xref: /openbmc/linux/fs/locks.c (revision 36a7b63f069630e854beb305e99c151cddd3b8e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/locks.c
4  *
5  * We implement four types of file locks: BSD locks, posix locks, open
6  * file description locks, and leases.  For details about BSD locks,
7  * see the flock(2) man page; for details about the other three, see
8  * fcntl(2).
9  *
10  *
11  * Locking conflicts and dependencies:
12  * If multiple threads attempt to lock the same byte (or flock the same file)
13  * only one can be granted the lock, and other must wait their turn.
14  * The first lock has been "applied" or "granted", the others are "waiting"
15  * and are "blocked" by the "applied" lock..
16  *
17  * Waiting and applied locks are all kept in trees whose properties are:
18  *
19  *	- the root of a tree may be an applied or waiting lock.
20  *	- every other node in the tree is a waiting lock that
21  *	  conflicts with every ancestor of that node.
22  *
23  * Every such tree begins life as a waiting singleton which obviously
24  * satisfies the above properties.
25  *
26  * The only ways we modify trees preserve these properties:
27  *
28  *	1. We may add a new leaf node, but only after first verifying that it
29  *	   conflicts with all of its ancestors.
30  *	2. We may remove the root of a tree, creating a new singleton
31  *	   tree from the root and N new trees rooted in the immediate
32  *	   children.
33  *	3. If the root of a tree is not currently an applied lock, we may
34  *	   apply it (if possible).
35  *	4. We may upgrade the root of the tree (either extend its range,
36  *	   or upgrade its entire range from read to write).
37  *
38  * When an applied lock is modified in a way that reduces or downgrades any
39  * part of its range, we remove all its children (2 above).  This particularly
40  * happens when a lock is unlocked.
41  *
42  * For each of those child trees we "wake up" the thread which is
43  * waiting for the lock so it can continue handling as follows: if the
44  * root of the tree applies, we do so (3).  If it doesn't, it must
45  * conflict with some applied lock.  We remove (wake up) all of its children
46  * (2), and add it is a new leaf to the tree rooted in the applied
47  * lock (1).  We then repeat the process recursively with those
48  * children.
49  *
50  */
51 
52 #include <linux/capability.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/fs.h>
56 #include <linux/init.h>
57 #include <linux/security.h>
58 #include <linux/slab.h>
59 #include <linux/syscalls.h>
60 #include <linux/time.h>
61 #include <linux/rcupdate.h>
62 #include <linux/pid_namespace.h>
63 #include <linux/hashtable.h>
64 #include <linux/percpu.h>
65 #include <linux/sysctl.h>
66 
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/filelock.h>
69 
70 #include <linux/uaccess.h>
71 
72 #define IS_POSIX(fl)	(fl->fl_flags & FL_POSIX)
73 #define IS_FLOCK(fl)	(fl->fl_flags & FL_FLOCK)
74 #define IS_LEASE(fl)	(fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT))
75 #define IS_OFDLCK(fl)	(fl->fl_flags & FL_OFDLCK)
76 #define IS_REMOTELCK(fl)	(fl->fl_pid <= 0)
77 
78 static bool lease_breaking(struct file_lock *fl)
79 {
80 	return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING);
81 }
82 
83 static int target_leasetype(struct file_lock *fl)
84 {
85 	if (fl->fl_flags & FL_UNLOCK_PENDING)
86 		return F_UNLCK;
87 	if (fl->fl_flags & FL_DOWNGRADE_PENDING)
88 		return F_RDLCK;
89 	return fl->fl_type;
90 }
91 
92 static int leases_enable = 1;
93 static int lease_break_time = 45;
94 
95 #ifdef CONFIG_SYSCTL
96 static struct ctl_table locks_sysctls[] = {
97 	{
98 		.procname	= "leases-enable",
99 		.data		= &leases_enable,
100 		.maxlen		= sizeof(int),
101 		.mode		= 0644,
102 		.proc_handler	= proc_dointvec,
103 	},
104 #ifdef CONFIG_MMU
105 	{
106 		.procname	= "lease-break-time",
107 		.data		= &lease_break_time,
108 		.maxlen		= sizeof(int),
109 		.mode		= 0644,
110 		.proc_handler	= proc_dointvec,
111 	},
112 #endif /* CONFIG_MMU */
113 	{}
114 };
115 
116 static int __init init_fs_locks_sysctls(void)
117 {
118 	register_sysctl_init("fs", locks_sysctls);
119 	return 0;
120 }
121 early_initcall(init_fs_locks_sysctls);
122 #endif /* CONFIG_SYSCTL */
123 
124 /*
125  * The global file_lock_list is only used for displaying /proc/locks, so we
126  * keep a list on each CPU, with each list protected by its own spinlock.
