * follow this chain of waiters to ensure we are not about to create a
910   * cycle.
911   *
912   * Since we do this before we ever put a process to sleep on a lock, we
913   * are ensured that there is never a cycle; that is what guarantees that
914   * the while() loop in posix_locks_deadlock() eventually completes.
915   *
916   * Note: the above assumption may not be true when handling lock
917   * requests from a broken NFS client. It may also fail in the presence
918   * of tasks (such as posix threads) sharing the same open file table.
919   * To handle those cases, we just bail out after a few iterations.
920   *
921   * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
922   * Because the owner is not even nominally tied to a thread of
923   * execution, the deadlock detection below can't reasonably work well. Just
924   * skip it for those.
925   *
926   * In principle, we could do a more limited deadlock detection on FL_OFDLCK
927   * locks that just checks for the case where two tasks are attempting to
928   * upgrade from read to write locks on the same inode.
929   */
930  
931  #define MAX_DEADLK_ITERATIONS 10
932  
933  /* Find a lock that the owner of the given block_fl is blocking on. */
934  static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
935  {
936  	struct file_lock *fl;
937  
938  	hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) {
939  		if (posix_same_owner(fl, block_fl)) {
940  			while (fl->fl_blocker)
941  				fl = fl->fl_blocker;
942  			return fl;
943  		}
944  	}
945  	return NULL;
946  }
947  
948  /* Must be called with the blocked_lock_lock held! */
949  static int posix_locks_deadlock(struct file_lock *caller_fl,
950  				struct file_lock *block_fl)
951  {
952  	int i = 0;
953  
954  	lockdep_assert_held(&blocked_lock_lock);
955  
956  	/*
957  	 * This deadlock detector can't reasonably detect deadlocks with
958  	 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
959  	 */
960  	if (IS_OFDLCK(caller_fl))
961  		return 0;
962  
963  	while ((block_fl = what_owner_is_waiting_for(block_fl))) {
964  		if (i++ > MAX_DEADLK_ITERATIONS)
965  			return 0;
966  		if (posix_same_owner(caller_fl, block_fl))
967  			return 1;
968  	}
969  	return 0;
970  }
971  
972  /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
973   * after any leases, but before any posix locks.
974   *
975   * Note that if called with an FL_EXISTS argument, the caller may determine
976   * whether or not a lock was successfully freed by testing the return
977   * value for -ENOENT.
978   */
979  static int flock_lock_inode(struct inode *inode, struct file_lock *request)
980  {
981  	struct file_lock *new_fl = NULL;
982  	struct file_lock *fl;
983  	struct file_lock_context *ctx;
984  	int error = 0;
985  	bool found = false;
986  	LIST_HEAD(dispose);
987  
988  	ctx = locks_get_lock_context(inode, request->fl_type);
989  	if (!ctx) {
990  		if (request->fl_type != F_UNLCK)
991  			return -ENOMEM;
992  		return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0;
993  	}
994  
995  	if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
996  		new_fl = locks_alloc_lock();
997  		if (!new_fl)
998  			return -ENOMEM;
999  	}
1000  
1001  	percpu_down_read(&file_rwsem);
1002  	spin_lock(&ctx->flc_lock);
1003  	if (request->fl_flags & FL_ACCESS)
1004  		goto find_conflict;
1005  
1006  	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1007  		if (request->fl_file != fl->fl_file)
1008  			continue;
1009  		if (request->fl_type == fl->fl_type)
1010  			goto out;
1011  		found = true;
1012  		locks_delete_lock_ctx(fl, &dispose);
1013  		break;
1014  	}
1015  
1016  	if (request->fl_type == F_UNLCK) {
1017  		if ((request->fl_flags & FL_EXISTS) && !found)
1018  			error = -ENOENT;
1019  		goto out;
1020  	}
1021  
1022  find_conflict:
1023  	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1024  		if (!flock_locks_conflict(request, fl))
1025  			continue;
1026  		error = -EAGAIN;
1027  		if (!(request->fl_flags & FL_SLEEP))
1028  			goto out;
1029  		error = FILE_LOCK_DEFERRED;
1030  		locks_insert_block(fl, request, flock_locks_conflict);
1031  		goto out;
1032  	}
1033  	if (request->fl_flags & FL_ACCESS)
1034  		goto out;
1035  	locks_copy_lock(new_fl, request);
1036  	locks_move_blocks(new_fl, request);
1037  	locks_insert_lock_ctx(new_fl, &ctx->flc_flock);
1038  	new_fl = NULL;
1039  	error = 0;
1040  
1041  out:
1042  	spin_unlock(&ctx->flc_lock);
1043  	percpu_up_read(&file_rwsem);
1044  	if (new_fl)
1045  		locks_free_lock(new_fl);
1046  	locks_dispose_list(&dispose);
1047  	trace_flock_lock_inode(inode, request, error);
1048  	return error;
1049  }
1050  
1051  static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1052  			    struct file_lock *conflock)
1053  {
1054  	struct file_lock *fl, *tmp;
1055  	struct file_lock *new_fl = NULL;
1056  	struct file_lock *new_fl2 = NULL;
1057  	struct file_lock *left = NULL;
1058  	struct file_lock *right = NULL;
1059  	struct file_lock_context *ctx;
1060  	int error;
1061  	bool added = false;
1062  	LIST_HEAD(dispose);
1063  
1064  	ctx = locks_get_lock_context(inode, request->fl_type);
1065  	if (!ctx)
1066  		return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM;
1067  
1068  	/*
1069  	 * We may need two file_lock structures for this operation,
1070  	 * so we get them in advance to avoid races.
1071  	 *
1072  	 * In some cases we can be sure, that no new locks will be needed
1073  	 */
1074  	if (!(request->fl_flags & FL_ACCESS) &&
1075  	    (request->fl_type != F_UNLCK ||
1076  	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1077  		new_fl = locks_alloc_lock();
1078  		new_fl2 = locks_alloc_lock();
1079  	}
1080  
1081  	percpu_down_read(&file_rwsem);
1082  	spin_lock(&ctx->flc_lock);
1083  	/*
1084  	 * New lock request. Walk all POSIX locks and look for conflicts. If
1085  	 * there are any, either return error or put the request on the
1086  	 * blocker's list of waiters and the global blocked_hash.
1087  	 */
1088  	if (request->fl_type != F_UNLCK) {
1089  		list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1090  			if (!posix_locks_conflict(request, fl))
1091  				continue;
1092  			if (conflock)
1093  				locks_copy_conflock(conflock, fl);
1094  			error = -EAGAIN;
1095  			if (!(request->fl_flags & FL_SLEEP))
1096  				goto out;
1097  			/*
1098  			 * Deadlock detection and insertion into the blocked
1099  			 * locks list must be done while holding the same lock!
1100  			 */
1101  			error = -EDEADLK;
1102  			spin_lock(&blocked_lock_lock);
1103  			/*
1104  			 * Ensure that we don't find any locks blocked on this
1105  			 * request during deadlock detection.
1106  			 */
1107  			__locks_wake_up_blocks(request);
1108  			if (likely(!posix_locks_deadlock(request, fl))) {
1109  				error = FILE_LOCK_DEFERRED;
1110  				__locks_insert_block(fl, request,
1111  						     posix_locks_conflict);
1112  			}
1113  			spin_unlock(&blocked_lock_lock);
1114  			goto out;
1115  		}
1116  	}
1117  
1118  	/* If we're just looking for a conflict, we're done. */
1119  	error = 0;
1120  	if (request->fl_flags & FL_ACCESS)
1121  		goto out;
1122  
1123  	/* Find the first old lock with the same owner as the new lock */
1124  	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1125  		if (posix_same_owner(request, fl))
1126  			break;
1127  	}
1128  
1129  	/* Process locks with this owner. */
1130  	list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) {
1131  		if (!posix_same_owner(request, fl))
1132  			break;
1133  
1134  		/* Detect adjacent or overlapping regions (if same lock type) */
1135  		if (request->fl_type == fl->fl_type) {
1136  			/* In all comparisons of start vs end, use
1137  			 * "start - 1" rather than "end + 1". If end
1138  			 * is OFFSET_MAX, end + 1 will become negative.
1139  			 */
1140  			if (fl->fl_end < request->fl_start - 1)
1141  				continue;
1142  			/* If the next lock in the list has entirely bigger
1143  			 * addresses than the new one, insert the lock here.
1144  			 */
1145  			if (fl->fl_start - 1 > request->fl_end)
1146  				break;
1147  
1148  			/* If we come here, the new and old lock are of the
1149  			 * same type and adjacent or overlapping. Make one
1150  			 * lock yielding from the lower start address of both
1151  			 * locks to the higher end address.