127  * Global serialization is done using file_rwsem.
128  *
129  * Note that alterations to the list also require that the relevant flc_lock is
130  * held.
131  */
132 struct file_lock_list_struct {
133 	spinlock_t		lock;
134 	struct hlist_head	hlist;
135 };
136 static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list);
137 DEFINE_STATIC_PERCPU_RWSEM(file_rwsem);
138 
139 
140 /*
141  * The blocked_hash is used to find POSIX lock loops for deadlock detection.
142  * It is protected by blocked_lock_lock.
143  *
144  * We hash locks by lockowner in order to optimize searching for the lock a
145  * particular lockowner is waiting on.
146  *
147  * FIXME: make this value scale via some heuristic? We generally will want more
148  * buckets when we have more lockowners holding locks, but that's a little
149  * difficult to determine without knowing what the workload will look like.
150  */
151 #define BLOCKED_HASH_BITS	7
152 static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS);
153 
154 /*
155  * This lock protects the blocked_hash. Generally, if you're accessing it, you
156  * want to be holding this lock.
157  *
158  * In addition, it also protects the fl->fl_blocked_requests list, and the
159  * fl->fl_blocker pointer for file_lock structures that are acting as lock
160  * requests (in contrast to those that are acting as records of acquired locks).
161  *
162  * Note that when we acquire this lock in order to change the above fields,
163  * we often hold the flc_lock as well. In certain cases, when reading the fields
164  * protected by this lock, we can skip acquiring it iff we already hold the
165  * flc_lock.
166  */
167 static DEFINE_SPINLOCK(blocked_lock_lock);
168 
169 static struct kmem_cache *flctx_cache __read_mostly;
170 static struct kmem_cache *filelock_cache __read_mostly;
171 
172 static struct file_lock_context *
173 locks_get_lock_context(struct inode *inode, int type)
174 {
175 	struct file_lock_context *ctx;
176 
177 	/* paired with cmpxchg() below */
178 	ctx = smp_load_acquire(&inode->i_flctx);
179 	if (likely(ctx) || type == F_UNLCK)
180 		goto out;
181 
182 	ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL);
183 	if (!ctx)
184 		goto out;
185 
186 	spin_lock_init(&ctx->flc_lock);
187 	INIT_LIST_HEAD(&ctx->flc_flock);
188 	INIT_LIST_HEAD(&ctx->flc_posix);
189 	INIT_LIST_HEAD(&ctx->flc_lease);
190 
191 	/*
192 	 * Assign the pointer if it's not already assigned. If it is, then
193 	 * free the context we just allocated.
194 	 */
195 	if (cmpxchg(&inode->i_flctx, NULL, ctx)) {
196 		kmem_cache_free(flctx_cache, ctx);
197 		ctx = smp_load_acquire(&inode->i_flctx);
198 	}
199 out:
200 	trace_locks_get_lock_context(inode, type, ctx);
201 	return ctx;
202 }
203 
204 static void
205 locks_dump_ctx_list(struct list_head *list, char *list_type)
206 {
207 	struct file_lock *fl;
208 
209 	list_for_each_entry(fl, list, fl_list) {
210 		pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
211 	}
212 }
213 
214 static void
215 locks_check_ctx_lists(struct inode *inode)
216 {
217 	struct file_lock_context *ctx = inode->i_flctx;
218 
219 	if (unlikely(!list_empty(&ctx->flc_flock) ||
220 		     !list_empty(&ctx->flc_posix) ||
221 		     !list_empty(&ctx->flc_lease))) {
222 		pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n",
223 			MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev),
224 			inode->i_ino);
225 		locks_dump_ctx_list(&ctx->flc_flock, "FLOCK");
226 		locks_dump_ctx_list(&ctx->flc_posix, "POSIX");
227 		locks_dump_ctx_list(&ctx->flc_lease, "LEASE");
228 	}
229 }
230 