1152  			 */
1153  			if (fl->fl_start > request->fl_start)
1154  				fl->fl_start = request->fl_start;
1155  			else
1156  				request->fl_start = fl->fl_start;
1157  			if (fl->fl_end < request->fl_end)
1158  				fl->fl_end = request->fl_end;
1159  			else
1160  				request->fl_end = fl->fl_end;
1161  			if (added) {
1162  				locks_delete_lock_ctx(fl, &dispose);
1163  				continue;
1164  			}
1165  			request = fl;
1166  			added = true;
1167  		} else {
1168  			/* Processing for different lock types is a bit
1169  			 * more complex.
1170  			 */
1171  			if (fl->fl_end < request->fl_start)
1172  				continue;
1173  			if (fl->fl_start > request->fl_end)
1174  				break;
1175  			if (request->fl_type == F_UNLCK)
1176  				added = true;
1177  			if (fl->fl_start < request->fl_start)
1178  				left = fl;
1179  			/* If the next lock in the list has a higher end
1180  			 * address than the new one, insert the new one here.
1181  			 */
1182  			if (fl->fl_end > request->fl_end) {
1183  				right = fl;
1184  				break;
1185  			}
1186  			if (fl->fl_start >= request->fl_start) {
1187  				/* The new lock completely replaces an old
1188  				 * one (This may happen several times).
1189  				 */
1190  				if (added) {
1191  					locks_delete_lock_ctx(fl, &dispose);
1192  					continue;
1193  				}
1194  				/*
1195  				 * Replace the old lock with new_fl, and
1196  				 * remove the old one. It's safe to do the
1197  				 * insert here since we know that we won't be
1198  				 * using new_fl later, and that the lock is
1199  				 * just replacing an existing lock.
1200  				 */
1201  				error = -ENOLCK;
1202  				if (!new_fl)
1203  					goto out;
1204  				locks_copy_lock(new_fl, request);
1205  				locks_move_blocks(new_fl, request);
1206  				request = new_fl;
1207  				new_fl = NULL;
1208  				locks_insert_lock_ctx(request, &fl->fl_list);
1209  				locks_delete_lock_ctx(fl, &dispose);
1210  				added = true;
1211  			}
1212  		}
1213  	}
1214  
1215  	/*
1216  	 * The above code only modifies existing locks in case of merging or
1217  	 * replacing. If new lock(s) need to be inserted all modifications are
1218  	 * done below this, so it's safe yet to bail out.
1219  	 */
1220  	error = -ENOLCK; /* "no luck" */
1221  	if (right && left == right && !new_fl2)
1222  		goto out;
1223  
1224  	error = 0;
1225  	if (!added) {
1226  		if (request->fl_type == F_UNLCK) {
1227  			if (request->fl_flags & FL_EXISTS)
1228  				error = -ENOENT;
1229  			goto out;
1230  		}
1231  
1232  		if (!new_fl) {
1233  			error = -ENOLCK;
1234  			goto out;
1235  		}
1236  		locks_copy_lock(new_fl, request);
1237  		locks_move_blocks(new_fl, request);
1238  		locks_insert_lock_ctx(new_fl, &fl->fl_list);
1239  		fl = new_fl;
1240  		new_fl = NULL;
1241  	}
1242  	if (right) {
1243  		if (left == right) {
1244  			/* The new lock breaks the old one in two pieces,
1245  			 * so we have to use the second new lock.
1246  			 */
1247  			left = new_fl2;
1248  			new_fl2 = NULL;
1249  			locks_copy_lock(left, right);
1250  			locks_insert_lock_ctx(left, &fl->fl_list);
1251  		}
1252  		right->fl_start = request->fl_end + 1;
1253  		locks_wake_up_blocks(right);
1254  	}
1255  	if (left) {
1256  		left->fl_end = request->fl_start - 1;
1257  		locks_wake_up_blocks(left);
1258  	}
1259   out:
1260  	spin_unlock(&ctx->flc_lock);
1261  	percpu_up_read(&file_rwsem);
1262  	/*
1263  	 * Free any unused locks.
1264  	 */
1265  	if (new_fl)
1266  		locks_free_lock(new_fl);
1267  	if (new_fl2)
1268  		locks_free_lock(new_fl2);
1269  	locks_dispose_list(&dispose);
1270  	trace_posix_lock_inode(inode, request, error);
1271  
1272  	return error;
1273  }
1274  
1275  /**
1276   * posix_lock_file - Apply a POSIX-style lock to a file
1277   * @filp: The file to apply the lock to
1278   * @fl: The lock to be applied
1279   * @conflock: Place to return a copy of the conflicting lock, if found.
1280   *
1281   * Add a POSIX style lock to a file.
1282   * We merge adjacent & overlapping locks whenever possible.
1283   * POSIX locks are sorted by owner task, then by starting address
1284   *
1285   * Note that if called with an FL_EXISTS argument, the caller may determine
1286   * whether or not a lock was successfully freed by testing the return
1287   * value for -ENOENT.
1288   */
1289  int posix_lock_file(struct file *filp, struct file_lock *fl,
1290  			struct file_lock *conflock)
1291  {
1292  	return posix_lock_inode(locks_inode(filp), fl, conflock);
1293  }
1294  EXPORT_SYMBOL(posix_lock_file);
1295  
1296  /**
1297   * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1298   * @inode: inode of file to which lock request should be applied
1299   * @fl: The lock to be applied
1300   *
1301   * Apply a POSIX style lock request to an inode.
1302   */
1303  static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1304  {
1305  	int error;
1306  	might_sleep ();
1307  	for (;;) {
1308  		error = posix_lock_inode(inode, fl, NULL);
1309  		if (error != FILE_LOCK_DEFERRED)
1310  			break;
1311  		error = wait_event_interruptible(fl->fl_wait,
1312  					list_empty(&fl->fl_blocked_member));
1313  		if (error)
1314  			break;
1315  	}
1316  	locks_delete_block(fl);
1317  	return error;
1318  }
1319  
1320  static void lease_clear_pending(struct file_lock *fl, int arg)
1321  {
1322  	switch (arg) {
1323  	case F_UNLCK:
1324  		fl->fl_flags &= ~FL_UNLOCK_PENDING;
1325  		fallthrough;
1326  	case F_RDLCK:
1327  		fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1328  	}
1329  }
1330  
1331  /* We already had a lease on this file; just change its type */
1332  int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose)
1333  {
1334  	int error = assign_type(fl, arg);
1335  
1336  	if (error)
1337  		return error;
1338  	lease_clear_pending(fl, arg);
1339  	locks_wake_up_blocks(fl);
1340  	if (arg == F_UNLCK) {
1341  		struct file *filp = fl->fl_file;
1342  
1343  		f_delown(filp);
1344  		filp->f_owner.signum = 0;
1345  		fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1346  		if (fl->fl_fasync != NULL) {
1347  			printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1348  			fl->fl_fasync = NULL;
1349  		}
1350  		locks_delete_lock_ctx(fl, dispose);
1351  	}
1352  	return 0;
1353  }
1354  EXPORT_SYMBOL(lease_modify);
1355  
1356  static bool past_time(unsigned long then)
1357  {
1358  	if (!then)
1359  		/* 0 is a special value meaning "this never expires": */
1360  		return false;
1361  	return time_after(jiffies, then);
1362  }
1363  
1364  static void time_out_leases(struct inode *inode, struct list_head *dispose)
1365  {
1366  	struct file_lock_context *ctx = inode->i_flctx;
1367  	struct file_lock *fl, *tmp;
1368  
1369  	lockdep_assert_held(&ctx->flc_lock);
1370  
1371  	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1372  		trace_time_out_leases(inode, fl);
1373  		if (past_time(fl->fl_downgrade_time))
1374  			lease_modify(fl, F_RDLCK, dispose);
1375  		if (past_time(fl->fl_break_time))
1376  			lease_modify(fl, F_UNLCK, dispose);
1377  	}
1378  }
1379  
1380  static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker)
1381  {
1382  	bool rc;
1383  
1384  	if (lease->fl_lmops->lm_breaker_owns_lease
1385  			&& lease->fl_lmops->lm_breaker_owns_lease(lease))
1386  		return false;
1387  	if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) {
1388  		rc = false;
1389  		goto trace;
1390  	}
1391  	if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) {
1392  		rc = false;
1393  		goto trace;
1394  	}
1395  
1396  	rc = locks_conflict(breaker, lease);
1397  trace:
1398  	trace_leases_conflict(rc, lease, breaker);
1399  	return rc;
1400  }
1401  
1402  static bool
1403  any_leases_conflict(struct inode *inode, struct file_lock *breaker)
1404  {
1405  	struct file_lock_context *ctx = inode->i_flctx;
1406  	struct file_lock *fl;
1407  
1408  	lockdep_assert_held(&ctx->flc_lock);
1409  
1410  	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1411  		if (leases_conflict(fl, breaker))
1412  			return true;
1413  	}
1414  	return false;
1415  }
1416  
1417  /**
1418   *	__break_lease	-	revoke all outstanding leases on file
1419   *	@inode: the inode of the file to return
1420   *	@mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1421   *	    break all leases
1422   *	@type: FL_LEASE: break leases and delegations; FL_DELEG: break
1423   *	    only delegations
1424   *
1425   *	break_lease (inlined for speed) has checked there already is at least
1426   *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1427   *	a call to open() or truncate().  This function can sleep unless you
1428   *	specified %O_NONBLOCK to your open().
1429   */
1430  int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1431  {
1432  	int error = 0;
1433  	struct file_lock_context *ctx;
1434  	struct file_lock *new_fl, *fl, *tmp;
1435  	unsigned long break_time;
1436  	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1437  	LIST_HEAD(dispose);
1438  
1439  	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1440  	if (IS_ERR(new_fl))
1441  		return PTR_ERR(new_fl);
1442  	new_fl->fl_flags = type;
1443  
1444  	/* typically we will check that ctx is non-NULL before calling */
1445  	ctx = smp_load_acquire(&inode->i_flctx);
1446  	if (!ctx) {
1447  		WARN_ON_ONCE(1);
1448  		goto free_lock;
1449  	}
1450  
1451  	percpu_down_read(&file_rwsem);
1452  	spin_lock(&ctx->flc_lock);
1453  
1454  	time_out_leases(inode, &dispose);
1455  
1456  	if (!any_leases_conflict(inode, new_fl))
1457  		goto out;
1458  
1459  	break_time = 0;
1460  	if (lease_break_time > 0) {
1461  		break_time = jiffies + lease_break_time * HZ;
1462  		if (break_time == 0)
1463  			break_time++;	/* so that 0 means no break time */
1464  	}
1465  
1466  	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1467  		if (!leases_conflict(fl, new_fl))
1468  			continue;
1469  		if (want_write) {
1470  			if (fl->fl_flags & FL_UNLOCK_PENDING)
1471  				continue;
1472  			fl->fl_flags |= FL_UNLOCK_PENDING;
1473  			fl->fl_break_time = break_time;
1474  		} else {
1475  			if (lease_breaking(fl))
1476  				continue;
1477  			fl->fl_flags |= FL_DOWNGRADE_PENDING;
1478  			fl->fl_downgrade_time = break_time;
1479  		}
1480  		if (fl->fl_lmops->lm_break(fl))
1481  			locks_delete_lock_ctx(fl, &dispose);
1482  	}
1483  
1484  	if (list_empty(&ctx->flc_lease))
1485  		goto out;
1486  
1487  	if (mode & O_NONBLOCK) {
1488  		trace_break_lease_noblock(inode, new_fl);
1489  		error = -EWOULDBLOCK;
1490  		goto out;
1491  	}
1492  
1493  restart:
1494  	fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list);
1495  	break_time = fl->fl_break_time;
1496  	if (break_time != 0)
1497  		break_time -= jiffies;
1498  	if (break_time == 0)
1499  		break_time++;
1500  	locks_insert_block(fl, new_fl, leases_conflict);
1501  	trace_break_lease_block(inode, new_fl);
1502  	spin_unlock(&ctx->flc_lock);
1503  	percpu_up_read(&file_rwsem);
1504  
1505  	locks_dispose_list(&dispose);
1506  	error = wait_event_interruptible_timeout(new_fl->fl_wait,
1507  					list_empty(&new_fl->fl_blocked_member),
1508  					break_time);
1509  
1510  	percpu_down_read(&file_rwsem);
1511  	spin_lock(&ctx->flc_lock);
1512  	trace_break_lease_unblock(inode, new_fl);
1513  	locks_delete_block(new_fl);
1514  	if (error >= 0) {
1515  		/*
1516  		 * Wait for the next conflicting lease that has not been
1517  		 * broken yet
1518  		 */
1519  		if (error == 0)
1520  			time_out_leases(inode, &dispose);
1521  		if (any_leases_conflict(inode, new_fl))
1522  			goto restart;
1523  		error = 0;
1524  	}
1525  out:
1526  	spin_unlock(&ctx->flc_lock);
1527  	percpu_up_read(&file_rwsem);
1528  	locks_dispose_list(&dispose);
1529  free_lock:
1530  	locks_free_lock(new_fl);
1531  	return error;
1532  }
1533  EXPORT_SYMBOL(__break_lease);
1534  
1535  /**
1536   *	lease_get_mtime - update modified time of an inode with exclusive lease
1537   *	@inode: the inode
1538   *      @time:  pointer to a timespec which contains the last modified time
1539   *
1540   * This is to force NFS clients to flush their caches for files with
1541   * exclusive leases.  The justification is that if someone has an
1542   * exclusive lease, then they could be modifying it.
1543   */
1544  void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1545  {
1546  	bool has_lease = false;
1547  	struct file_lock_context *ctx;
1548  	struct file_lock *fl;
1549  
1550  	ctx = smp_load_acquire(&inode->i_flctx);
1551  	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1552  		spin_lock(&ctx->flc_lock);
1553  		fl = list_first_entry_or_null(&ctx->flc_lease,
1554  					      struct file_lock, fl_list);
1555  		if (fl && (fl->fl_type == F_WRLCK))
1556  			has_lease = true;
1557  		spin_unlock(&ctx->flc_lock);
1558  	}
1559  
1560  	if (has_lease)
1561  		*time = current_time(inode);
1562  }
1563  EXPORT_SYMBOL(lease_get_mtime);
1564  
1565  /**
1566   *	fcntl_getlease - Enquire what lease is currently active
1567   *	@filp: the file
1568   *
1569   *	The value returned by this function will be one of
1570   *	(if no lease break is pending):
1571   *
1572   *	%F_RDLCK to indicate a shared lease is held.
1573   *
1574   *	%F_WRLCK to indicate an exclusive lease is held.
1575   *
1576   *	%F_UNLCK to indicate no lease is held.
1577   *
1578   *	(if a lease break is pending):
1579   *
1580   *	%F_RDLCK to indicate an exclusive lease needs to be
1581   *		changed to a shared lease (or removed).
1582   *
1583   *	%F_UNLCK to indicate the lease needs to be removed.
1584   *
1585   *	XXX: sfr & willy disagree over whether F_INPROGRESS
1586   *	should be returned to userspace.
1587   */
1588  int fcntl_getlease(struct file *filp)
1589  {
1590  	struct file_lock *fl;
1591  	struct inode *inode = locks_inode(filp);
1592  	struct file_lock_context *ctx;
1593  	int type = F_UNLCK;
1594  	LIST_HEAD(dispose);
1595  
1596  	ctx = smp_load_acquire(&inode->i_flctx);
1597  	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1598  		percpu_down_read(&file_rwsem);
1599  		spin_lock(&ctx->flc_lock);
1600  		time_out_leases(inode, &dispose);
1601  		list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1602  			if (fl->fl_file != filp)
1603  				continue;
1604  			type = target_leasetype(fl);
1605  			break;
1606  		}
1607  		spin_unlock(&ctx->flc_lock);
1608  		percpu_up_read(&file_rwsem);
1609  
1610  		locks_dispose_list(&dispose);
1611  	}
1612  	return type;
1613  }
1614  
1615  /**
1616   * check_conflicting_open - see if the given file points to an inode that has
1617   *			    an existing open that would conflict with the
1618   *			    desired lease.
1619   * @filp:	file to check
1620   * @arg:	type of lease that we're trying to acquire
1621   * @flags:	current lock flags
1622   *
1623   * Check to see if there's an existing open fd on this file that would
1624   * conflict with the lease we're trying to set.
1625   */
1626  static int
1627  check_conflicting_open(struct file *filp, const long arg, int flags)
1628  {
1629  	struct inode *inode = locks_inode(filp);
1630  	int self_wcount = 0, self_rcount = 0;
1631  
1632  	if (flags & FL_LAYOUT)
1633  		return 0;
1634  	if (flags & FL_DELEG)
1635  		/* We leave these checks to the caller */
1636  		return 0;
1637  
1638  	if (arg == F_RDLCK)
1639  		return inode_is_open_for_write(inode) ? -EAGAIN : 0;
1640  	else if (arg != F_WRLCK)
1641  		return 0;
1642  
1643  	/*
1644  	 * Make sure that only read/write count is from lease requestor.