231 static void
232 locks_check_ctx_file_list(struct file *filp, struct list_head *list,
233 				char *list_type)
234 {
235 	struct file_lock *fl;
236 	struct inode *inode = locks_inode(filp);
237 
238 	list_for_each_entry(fl, list, fl_list)
239 		if (fl->fl_file == filp)
240 			pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx "
241 				" fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n",
242 				list_type, MAJOR(inode->i_sb->s_dev),
243 				MINOR(inode->i_sb->s_dev), inode->i_ino,
244 				fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid);
245 }
246 
247 void
248 locks_free_lock_context(struct inode *inode)
249 {
250 	struct file_lock_context *ctx = inode->i_flctx;
251 
252 	if (unlikely(ctx)) {
253 		locks_check_ctx_lists(inode);
254 		kmem_cache_free(flctx_cache, ctx);
255 	}
256 }
257 
258 static void locks_init_lock_heads(struct file_lock *fl)
259 {
260 	INIT_HLIST_NODE(&fl->fl_link);
261 	INIT_LIST_HEAD(&fl->fl_list);
262 	INIT_LIST_HEAD(&fl->fl_blocked_requests);
263 	INIT_LIST_HEAD(&fl->fl_blocked_member);
264 	init_waitqueue_head(&fl->fl_wait);
265 }
266 
267 /* Allocate an empty lock structure. */
268 struct file_lock *locks_alloc_lock(void)
269 {
270 	struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL);
271 
272 	if (fl)
273 		locks_init_lock_heads(fl);
274 
275 	return fl;
276 }
277 EXPORT_SYMBOL_GPL(locks_alloc_lock);
278 
279 void locks_release_private(struct file_lock *fl)
280 {
281 	BUG_ON(waitqueue_active(&fl->fl_wait));
282 	BUG_ON(!list_empty(&fl->fl_list));
283 	BUG_ON(!list_empty(&fl->fl_blocked_requests));
284 	BUG_ON(!list_empty(&fl->fl_blocked_member));
285 	BUG_ON(!hlist_unhashed(&fl->fl_link));
286 
287 	if (fl->fl_ops) {
288 		if (fl->fl_ops->fl_release_private)
289 			fl->fl_ops->fl_release_private(fl);
290 		fl->fl_ops = NULL;
291 	}
292 
293 	if (fl->fl_lmops) {
294 		if (fl->fl_lmops->lm_put_owner) {
295 			fl->fl_lmops->lm_put_owner(fl->fl_owner);
296 			fl->fl_owner = NULL;
297 		}
298 		fl->fl_lmops = NULL;
299 	}
300 }
301 EXPORT_SYMBOL_GPL(locks_release_private);
302 
303 /**
304  * locks_owner_has_blockers - Check for blocking lock requests
305  * @flctx: file lock context
306  * @owner: lock owner
307  *
308  * Return values:
309  *   %true: @owner has at least one blocker
310  *   %false: @owner has no blockers
311  */
312 bool locks_owner_has_blockers(struct file_lock_context *flctx,
313 		fl_owner_t owner)
314 {
315 	struct file_lock *fl;
316 
317 	spin_lock(&flctx->flc_lock);
318 	list_for_each_entry(fl, &flctx->flc_posix, fl_list) {
319 		if (fl->fl_owner != owner)
320 			continue;
321 		if (!list_empty(&fl->fl_blocked_requests)) {
322 			spin_unlock(&flctx->flc_lock);
323 			return true;
324 		}
325 	}
326 	spin_unlock(&flctx->flc_lock);
327 	return false;
328 }
329 EXPORT_SYMBOL_GPL(locks_owner_has_blockers);
330 
331 /* Free a lock which is not in use. */
332 void locks_free_lock(struct file_lock *fl)
333 {
334 	locks_release_private(fl);
335 	kmem_cache_free(filelock_cache, fl);
336 }
337 EXPORT_SYMBOL(locks_free_lock);
338 
339 static void
340 locks_dispose_list(struct list_head *dispose)
341 {
342 	struct file_lock *fl;
343 
344 	while (!list_empty(dispose)) {
345 		fl = list_first_entry(dispose, struct file_lock, fl_list);
346 		list_del_init(&fl->fl_list);
347 		locks_free_lock(fl);
348 	}
349 }
350 
351 void locks_init_lock(struct file_lock *fl)
352 {
353 	memset(fl, 0, sizeof(struct file_lock));
354 	locks_init_lock_heads(fl);
355 }
356 EXPORT_SYMBOL(locks_init_lock);
357 
358 /*
359  * Initialize a new lock from an existing file_lock structure.
360  */
361 void locks_copy_conflock(struct file_lock *new, struct file_lock *fl)
362 {
363 	new->fl_owner = fl->fl_owner;
364 	new->fl_pid = fl->fl_pid;
365 	new->fl_file = NULL;
366 	new->fl_flags = fl->fl_flags;
367 	new->fl_type = fl->fl_type;
368 	new->fl_start = fl->fl_start;
369 	new->fl_end = fl->fl_end;
370 	new->fl_lmops = fl->fl_lmops;
371 	new->fl_ops = NULL;
372 
373 	if (fl->fl_lmops) {
374 		if (fl->fl_lmops->lm_get_owner)
375 			fl->fl_lmops->lm_get_owner(fl->fl_owner);
376 	}
377 }
378 EXPORT_SYMBOL(locks_copy_conflock);
379 
380 void locks_copy_lock(struct file_lock *new, struct file_lock *fl)
381 {
382 	/* "new" must be a freshly-initialized lock */
383 	WARN_ON_ONCE(new->fl_ops);
384 
385 	locks_copy_conflock(new, fl);
386 
387 	new->fl_file = fl->fl_file;
388 	new->fl_ops = fl->fl_ops;
389 
390 	if (fl->fl_ops) {
391 		if (fl->fl_ops->fl_copy_lock)
392 			fl->fl_ops->fl_copy_lock(new, fl);
393 	}
394 }
395 EXPORT_SYMBOL(locks_copy_lock);
396 
397 static void locks_move_blocks(struct file_lock *new, struct file_lock *fl)
398 {
399 	struct file_lock *f;
400 
401 	/*
402 	 * As ctx->flc_lock is held, new requests cannot be added to
403 	 * ->fl_blocked_requests, so we don't need a lock to check if it
404 	 * is empty.
405 	 */
406 	if (list_empty(&fl->fl_blocked_requests))
407 		return;
408 	spin_lock(&blocked_lock_lock);
409 	list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests);
410 	list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member)
411 		f->fl_blocker = new;
412 	spin_unlock(&blocked_lock_lock);
413 }
414 
415 static inline int flock_translate_cmd(int cmd) {
416 	switch (cmd) {
417 	case LOCK_SH:
418 		return F_RDLCK;
419 	case LOCK_EX:
420 		return F_WRLCK;
421 	case LOCK_UN:
422 		return F_UNLCK;
423 	}
424 	return -EINVAL;
425 }
426 
427 /* Fill in a file_lock structure with an appropriate FLOCK lock. */
428 static struct file_lock *
429 flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl)
430 {
431 	int type = flock_translate_cmd(cmd);
432 
433 	if (type < 0)
434 		return ERR_PTR(type);
435 
436 	if (fl == NULL) {
437 		fl = locks_alloc_lock();
438 		if (fl == NULL)
439 			return ERR_PTR(-ENOMEM);
440 	} else {
441 		locks_init_lock(fl);
442 	}
443 
444 	fl->fl_file = filp;
445 	fl->fl_owner = filp;
446 	fl->fl_pid = current->tgid;
447 	fl->fl_flags = FL_FLOCK;
448 	fl->fl_type = type;
449 	fl->fl_end = OFFSET_MAX;
450 
451 	return fl;
452 }
453 
454 static int assign_type(struct file_lock *fl, long type)
455 {
456 	switch (type) {
457 	case F_RDLCK:
458 	case F_WRLCK:
459 	case F_UNLCK:
460 		fl->fl_type = type;
461 		break;
462 	default:
463 		return -EINVAL;
464 	}
465 	return 0;
466 }
467 
468 static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl,
469 				 struct flock64 *l)
470 {
471 	switch (l->l_whence) {
472 	case SEEK_SET:
473 		fl->fl_start = 0;
474 		break;
475 	case SEEK_CUR:
476 		fl->fl_start = filp->f_pos;
477 		break;
478 	case SEEK_END:
479 		fl->fl_start = i_size_read(file_inode(filp));
480 		break;
481 	default:
482 		return -EINVAL;
483 	}
484 	if (l->l_start > OFFSET_MAX - fl->fl_start)
485 		return -EOVERFLOW;
486 	fl->fl_start += l->l_start;
487 	if (fl->fl_start < 0)
488 		return -EINVAL;
489 
490 	/* POSIX-1996 leaves the case l->l_len < 0 undefined;
491 	   POSIX-2001 defines it. */
492 	if (l->l_len > 0) {
493 		if (l->l_len - 1 > OFFSET_MAX - fl->fl_start)
494 			return -EOVERFLOW;
495 		fl->fl_end = fl->fl_start + (l->l_len - 1);
496 
497 	} else if (l->l_len < 0) {
498 		if (fl->fl_start + l->l_len < 0)
499 			return -EINVAL;
500 		fl->fl_end = fl->fl_start - 1;
501 		fl->fl_start += l->l_len;
502 	} else
503 		fl->fl_end = OFFSET_MAX;
504 
505 	fl->fl_owner = current->files;
506 	fl->fl_pid = current->tgid;
507 	fl->fl_file = filp;
508 	fl->fl_flags = FL_POSIX;
509 	fl->fl_ops = NULL;
510 	fl->fl_lmops = NULL;
511 
512 	return assign_type(fl, l->l_type);
513 }
514 
515 /* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX
516  * style lock.