1645  	 * Note that this will result in denying write leases when i_writecount
1646  	 * is negative, which is what we want.  (We shouldn't grant write leases
1647  	 * on files open for execution.)
1648  	 */
1649  	if (filp->f_mode & FMODE_WRITE)
1650  		self_wcount = 1;
1651  	else if (filp->f_mode & FMODE_READ)
1652  		self_rcount = 1;
1653  
1654  	if (atomic_read(&inode->i_writecount) != self_wcount ||
1655  	    atomic_read(&inode->i_readcount) != self_rcount)
1656  		return -EAGAIN;
1657  
1658  	return 0;
1659  }
1660  
1661  static int
1662  generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv)
1663  {
1664  	struct file_lock *fl, *my_fl = NULL, *lease;
1665  	struct inode *inode = locks_inode(filp);
1666  	struct file_lock_context *ctx;
1667  	bool is_deleg = (*flp)->fl_flags & FL_DELEG;
1668  	int error;
1669  	LIST_HEAD(dispose);
1670  
1671  	lease = *flp;
1672  	trace_generic_add_lease(inode, lease);
1673  
1674  	/* Note that arg is never F_UNLCK here */
1675  	ctx = locks_get_lock_context(inode, arg);
1676  	if (!ctx)
1677  		return -ENOMEM;
1678  
1679  	/*
1680  	 * In the delegation case we need mutual exclusion with
1681  	 * a number of operations that take the i_mutex.  We trylock
1682  	 * because delegations are an optional optimization, and if
1683  	 * there's some chance of a conflict--we'd rather not
1684  	 * bother, maybe that's a sign this just isn't a good file to
1685  	 * hand out a delegation on.
1686  	 */
1687  	if (is_deleg && !inode_trylock(inode))
1688  		return -EAGAIN;
1689  
1690  	if (is_deleg && arg == F_WRLCK) {
1691  		/* Write delegations are not currently supported: */
1692  		inode_unlock(inode);
1693  		WARN_ON_ONCE(1);
1694  		return -EINVAL;
1695  	}
1696  
1697  	percpu_down_read(&file_rwsem);
1698  	spin_lock(&ctx->flc_lock);
1699  	time_out_leases(inode, &dispose);
1700  	error = check_conflicting_open(filp, arg, lease->fl_flags);
1701  	if (error)
1702  		goto out;
1703  
1704  	/*
1705  	 * At this point, we know that if there is an exclusive
1706  	 * lease on this file, then we hold it on this filp
1707  	 * (otherwise our open of this file would have blocked).
1708  	 * And if we are trying to acquire an exclusive lease,
1709  	 * then the file is not open by anyone (including us)
1710  	 * except for this filp.
1711  	 */
1712  	error = -EAGAIN;
1713  	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1714  		if (fl->fl_file == filp &&
1715  		    fl->fl_owner == lease->fl_owner) {
1716  			my_fl = fl;
1717  			continue;
1718  		}
1719  
1720  		/*
1721  		 * No exclusive leases if someone else has a lease on
1722  		 * this file:
1723  		 */
1724  		if (arg == F_WRLCK)
1725  			goto out;
1726  		/*
1727  		 * Modifying our existing lease is OK, but no getting a
1728  		 * new lease if someone else is opening for write:
1729  		 */
1730  		if (fl->fl_flags & FL_UNLOCK_PENDING)
1731  			goto out;
1732  	}
1733  
1734  	if (my_fl != NULL) {
1735  		lease = my_fl;
1736  		error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1737  		if (error)
1738  			goto out;
1739  		goto out_setup;
1740  	}
1741  
1742  	error = -EINVAL;
1743  	if (!leases_enable)
1744  		goto out;
1745  
1746  	locks_insert_lock_ctx(lease, &ctx->flc_lease);
1747  	/*
1748  	 * The check in break_lease() is lockless. It's possible for another
1749  	 * open to race in after we did the earlier check for a conflicting
1750  	 * open but before the lease was inserted. Check again for a
1751  	 * conflicting open and cancel the lease if there is one.
1752  	 *
1753  	 * We also add a barrier here to ensure that the insertion of the lock
1754  	 * precedes these checks.
1755  	 */
1756  	smp_mb();
1757  	error = check_conflicting_open(filp, arg, lease->fl_flags);
1758  	if (error) {
1759  		locks_unlink_lock_ctx(lease);
1760  		goto out;
1761  	}
1762  
1763  out_setup:
1764  	if (lease->fl_lmops->lm_setup)
1765  		lease->fl_lmops->lm_setup(lease, priv);
1766  out:
1767  	spin_unlock(&ctx->flc_lock);
1768  	percpu_up_read(&file_rwsem);
1769  	locks_dispose_list(&dispose);
1770  	if (is_deleg)
1771  		inode_unlock(inode);
1772  	if (!error && !my_fl)
1773  		*flp = NULL;
1774  	return error;
1775  }
1776  
1777  static int generic_delete_lease(struct file *filp, void *owner)
1778  {
1779  	int error = -EAGAIN;
1780  	struct file_lock *fl, *victim = NULL;
1781  	struct inode *inode = locks_inode(filp);
1782  	struct file_lock_context *ctx;
1783  	LIST_HEAD(dispose);
1784  
1785  	ctx = smp_load_acquire(&inode->i_flctx);
1786  	if (!ctx) {
1787  		trace_generic_delete_lease(inode, NULL);
1788  		return error;
1789  	}
1790  
1791  	percpu_down_read(&file_rwsem);
1792  	spin_lock(&ctx->flc_lock);
1793  	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1794  		if (fl->fl_file == filp &&
1795  		    fl->fl_owner == owner) {
1796  			victim = fl;
1797  			break;
1798  		}
1799  	}
1800  	trace_generic_delete_lease(inode, victim);
1801  	if (victim)
1802  		error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1803  	spin_unlock(&ctx->flc_lock);
1804  	percpu_up_read(&file_rwsem);
1805  	locks_dispose_list(&dispose);
1806  	return error;
1807  }
1808  
1809  /**
1810   *	generic_setlease	-	sets a lease on an open file
1811   *	@filp:	file pointer
1812   *	@arg:	type of lease to obtain
1813   *	@flp:	input - file_lock to use, output - file_lock inserted
1814   *	@priv:	private data for lm_setup (may be NULL if lm_setup
1815   *		doesn't require it)
1816   *
1817   *	The (input) flp->fl_lmops->lm_break function is required
1818   *	by break_lease().
1819   */
1820  int generic_setlease(struct file *filp, long arg, struct file_lock **flp,
1821  			void **priv)
1822  {
1823  	struct inode *inode = locks_inode(filp);
1824  	int error;
1825  
1826  	if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE))
1827  		return -EACCES;
1828  	if (!S_ISREG(inode->i_mode))
1829  		return -EINVAL;
1830  	error = security_file_lock(filp, arg);
1831  	if (error)
1832  		return error;
1833  
1834  	switch (arg) {
1835  	case F_UNLCK:
1836  		return generic_delete_lease(filp, *priv);
1837  	case F_RDLCK:
1838  	case F_WRLCK:
1839  		if (!(*flp)->fl_lmops->lm_break) {
1840  			WARN_ON_ONCE(1);
1841  			return -ENOLCK;
1842  		}
1843  
1844  		return generic_add_lease(filp, arg, flp, priv);
1845  	default:
1846  		return -EINVAL;
1847  	}
1848  }
1849  EXPORT_SYMBOL(generic_setlease);
1850  
1851  #if IS_ENABLED(CONFIG_SRCU)
1852  /*
1853   * Kernel subsystems can register to be notified on any attempt to set
1854   * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
1855   * to close files that it may have cached when there is an attempt to set a
1856   * conflicting lease.