517  */
518 static int flock_to_posix_lock(struct file *filp, struct file_lock *fl,
519 			       struct flock *l)
520 {
521 	struct flock64 ll = {
522 		.l_type = l->l_type,
523 		.l_whence = l->l_whence,
524 		.l_start = l->l_start,
525 		.l_len = l->l_len,
526 	};
527 
528 	return flock64_to_posix_lock(filp, fl, &ll);
529 }
530 
531 /* default lease lock manager operations */
532 static bool
533 lease_break_callback(struct file_lock *fl)
534 {
535 	kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG);
536 	return false;
537 }
538 
539 static void
540 lease_setup(struct file_lock *fl, void **priv)
541 {
542 	struct file *filp = fl->fl_file;
543 	struct fasync_struct *fa = *priv;
544 
545 	/*
546 	 * fasync_insert_entry() returns the old entry if any. If there was no
547 	 * old entry, then it used "priv" and inserted it into the fasync list.
548 	 * Clear the pointer to indicate that it shouldn't be freed.
549 	 */
550 	if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa))
551 		*priv = NULL;
552 
553 	__f_setown(filp, task_pid(current), PIDTYPE_TGID, 0);
554 }
555 
556 static const struct lock_manager_operations lease_manager_ops = {
557 	.lm_break = lease_break_callback,
558 	.lm_change = lease_modify,
559 	.lm_setup = lease_setup,
560 };
561 
562 /*
563  * Initialize a lease, use the default lock manager operations
564  */
565 static int lease_init(struct file *filp, long type, struct file_lock *fl)
566 {
567 	if (assign_type(fl, type) != 0)
568 		return -EINVAL;
569 
570 	fl->fl_owner = filp;
571 	fl->fl_pid = current->tgid;
572 
573 	fl->fl_file = filp;
574 	fl->fl_flags = FL_LEASE;
575 	fl->fl_start = 0;
576 	fl->fl_end = OFFSET_MAX;
577 	fl->fl_ops = NULL;
578 	fl->fl_lmops = &lease_manager_ops;
579 	return 0;
580 }
581 
582 /* Allocate a file_lock initialised to this type of lease */
583 static struct file_lock *lease_alloc(struct file *filp, long type)
584 {
585 	struct file_lock *fl = locks_alloc_lock();
586 	int error = -ENOMEM;
587 
588 	if (fl == NULL)
589 		return ERR_PTR(error);
590 
591 	error = lease_init(filp, type, fl);
592 	if (error) {
593 		locks_free_lock(fl);
594 		return ERR_PTR(error);
595 	}
596 	return fl;
597 }
598 
599 /* Check if two locks overlap each other.
600  */
601 static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2)
602 {
603 	return ((fl1->fl_end >= fl2->fl_start) &&
604 		(fl2->fl_end >= fl1->fl_start));
605 }
606 
607 /*
608  * Check whether two locks have the same owner.
609  */
610 static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2)
611 {
612 	return fl1->fl_owner == fl2->fl_owner;
613 }
614 
615 /* Must be called with the flc_lock held! */
616 static void locks_insert_global_locks(struct file_lock *fl)
617 {
618 	struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list);
619 
620 	percpu_rwsem_assert_held(&file_rwsem);
621 
622 	spin_lock(&fll->lock);
623 	fl->fl_link_cpu = smp_processor_id();
624 	hlist_add_head(&fl->fl_link, &fll->hlist);
625 	spin_unlock(&fll->lock);
626 }
627 
628 /* Must be called with the flc_lock held! */
629 static void locks_delete_global_locks(struct file_lock *fl)
630 {
631 	struct file_lock_list_struct *fll;
632 
633 	percpu_rwsem_assert_held(&file_rwsem);
634 
635 	/*
636 	 * Avoid taking lock if already unhashed. This is safe since this check
637 	 * is done while holding the flc_lock, and new insertions into the list
638 	 * also require that it be held.
639 	 */
640 	if (hlist_unhashed(&fl->fl_link))
641 		return;
642 
643 	fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu);
644 	spin_lock(&fll->lock);
645 	hlist_del_init(&fl->fl_link);
646 	spin_unlock(&fll->lock);
647 }
648 
649 static unsigned long
650 posix_owner_key(struct file_lock *fl)
651 {
652 	return (unsigned long)fl->fl_owner;
653 }
654 
655 static void locks_insert_global_blocked(struct file_lock *waiter)
656 {
657 	lockdep_assert_held(&blocked_lock_lock);
658 
659 	hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter));
660 }
661 
662 static void locks_delete_global_blocked(struct file_lock *waiter)
663 {
664 	lockdep_assert_held(&blocked_lock_lock);
665 
666 	hash_del(&waiter->fl_link);
667 }
668 
669 /* Remove waiter from blocker's block list.
670  * When blocker ends up pointing to itself then the list is empty.
671  *
672  * Must be called with blocked_lock_lock held.
673  */
674 static void __locks_delete_block(struct file_lock *waiter)
675 {
676 	locks_delete_global_blocked(waiter);
677 	list_del_init(&waiter->fl_blocked_member);
678 }
679 
680 static void __locks_wake_up_blocks(struct file_lock *blocker)
681 {
682 	while (!list_empty(&blocker->fl_blocked_requests)) {
683 		struct file_lock *waiter;
684 
685 		waiter = list_first_entry(&blocker->fl_blocked_requests,
686 					  struct file_lock, fl_blocked_member);
687 		__locks_delete_block(waiter);
688 		if (waiter->fl_lmops && waiter->fl_lmops->lm_notify)
689 			waiter->fl_lmops->lm_notify(waiter);
690 		else
691 			wake_up(&waiter->fl_wait);
692 
693 		/*
694 		 * The setting of fl_blocker to NULL marks the "done"
695 		 * point in deleting a block. Paired with acquire at the top
696 		 * of locks_delete_block().
697 		 */
698 		smp_store_release(&waiter->fl_blocker, NULL);
699 	}
700 }
701 
702 /**
703  *	locks_delete_block - stop waiting for a file lock
704  *	@waiter: the lock which was waiting
705  *
706  *	lockd/nfsd need to disconnect the lock while working on it.
707  */
708 int locks_delete_block(struct file_lock *waiter)
709 {
710 	int status = -ENOENT;
711 
712 	/*
713 	 * If fl_blocker is NULL, it won't be set again as this thread "owns"
714 	 * the lock and is the only one that might try to claim the lock.
715 	 *
716 	 * We use acquire/release to manage fl_blocker so that we can
717 	 * optimize away taking the blocked_lock_lock in many cases.
718 	 *
719 	 * The smp_load_acquire guarantees two things:
720 	 *
721 	 * 1/ that fl_blocked_requests can be tested locklessly. If something
722 	 * was recently added to that list it must have been in a locked region
723 	 * *before* the locked region when fl_blocker was set to NULL.
724 	 *
725 	 * 2/ that no other thread is accessing 'waiter', so it is safe to free
726 	 * it.  __locks_wake_up_blocks is careful not to touch waiter after
727 	 * fl_blocker is released.
728 	 *
729 	 * If a lockless check of fl_blocker shows it to be NULL, we know that
730 	 * no new locks can be inserted into its fl_blocked_requests list, and
731 	 * can avoid doing anything further if the list is empty.
732 	 */
733 	if (!smp_load_acquire(&waiter->fl_blocker) &&
734 	    list_empty(&waiter->fl_blocked_requests))
735 		return status;
736 
737 	spin_lock(&blocked_lock_lock);
738 	if (waiter->fl_blocker)
739 		status = 0;
740 	__locks_wake_up_blocks(waiter);
741 	__locks_delete_block(waiter);
742 
743 	/*
744 	 * The setting of fl_blocker to NULL marks the "done" point in deleting
745 	 * a block. Paired with acquire at the top of this function.
746 	 */
747 	smp_store_release(&waiter->fl_blocker, NULL);
748 	spin_unlock(&blocked_lock_lock);
749 	return status;
750 }
751 EXPORT_SYMBOL(locks_delete_block);
752 
753 /* Insert waiter into blocker's block list.
754  * We use a circular list so that processes can be easily woken up in
755  * the order they blocked. The documentation doesn't require this but
756  * it seems like the reasonable thing to do.
757  *
758  * Must be called with both the flc_lock and blocked_lock_lock held. The
759  * fl_blocked_requests list itself is protected by the blocked_lock_lock,
760  * but by ensuring that the flc_lock is also held on insertions we can avoid
761  * taking the blocked_lock_lock in some cases when we see that the
762  * fl_blocked_requests list is empty.
763  *
764  * Rather than just adding to the list, we check for conflicts with any existing
765  * waiters, and add beneath any waiter that blocks the new waiter.