1857   */
1858  static struct srcu_notifier_head lease_notifier_chain;
1859  
1860  static inline void
1861  lease_notifier_chain_init(void)
1862  {
1863  	srcu_init_notifier_head(&lease_notifier_chain);
1864  }
1865  
1866  static inline void
1867  setlease_notifier(long arg, struct file_lock *lease)
1868  {
1869  	if (arg != F_UNLCK)
1870  		srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
1871  }
1872  
1873  int lease_register_notifier(struct notifier_block *nb)
1874  {
1875  	return srcu_notifier_chain_register(&lease_notifier_chain, nb);
1876  }
1877  EXPORT_SYMBOL_GPL(lease_register_notifier);
1878  
1879  void lease_unregister_notifier(struct notifier_block *nb)
1880  {
1881  	srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
1882  }
1883  EXPORT_SYMBOL_GPL(lease_unregister_notifier);
1884  
1885  #else /* !IS_ENABLED(CONFIG_SRCU) */
1886  static inline void
1887  lease_notifier_chain_init(void)
1888  {
1889  }
1890  
1891  static inline void
1892  setlease_notifier(long arg, struct file_lock *lease)
1893  {
1894  }
1895  
1896  int lease_register_notifier(struct notifier_block *nb)
1897  {
1898  	return 0;
1899  }
1900  EXPORT_SYMBOL_GPL(lease_register_notifier);
1901  
1902  void lease_unregister_notifier(struct notifier_block *nb)
1903  {
1904  }
1905  EXPORT_SYMBOL_GPL(lease_unregister_notifier);
1906  
1907  #endif /* IS_ENABLED(CONFIG_SRCU) */
1908  
1909  /**
1910   * vfs_setlease        -       sets a lease on an open file
1911   * @filp:	file pointer
1912   * @arg:	type of lease to obtain
1913   * @lease:	file_lock to use when adding a lease
1914   * @priv:	private info for lm_setup when adding a lease (may be
1915   *		NULL if lm_setup doesn't require it)
1916   *
1917   * Call this to establish a lease on the file. The "lease" argument is not
1918   * used for F_UNLCK requests and may be NULL. For commands that set or alter
1919   * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
1920   * set; if not, this function will return -ENOLCK (and generate a scary-looking
1921   * stack trace).
1922   *
1923   * The "priv" pointer is passed directly to the lm_setup function as-is. It
1924   * may be NULL if the lm_setup operation doesn't require it.
1925   */
1926  int
1927  vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv)
1928  {
1929  	if (lease)
1930  		setlease_notifier(arg, *lease);
1931  	if (filp->f_op->setlease)
1932  		return filp->f_op->setlease(filp, arg, lease, priv);
1933  	else
1934  		return generic_setlease(filp, arg, lease, priv);
1935  }
1936  EXPORT_SYMBOL_GPL(vfs_setlease);
1937  
1938  static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg)
1939  {
1940  	struct file_lock *fl;
1941  	struct fasync_struct *new;
1942  	int error;
1943  
1944  	fl = lease_alloc(filp, arg);
1945  	if (IS_ERR(fl))
1946  		return PTR_ERR(fl);
1947  
1948  	new = fasync_alloc();
1949  	if (!new) {
1950  		locks_free_lock(fl);
1951  		return -ENOMEM;
1952  	}
1953  	new->fa_fd = fd;
1954  
1955  	error = vfs_setlease(filp, arg, &fl, (void **)&new);
1956  	if (fl)
1957  		locks_free_lock(fl);
1958  	if (new)
1959  		fasync_free(new);
1960  	return error;
1961  }
1962  
1963  /**
1964   *	fcntl_setlease	-	sets a lease on an open file
1965   *	@fd: open file descriptor
1966   *	@filp: file pointer
1967   *	@arg: type of lease to obtain
1968   *
1969   *	Call this fcntl to establish a lease on the file.
1970   *	Note that you also need to call %F_SETSIG to
1971   *	receive a signal when the lease is broken.
1972   */
1973  int fcntl_setlease(unsigned int fd, struct file *filp, long arg)
1974  {
1975  	if (arg == F_UNLCK)
1976  		return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
1977  	return do_fcntl_add_lease(fd, filp, arg);
1978  }
1979  
1980  /**
1981   * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
1982   * @inode: inode of the file to apply to
1983   * @fl: The lock to be applied
1984   *
1985   * Apply a FLOCK style lock request to an inode.
1986   */
1987  static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1988  {
1989  	int error;
1990  	might_sleep();
1991  	for (;;) {
1992  		error = flock_lock_inode(inode, fl);
1993  		if (error != FILE_LOCK_DEFERRED)
1994  			break;
1995  		error = wait_event_interruptible(fl->fl_wait,
1996  				list_empty(&fl->fl_blocked_member));
1997  		if (error)
1998  			break;
1999  	}
2000  	locks_delete_block(fl);
2001  	return error;
2002  }
2003  
2004  /**
2005   * locks_lock_inode_wait - Apply a lock to an inode
2006   * @inode: inode of the file to apply to
2007   * @fl: The lock to be applied
2008   *
2009   * Apply a POSIX or FLOCK style lock request to an inode.
2010   */
2011  int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2012  {
2013  	int res = 0;
2014  	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
2015  		case FL_POSIX:
2016  			res = posix_lock_inode_wait(inode, fl);
2017  			break;
2018  		case FL_FLOCK:
2019  			res = flock_lock_inode_wait(inode, fl);
2020  			break;
2021  		default:
2022  			BUG();
2023  	}
2024  	return res;
2025  }
2026  EXPORT_SYMBOL(locks_lock_inode_wait);
2027  
2028  /**
2029   *	sys_flock: - flock() system call.
2030   *	@fd: the file descriptor to lock.
2031   *	@cmd: the type of lock to apply.
2032   *
2033   *	Apply a %FL_FLOCK style lock to an open file descriptor.
2034   *	The @cmd can be one of:
2035   *
2036   *	- %LOCK_SH -- a shared lock.
2037   *	- %LOCK_EX -- an exclusive lock.
2038   *	- %LOCK_UN -- remove an existing lock.
2039   *	- %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED)
2040   *
2041   *	%LOCK_MAND support has been removed from the kernel.
2042   */
2043  SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2044  {
2045  	struct fd f = fdget(fd);
2046  	struct file_lock *lock;
2047  	int can_sleep, unlock;
2048  	int error;
2049  
2050  	error = -EBADF;
2051  	if (!f.file)
2052  		goto out;
2053  
2054  	can_sleep = !(cmd & LOCK_NB);
2055  	cmd &= ~LOCK_NB;
2056  	unlock = (cmd == LOCK_UN);
2057  
2058  	if (!unlock && !(f.file->f_mode & (FMODE_READ|FMODE_WRITE)))
2059  		goto out_putf;
2060  
2061  	/*
2062  	 * LOCK_MAND locks were broken for a long time in that they never
2063  	 * conflicted with one another and didn't prevent any sort of open,
2064  	 * read or write activity.
2065  	 *
2066  	 * Just ignore these requests now, to preserve legacy behavior, but
2067  	 * throw a warning to let people know that they don't actually work.
2068  	 */
2069  	if (cmd & LOCK_MAND) {
2070  		pr_warn_once("Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n");
2071  		error = 0;
2072  		goto out_putf;
2073  	}
2074  
2075  	lock = flock_make_lock(f.file, cmd, NULL);
2076  	if (IS_ERR(lock)) {
2077  		error = PTR_ERR(lock);
2078  		goto out_putf;
2079  	}
2080  
2081  	if (can_sleep)
2082  		lock->fl_flags |= FL_SLEEP;
2083  
2084  	error = security_file_lock(f.file, lock->fl_type);
2085  	if (error)
2086  		goto out_free;
2087  
2088  	if (f.file->f_op->flock)
2089  		error = f.file->f_op->flock(f.file,
2090  					  (can_sleep) ? F_SETLKW : F_SETLK,
2091  					  lock);
2092  	else
2093  		error = locks_lock_file_wait(f.file, lock);
2094  
2095   out_free:
2096  	locks_free_lock(lock);
2097  
2098   out_putf:
2099  	fdput(f);
2100   out:
2101  	return error;
2102  }
2103  
2104  /**
2105   * vfs_test_lock - test file byte range lock
2106   * @filp: The file to test lock for
2107   * @fl: The lock to test; also used to hold result
2108   *
2109   * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
2110   * setting conf->fl_type to something other than F_UNLCK.
2111   */
2112  int vfs_test_lock(struct file *filp, struct file_lock *fl)
2113  {
2114  	if (filp->f_op->lock)
2115  		return filp->f_op->lock(filp, F_GETLK, fl);
2116  	posix_test_lock(filp, fl);
2117  	return 0;
2118  }
2119  EXPORT_SYMBOL_GPL(vfs_test_lock);
2120  
2121  /**
2122   * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2123   * @fl: The file_lock who's fl_pid should be translated
2124   * @ns: The namespace into which the pid should be translated
2125   *
2126   * Used to tranlate a fl_pid into a namespace virtual pid number
2127   */
2128  static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns)
2129  {
2130  	pid_t vnr;
2131  	struct pid *pid;
2132  
2133  	if (IS_OFDLCK(fl))
2134  		return -1;
2135  	if (IS_REMOTELCK(fl))
2136  		return fl->fl_pid;
2137  	/*
2138  	 * If the flock owner process is dead and its pid has been already
2139  	 * freed, the translation below won't work, but we still want to show
2140  	 * flock owner pid number in init pidns.