766  * Thus wakeups don't happen until needed.
767  */
768 static void __locks_insert_block(struct file_lock *blocker,
769 				 struct file_lock *waiter,
770 				 bool conflict(struct file_lock *,
771 					       struct file_lock *))
772 {
773 	struct file_lock *fl;
774 	BUG_ON(!list_empty(&waiter->fl_blocked_member));
775 
776 new_blocker:
777 	list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member)
778 		if (conflict(fl, waiter)) {
779 			blocker =  fl;
780 			goto new_blocker;
781 		}
782 	waiter->fl_blocker = blocker;
783 	list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests);
784 	if (IS_POSIX(blocker) && !IS_OFDLCK(blocker))
785 		locks_insert_global_blocked(waiter);
786 
787 	/* The requests in waiter->fl_blocked are known to conflict with
788 	 * waiter, but might not conflict with blocker, or the requests
789 	 * and lock which block it.  So they all need to be woken.
790 	 */
791 	__locks_wake_up_blocks(waiter);
792 }
793 
794 /* Must be called with flc_lock held. */
795 static void locks_insert_block(struct file_lock *blocker,
796 			       struct file_lock *waiter,
797 			       bool conflict(struct file_lock *,
798 					     struct file_lock *))
799 {
800 	spin_lock(&blocked_lock_lock);
801 	__locks_insert_block(blocker, waiter, conflict);
802 	spin_unlock(&blocked_lock_lock);
803 }
804 
805 /*
806  * Wake up processes blocked waiting for blocker.
807  *
808  * Must be called with the inode->flc_lock held!
809  */
810 static void locks_wake_up_blocks(struct file_lock *blocker)
811 {
812 	/*
813 	 * Avoid taking global lock if list is empty. This is safe since new
814 	 * blocked requests are only added to the list under the flc_lock, and
815 	 * the flc_lock is always held here. Note that removal from the
816 	 * fl_blocked_requests list does not require the flc_lock, so we must
817 	 * recheck list_empty() after acquiring the blocked_lock_lock.
818 	 */
819 	if (list_empty(&blocker->fl_blocked_requests))
820 		return;
821 
822 	spin_lock(&blocked_lock_lock);
823 	__locks_wake_up_blocks(blocker);
824 	spin_unlock(&blocked_lock_lock);
825 }
826 
827 static void
828 locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before)
829 {
830 	list_add_tail(&fl->fl_list, before);
831 	locks_insert_global_locks(fl);
832 }
833 
834 static void
835 locks_unlink_lock_ctx(struct file_lock *fl)
836 {
837 	locks_delete_global_locks(fl);
838 	list_del_init(&fl->fl_list);
839 	locks_wake_up_blocks(fl);
840 }
841 
842 static void
843 locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose)
844 {
845 	locks_unlink_lock_ctx(fl);
846 	if (dispose)
847 		list_add(&fl->fl_list, dispose);
848 	else
849 		locks_free_lock(fl);
850 }
851 
852 /* Determine if lock sys_fl blocks lock caller_fl. Common functionality
853  * checks for shared/exclusive status of overlapping locks.
854  */
855 static bool locks_conflict(struct file_lock *caller_fl,
856 			   struct file_lock *sys_fl)
857 {
858 	if (sys_fl->fl_type == F_WRLCK)
859 		return true;
860 	if (caller_fl->fl_type == F_WRLCK)
861 		return true;
862 	return false;
863 }
864 
865 /* Determine if lock sys_fl blocks lock caller_fl. POSIX specific
866  * checking before calling the locks_conflict().
867  */
868 static bool posix_locks_conflict(struct file_lock *caller_fl,
869 				 struct file_lock *sys_fl)
870 {
871 	/* POSIX locks owned by the same process do not conflict with
872 	 * each other.
873 	 */
874 	if (posix_same_owner(caller_fl, sys_fl))
875 		return false;
876 
877 	/* Check whether they overlap */
878 	if (!locks_overlap(caller_fl, sys_fl))
879 		return false;
880 
881 	return locks_conflict(caller_fl, sys_fl);
882 }
883 
884 /* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific
885  * checking before calling the locks_conflict().
886  */
887 static bool flock_locks_conflict(struct file_lock *caller_fl,
888 				 struct file_lock *sys_fl)
889 {
890 	/* FLOCK locks referring to the same filp do not conflict with
891 	 * each other.