2141  	 */
2142  	if (ns == &init_pid_ns)
2143  		return (pid_t)fl->fl_pid;
2144  
2145  	rcu_read_lock();
2146  	pid = find_pid_ns(fl->fl_pid, &init_pid_ns);
2147  	vnr = pid_nr_ns(pid, ns);
2148  	rcu_read_unlock();
2149  	return vnr;
2150  }
2151  
2152  static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2153  {
2154  	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2155  #if BITS_PER_LONG == 32
2156  	/*
2157  	 * Make sure we can represent the posix lock via
2158  	 * legacy 32bit flock.
2159  	 */
2160  	if (fl->fl_start > OFFT_OFFSET_MAX)
2161  		return -EOVERFLOW;
2162  	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2163  		return -EOVERFLOW;
2164  #endif
2165  	flock->l_start = fl->fl_start;
2166  	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2167  		fl->fl_end - fl->fl_start + 1;
2168  	flock->l_whence = 0;
2169  	flock->l_type = fl->fl_type;
2170  	return 0;
2171  }
2172  
2173  #if BITS_PER_LONG == 32
2174  static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2175  {
2176  	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2177  	flock->l_start = fl->fl_start;
2178  	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2179  		fl->fl_end - fl->fl_start + 1;
2180  	flock->l_whence = 0;
2181  	flock->l_type = fl->fl_type;
2182  }
2183  #endif
2184  
2185  /* Report the first existing lock that would conflict with l.
2186   * This implements the F_GETLK command of fcntl().
2187   */
2188  int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2189  {
2190  	struct file_lock *fl;
2191  	int error;
2192  
2193  	fl = locks_alloc_lock();
2194  	if (fl == NULL)
2195  		return -ENOMEM;
2196  	error = -EINVAL;
2197  	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2198  		goto out;
2199  
2200  	error = flock_to_posix_lock(filp, fl, flock);
2201  	if (error)
2202  		goto out;
2203  
2204  	if (cmd == F_OFD_GETLK) {
2205  		error = -EINVAL;
2206  		if (flock->l_pid != 0)
2207  			goto out;
2208  
2209  		fl->fl_flags |= FL_OFDLCK;
2210  		fl->fl_owner = filp;
2211  	}
2212  
2213  	error = vfs_test_lock(filp, fl);
2214  	if (error)
2215  		goto out;
2216  
2217  	flock->l_type = fl->fl_type;
2218  	if (fl->fl_type != F_UNLCK) {
2219  		error = posix_lock_to_flock(flock, fl);
2220  		if (error)
2221  			goto out;
2222  	}
2223  out:
2224  	locks_free_lock(fl);
2225  	return error;
2226  }
2227  
2228  /**
2229   * vfs_lock_file - file byte range lock
2230   * @filp: The file to apply the lock to
2231   * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2232   * @fl: The lock to be applied
2233   * @conf: Place to return a copy of the conflicting lock, if found.
2234   *
2235   * A caller that doesn't care about the conflicting lock may pass NULL
2236   * as the final argument.
2237   *
2238   * If the filesystem defines a private ->lock() method, then @conf will
2239   * be left unchanged; so a caller that cares should initialize it to
2240   * some acceptable default.
2241   *
2242   * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2243   * locks, the ->lock() interface may return asynchronously, before the lock has
2244   * been granted or denied by the underlying filesystem, if (and only if)
2245   * lm_grant is set. Callers expecting ->lock() to return asynchronously
2246   * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if)
2247   * the request is for a blocking lock. When ->lock() does return asynchronously,
2248   * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock
2249   * request completes.
2250   * If the request is for non-blocking lock the file system should return
2251   * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2252   * with the result. If the request timed out the callback routine will return a
2253   * nonzero return code and the file system should release the lock. The file
2254   * system is also responsible to keep a corresponding posix lock when it
2255   * grants a lock so the VFS can find out which locks are locally held and do
2256   * the correct lock cleanup when required.
2257   * The underlying filesystem must not drop the kernel lock or call
2258   * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2259   * return code.
2260   */
2261  int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2262  {
2263  	if (filp->f_op->lock)
2264  		return filp->f_op->lock(filp, cmd, fl);
2265  	else
2266  		return posix_lock_file(filp, fl, conf);
2267  }
2268  EXPORT_SYMBOL_GPL(vfs_lock_file);
2269  
2270  static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2271  			     struct file_lock *fl)
2272  {
2273  	int error;
2274  
2275  	error = security_file_lock(filp, fl->fl_type);
2276  	if (error)
2277  		return error;
2278  
2279  	for (;;) {
2280  		error = vfs_lock_file(filp, cmd, fl, NULL);
2281  		if (error != FILE_LOCK_DEFERRED)
2282  			break;
2283  		error = wait_event_interruptible(fl->fl_wait,
2284  					list_empty(&fl->fl_blocked_member));
2285  		if (error)
2286  			break;
2287  	}
2288  	locks_delete_block(fl);
2289  
2290  	return error;
2291  }
2292  
2293  /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2294  static int
2295  check_fmode_for_setlk(struct file_lock *fl)
2296  {
2297  	switch (fl->fl_type) {
2298  	case F_RDLCK:
2299  		if (!(fl->fl_file->f_mode & FMODE_READ))
2300  			return -EBADF;
2301  		break;
2302  	case F_WRLCK:
2303  		if (!(fl->fl_file->f_mode & FMODE_WRITE))
2304  			return -EBADF;
2305  	}
2306  	return 0;
2307  }
2308  
2309  /* Apply the lock described by l to an open file descriptor.
2310   * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2311   */
2312  int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2313  		struct flock *flock)
2314  {
2315  	struct file_lock *file_lock = locks_alloc_lock();
2316  	struct inode *inode = locks_inode(filp);
2317  	struct file *f;
2318  	int error;
2319  
2320  	if (file_lock == NULL)
2321  		return -ENOLCK;
2322  
2323  	error = flock_to_posix_lock(filp, file_lock, flock);
2324  	if (error)
2325  		goto out;
2326  
2327  	error = check_fmode_for_setlk(file_lock);
2328  	if (error)
2329  		goto out;
2330  
2331  	/*
2332  	 * If the cmd is requesting file-private locks, then set the
2333  	 * FL_OFDLCK flag and override the owner.
2334  	 */
2335  	switch (cmd) {
2336  	case F_OFD_SETLK:
2337  		error = -EINVAL;
2338  		if (flock->l_pid != 0)
2339  			goto out;
2340  
2341  		cmd = F_SETLK;
2342  		file_lock->fl_flags |= FL_OFDLCK;
2343  		file_lock->fl_owner = filp;
2344  		break;
2345  	case F_OFD_SETLKW:
2346  		error = -EINVAL;
2347  		if (flock->l_pid != 0)
2348  			goto out;
2349  
2350  		cmd = F_SETLKW;
2351  		file_lock->fl_flags |= FL_OFDLCK;
2352  		file_lock->fl_owner = filp;
2353  		fallthrough;
2354  	case F_SETLKW:
2355  		file_lock->fl_flags |= FL_SLEEP;
2356  	}
2357  
2358  	error = do_lock_file_wait(filp, cmd, file_lock);
2359  
2360  	/*
2361  	 * Attempt to detect a close/fcntl race and recover by releasing the
2362  	 * lock that was just acquired. There is no need to do that when we're
2363  	 * unlocking though, or for OFD locks.
2364  	 */
2365  	if (!error && file_lock->fl_type != F_UNLCK &&
2366  	    !(file_lock->fl_flags & FL_OFDLCK)) {
2367  		struct files_struct *files = current->files;
2368  		/*
2369  		 * We need that spin_lock here - it prevents reordering between
2370  		 * update of i_flctx->flc_posix and check for it done in
2371  		 * close(). rcu_read_lock() wouldn't do.
2372  		 */
2373  		spin_lock(&files->file_lock);
2374  		f = files_lookup_fd_locked(files, fd);
2375  		spin_unlock(&files->file_lock);
2376  		if (f != filp) {
2377  			file_lock->fl_type = F_UNLCK;
2378  			error = do_lock_file_wait(filp, cmd, file_lock);
2379  			WARN_ON_ONCE(error);
2380  			error = -EBADF;
2381  		}
2382  	}
2383  out:
2384  	trace_fcntl_setlk(inode, file_lock, error);
2385  	locks_free_lock(file_lock);
2386  	return error;
2387  }
2388  
2389  #if BITS_PER_LONG == 32
2390  /* Report the first existing lock that would conflict with l.
2391   * This implements the F_GETLK command of fcntl().
2392   */
2393  int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2394  {
2395  	struct file_lock *fl;
2396  	int error;
2397  
2398  	fl = locks_alloc_lock();
2399  	if (fl == NULL)
2400  		return -ENOMEM;
2401  
2402  	error = -EINVAL;
2403  	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2404  		goto out;
2405  
2406  	error = flock64_to_posix_lock(filp, fl, flock);
2407  	if (error)
2408  		goto out;
2409  
2410  	if (cmd == F_OFD_GETLK) {
2411  		error = -EINVAL;
2412  		if (flock->l_pid != 0)
2413  			goto out;
2414  
2415  		cmd = F_GETLK64;
2416  		fl->fl_flags |= FL_OFDLCK;
2417  		fl->fl_owner = filp;
2418  	}
2419  
2420  	error = vfs_test_lock(filp, fl);
2421  	if (error)
2422  		goto out;
2423  
2424  	flock->l_type = fl->fl_type;
2425  	if (fl->fl_type != F_UNLCK)
2426  		posix_lock_to_flock64(flock, fl);
2427  
2428  out:
2429  	locks_free_lock(fl);
2430  	return error;
2431  }
2432  
2433  /* Apply the lock described by l to an open file descriptor.
2434   * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2435   */
2436  int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2437  		struct flock64 *flock)
2438  {
2439  	struct file_lock *file_lock = locks_alloc_lock();
2440  	struct file *f;
2441  	int error;
2442  
2443  	if (file_lock == NULL)
2444  		return -ENOLCK;
2445  
2446  	error = flock64_to_posix_lock(filp, file_lock, flock);
2447  	if (error)
2448  		goto out;
2449  
2450  	error = check_fmode_for_setlk(file_lock);
2451  	if (error)
2452  		goto out;
2453  
2454  	/*
2455  	 * If the cmd is requesting file-private locks, then set the
2456  	 * FL_OFDLCK flag and override the owner.
2457  	 */
2458  	switch (cmd) {
2459  	case F_OFD_SETLK:
2460  		error = -EINVAL;
2461  		if (flock->l_pid != 0)
2462  			goto out;
2463  
2464  		cmd = F_SETLK64;
2465  		file_lock->fl_flags |= FL_OFDLCK;
2466  		file_lock->fl_owner = filp;
2467  		break;
2468  	case F_OFD_SETLKW:
2469  		error = -EINVAL;
2470  		if (flock->l_pid != 0)
2471  			goto out;
2472  
2473  		cmd = F_SETLKW64;
2474  		file_lock->fl_flags |= FL_OFDLCK;
2475  		file_lock->fl_owner = filp;
2476  		fallthrough;
2477  	case F_SETLKW64:
2478  		file_lock->fl_flags |= FL_SLEEP;
2479  	}
2480  
2481  	error = do_lock_file_wait(filp, cmd, file_lock);
2482  
2483  	/*
2484  	 * Attempt to detect a close/fcntl race and recover by releasing the
2485  	 * lock that was just acquired. There is no need to do that when we're
2486  	 * unlocking though, or for OFD locks.
2487  	 */
2488  	if (!error && file_lock->fl_type != F_UNLCK &&
2489  	    !(file_lock->fl_flags & FL_OFDLCK)) {
2490  		struct files_struct *files = current->files;
2491  		/*
2492  		 * We need that spin_lock here - it prevents reordering between
2493  		 * update of i_flctx->flc_posix and check for it done in
2494  		 * close(). rcu_read_lock() wouldn't do.
2495  		 */
2496  		spin_lock(&files->file_lock);
2497  		f = files_lookup_fd_locked(files, fd);
2498  		spin_unlock(&files->file_lock);
2499  		if (f != filp) {
2500  			file_lock->fl_type = F_UNLCK;
2501  			error = do_lock_file_wait(filp, cmd, file_lock);
2502  			WARN_ON_ONCE(error);
2503  			error = -EBADF;
2504  		}
2505  	}
2506  out:
2507  	locks_free_lock(file_lock);
2508  	return error;
2509  }
2510  #endif /* BITS_PER_LONG == 32 */
2511  
2512  /*
2513   * This function is called when the file is being removed
2514   * from the task's fd array.  POSIX locks belonging to this task
2515   * are deleted at this time.
2516   */
2517  void locks_remove_posix(struct file *filp, fl_owner_t owner)
2518  {
2519  	int error;
2520  	struct inode *inode = locks_inode(filp);
2521  	struct file_lock lock;
2522  	struct file_lock_context *ctx;
2523  
2524  	/*
2525  	 * If there are no locks held on this file, we don't need to call
2526  	 * posix_lock_file().  Another process could be setting a lock on this
2527  	 * file at the same time, but we wouldn't remove that lock anyway.
2528  	 */
2529  	ctx =  smp_load_acquire(&inode->i_flctx);
2530  	if (!ctx || list_empty(&ctx->flc_posix))
2531  		return;
2532  
2533  	locks_init_lock(&lock);
2534  	lock.fl_type = F_UNLCK;
2535  	lock.fl_flags = FL_POSIX | FL_CLOSE;
2536  	lock.fl_start = 0;
2537  	lock.fl_end = OFFSET_MAX;
2538  	lock.fl_owner = owner;
2539  	lock.fl_pid = current->tgid;
2540  	lock.fl_file = filp;
2541  	lock.fl_ops = NULL;
2542  	lock.fl_lmops = NULL;
2543  
2544  	error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2545  
2546  	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2547  		lock.fl_ops->fl_release_private(&lock);
2548  	trace_locks_remove_posix(inode, &lock, error);
2549  }
2550  EXPORT_SYMBOL(locks_remove_posix);
2551  
2552  /* The i_flctx must be valid when calling into here */
2553  static void
2554  locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2555  {
2556  	struct file_lock fl;
2557  	struct inode *inode = locks_inode(filp);
2558  
2559  	if (list_empty(&flctx->flc_flock))
2560  		return;
2561  
2562  	flock_make_lock(filp, LOCK_UN, &fl);
2563  	fl.fl_flags |= FL_CLOSE;
2564  
2565  	if (filp->f_op->flock)
2566  		filp->f_op->flock(filp, F_SETLKW, &fl);
2567  	else
2568  		flock_lock_inode(inode, &fl);
2569  
2570  	if (fl.fl_ops && fl.fl_ops->fl_release_private)
2571  		fl.fl_ops->fl_release_private(&fl);
2572  }
2573  
2574  /* The i_flctx must be valid when calling into here */
2575  static void
2576  locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2577  {
2578  	struct file_lock *fl, *tmp;
2579  	LIST_HEAD(dispose);
2580  
2581  	if (list_empty(&ctx->flc_lease))
2582  		return;
2583  
2584  	percpu_down_read(&file_rwsem);
2585  	spin_lock(&ctx->flc_lock);
2586  	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list)
2587  		if (filp == fl->fl_file)
2588  			lease_modify(fl, F_UNLCK, &dispose);
2589  	spin_unlock(&ctx->flc_lock);
2590  	percpu_up_read(&file_rwsem);
2591  
2592  	locks_dispose_list(&dispose);
2593  }
2594  
2595  /*
2596   * This function is called on the last close of an open file.
2597   */
2598  void locks_remove_file(struct file *filp)
2599  {
2600  	struct file_lock_context *ctx;
2601  
2602  	ctx = smp_load_acquire(&locks_inode(filp)->i_flctx);
2603  	if (!ctx)
2604  		return;
2605  
2606  	/* remove any OFD locks */
2607  	locks_remove_posix(filp, filp);
2608  
2609  	/* remove flock locks */
2610  	locks_remove_flock(filp, ctx);
2611  
2612  	/* remove any leases */
2613  	locks_remove_lease(filp, ctx);
2614  
2615  	spin_lock(&ctx->flc_lock);
2616  	locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2617  	locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2618  	locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2619  	spin_unlock(&ctx->flc_lock);
2620  }
2621  
2622  /**
2623   * vfs_cancel_lock - file byte range unblock lock
2624   * @filp: The file to apply the unblock to
2625   * @fl: The lock to be unblocked
2626   *
2627   * Used by lock managers to cancel blocked requests
2628   */
2629  int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2630  {
2631  	if (filp->f_op->lock)
2632  		return filp->f_op->lock(filp, F_CANCELLK, fl);
2633  	return 0;
2634  }
2635  EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2636  
2637  #ifdef CONFIG_PROC_FS
2638  #include <linux/proc_fs.h>
2639  #include <linux/seq_file.h>
2640  
2641  struct locks_iterator {
2642  	int	li_cpu;
2643  	loff_t	li_pos;
2644  };
2645  
2646  static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2647  			    loff_t id, char *pfx, int repeat)
2648  {
2649  	struct inode *inode = NULL;
2650  	unsigned int fl_pid;
2651  	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2652  	int type;
2653  
2654  	fl_pid = locks_translate_pid(fl, proc_pidns);
2655  	/*
2656  	 * If lock owner is dead (and pid is freed) or not visible in current
2657  	 * pidns, zero is shown as a pid value. Check lock info from
2658  	 * init_pid_ns to get saved lock pid value.
2659  	 */
2660  
2661  	if (fl->fl_file != NULL)
2662  		inode = locks_inode(fl->fl_file);
2663  
2664  	seq_printf(f, "%lld: ", id);
2665  
2666  	if (repeat)
2667  		seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx);
2668  
2669  	if (IS_POSIX(fl)) {
2670  		if (fl->fl_flags & FL_ACCESS)
2671  			seq_puts(f, "ACCESS");
2672  		else if (IS_OFDLCK(fl))
2673  			seq_puts(f, "OFDLCK");
2674  		else
2675  			seq_puts(f, "POSIX ");
2676  
2677  		seq_printf(f, " %s ",
2678  			     (inode == NULL) ? "*NOINODE*" : "ADVISORY ");
2679  	} else if (IS_FLOCK(fl)) {
2680  		seq_puts(f, "FLOCK  ADVISORY  ");
2681  	} else if (IS_LEASE(fl)) {
2682  		if (fl->fl_flags & FL_DELEG)
2683  			seq_puts(f, "DELEG  ");
2684  		else
2685  			seq_puts(f, "LEASE  ");
2686  
2687  		if (lease_breaking(fl))
2688  			seq_puts(f, "BREAKING  ");
2689  		else if (fl->fl_file)
2690  			seq_puts(f, "ACTIVE    ");
2691  		else
2692  			seq_puts(f, "BREAKER   ");
2693  	} else {
2694  		seq_puts(f, "UNKNOWN UNKNOWN  ");
2695  	}
2696  	type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type;
2697  
2698  	seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2699  			     (type == F_RDLCK) ? "READ" : "UNLCK");
2700  	if (inode) {
2701  		/* userspace relies on this representation of dev_t */
2702  		seq_printf(f, "%d %02x:%02x:%lu ", fl_pid,
2703  				MAJOR(inode->i_sb->s_dev),
2704  				MINOR(inode->i_sb->s_dev), inode->i_ino);
2705  	} else {
2706  		seq_printf(f, "%d <none>:0 ", fl_pid);
2707  	}
2708  	if (IS_POSIX(fl)) {
2709  		if (fl->fl_end == OFFSET_MAX)
2710  			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2711  		else
2712  			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2713  	} else {
2714  		seq_puts(f, "0 EOF\n");
2715  	}
2716  }
2717  
2718  static struct file_lock *get_next_blocked_member(struct file_lock *node)
2719  {
2720  	struct file_lock *tmp;
2721  
2722  	/* NULL node or root node */
2723  	if (node == NULL || node->fl_blocker == NULL)
2724  		return NULL;
2725  
2726  	/* Next member in the linked list could be itself */
2727  	tmp = list_next_entry(node, fl_blocked_member);
2728  	if (list_entry_is_head(tmp, &node->fl_blocker->fl_blocked_requests, fl_blocked_member)
2729  		|| tmp == node) {
2730  		return NULL;
2731  	}
2732  
2733  	return tmp;
2734  }
2735  
2736  static int locks_show(struct seq_file *f, void *v)
2737  {
2738  	struct locks_iterator *iter = f->private;
2739  	struct file_lock *cur, *tmp;
2740  	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2741  	int level = 0;
2742  
2743  	cur = hlist_entry(v, struct file_lock, fl_link);
2744  
2745  	if (locks_translate_pid(cur, proc_pidns) == 0)
2746  		return 0;
2747  
2748  	/* View this crossed linked list as a binary tree, the first member of fl_blocked_requests
2749  	 * is the left child of current node, the next silibing in fl_blocked_member is the
2750  	 * right child, we can alse get the parent of current node from fl_blocker, so this
2751  	 * question becomes traversal of a binary tree
2752  	 */
2753  	while (cur != NULL) {
2754  		if (level)
2755  			lock_get_status(f, cur, iter->li_pos, "-> ", level);
2756  		else
2757  			lock_get_status(f, cur, iter->li_pos, "", level);
2758  
2759  		if (!list_empty(&cur->fl_blocked_requests)) {
2760  			/* Turn left */
2761  			cur = list_first_entry_or_null(&cur->fl_blocked_requests,
2762  				struct file_lock, fl_blocked_member);
2763  			level++;
2764  		} else {
2765  			/* Turn right */
2766  			tmp = get_next_blocked_member(cur);
2767  			/* Fall back to parent node */
2768  			while (tmp == NULL && cur->fl_blocker != NULL) {
2769  				cur = cur->fl_blocker;
2770  				level--;
2771  				tmp = get_next_blocked_member(cur);
2772  			}
2773  			cur = tmp;
2774  		}
2775  	}
2776  
2777  	return 0;
2778  }
2779  
2780  static void __show_fd_locks(struct seq_file *f,
2781  			struct list_head *head, int *id,
2782  			struct file *filp, struct files_struct *files)
2783  {
2784  	struct file_lock *fl;
2785  
2786  	list_for_each_entry(fl, head, fl_list) {
2787  
2788  		if (filp != fl->fl_file)
2789  			continue;
2790  		if (fl->fl_owner != files &&
2791  		    fl->fl_owner != filp)
2792  			continue;
2793  
2794  		(*id)++;
2795  		seq_puts(f, "lock:\t");
2796  		lock_get_status(f, fl, *id, "", 0);
2797  	}
2798  }
2799  
2800  void show_fd_locks(struct seq_file *f,
2801  		  struct file *filp, struct files_struct *files)
2802  {
2803  	struct inode *inode = locks_inode(filp);
2804  	struct file_lock_context *ctx;
2805  	int id = 0;
2806  
2807  	ctx = smp_load_acquire(&inode->i_flctx);
2808  	if (!ctx)
2809  		return;
2810  
2811  	spin_lock(&ctx->flc_lock);
2812  	__show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2813  	__show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2814  	__show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2815  	spin_unlock(&ctx->flc_lock);
2816  }
2817  
2818  static void *locks_start(struct seq_file *f, loff_t *pos)
2819  	__acquires(&blocked_lock_lock)
2820  {
2821  	struct locks_iterator *iter = f->private;
2822  
2823  	iter->li_pos = *pos + 1;
2824  	percpu_down_write(&file_rwsem);
2825  	spin_lock(&blocked_lock_lock);
2826  	return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2827  }
2828  
2829  static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2830  {
2831  	struct locks_iterator *iter = f->private;
2832  
2833  	++iter->li_pos;
2834  	return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2835  }
2836  
2837  static void locks_stop(struct seq_file *f, void *v)
2838  	__releases(&blocked_lock_lock)
2839  {
2840  	spin_unlock(&blocked_lock_lock);
2841  	percpu_up_write(&file_rwsem);
2842  }
2843  
2844  static const struct seq_operations locks_seq_operations = {
2845  	.start	= locks_start,
2846  	.next	= locks_next,
2847  	.stop	= locks_stop,
2848  	.show	= locks_show,
2849  };
2850  
2851  static int __init proc_locks_init(void)
2852  {
2853  	proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
2854  			sizeof(struct locks_iterator), NULL);
2855  	return 0;
2856  }
2857  fs_initcall(proc_locks_init);
2858  #endif
2859  
2860  static int __init filelock_init(void)
2861  {
2862  	int i;
2863  
2864  	flctx_cache = kmem_cache_create("file_lock_ctx",
2865  			sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
2866  
2867  	filelock_cache = kmem_cache_create("file_lock_cache",
2868  			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
2869  
2870  	for_each_possible_cpu(i) {
2871  		struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
2872  
2873  		spin_lock_init(&fll->lock);
2874  		INIT_HLIST_HEAD(&fll->hlist);
2875  	}
2876  
2877  	lease_notifier_chain_init();
2878  	return 0;
2879  }
2880  core_initcall(filelock_init);
2881