892 	 */
893 	if (caller_fl->fl_file == sys_fl->fl_file)
894 		return false;
895 
896 	return locks_conflict(caller_fl, sys_fl);
897 }
898 
899 void
900 posix_test_lock(struct file *filp, struct file_lock *fl)
901 {
902 	struct file_lock *cfl;
903 	struct file_lock_context *ctx;
904 	struct inode *inode = locks_inode(filp);
905 	void *owner;
906 	void (*func)(void);
907 
908 	ctx = smp_load_acquire(&inode->i_flctx);
909 	if (!ctx || list_empty_careful(&ctx->flc_posix)) {
910 		fl->fl_type = F_UNLCK;
911 		return;
912 	}
913 
914 retry:
915 	spin_lock(&ctx->flc_lock);
916 	list_for_each_entry(cfl, &ctx->flc_posix, fl_list) {
917 		if (!posix_locks_conflict(fl, cfl))
918 			continue;
919 		if (cfl->fl_lmops && cfl->fl_lmops->lm_lock_expirable
920 			&& (*cfl->fl_lmops->lm_lock_expirable)(cfl)) {
921 			owner = cfl->fl_lmops->lm_mod_owner;
922 			func = cfl->fl_lmops->lm_expire_lock;
923 			__module_get(owner);
924 			spin_unlock(&ctx->flc_lock);
925 			(*func)();
926 			module_put(owner);
927 			goto retry;
928 		}
929 		locks_copy_conflock(fl, cfl);
930 		goto out;
931 	}
932 	fl->fl_type = F_UNLCK;
933 out:
934 	spin_unlock(&ctx->flc_lock);
935 	return;
936 }
937 EXPORT_SYMBOL(posix_test_lock);
938 
939 /*
940  * Deadlock detection:
941  *
942  * We attempt to detect deadlocks that are due purely to posix file
943  * locks.
944  *
945  * We assume that a task can be waiting for at most one lock at a time.
946  * So for any acquired lock, the process holding that lock may be
947  * waiting on at most one other lock.  That lock in turns may be held by
948  * someone waiting for at most one other lock.  Given a requested lock
949  * caller_fl which is about to wait for a conflicting lock block_fl, we
950  * follow this chain of waiters to ensure we are not about to create a
951  * cycle.
952  *
953  * Since we do this before we ever put a process to sleep on a lock, we
954  * are ensured that there is never a cycle; that is what guarantees that
955  * the while() loop in posix_locks_deadlock() eventually completes.
956  *
957  * Note: the above assumption may not be true when handling lock
958  * requests from a broken NFS client. It may also fail in the presence
959  * of tasks (such as posix threads) sharing the same open file table.
960  * To handle those cases, we just bail out after a few iterations.
961  *
962  * For FL_OFDLCK locks, the owner is the filp, not the files_struct.
963  * Because the owner is not even nominally tied to a thread of
964  * execution, the deadlock detection below can't reasonably work well. Just
965  * skip it for those.
966  *
967  * In principle, we could do a more limited deadlock detection on FL_OFDLCK
968  * locks that just checks for the case where two tasks are attempting to
969  * upgrade from read to write locks on the same inode.
970  */
971 
972 #define MAX_DEADLK_ITERATIONS 10
973 
974 /* Find a lock that the owner of the given block_fl is blocking on. */
975 static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl)
976 {
977 	struct file_lock *fl;
978 
979 	hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) {
980 		if (posix_same_owner(fl, block_fl)) {
981 			while (fl->fl_blocker)
982 				fl = fl->fl_blocker;
983 			return fl;
984 		}
985 	}
986 	return NULL;
987 }
988 
989 /* Must be called with the blocked_lock_lock held! */
990 static int posix_locks_deadlock(struct file_lock *caller_fl,
991 				struct file_lock *block_fl)
992 {
993 	int i = 0;
994 
995 	lockdep_assert_held(&blocked_lock_lock);
996 
997 	/*
998 	 * This deadlock detector can't reasonably detect deadlocks with
999 	 * FL_OFDLCK locks, since they aren't owned by a process, per-se.
1000 	 */
1001 	if (IS_OFDLCK(caller_fl))
1002 		return 0;
1003 
1004 	while ((block_fl = what_owner_is_waiting_for(block_fl))) {
1005 		if (i++ > MAX_DEADLK_ITERATIONS)
1006 			return 0;
1007 		if (posix_same_owner(caller_fl, block_fl))
1008 			return 1;
1009 	}
1010 	return 0;
1011 }
1012 
1013 /* Try to create a FLOCK lock on filp. We always insert new FLOCK locks
1014  * after any leases, but before any posix locks.
1015  *
1016  * Note that if called with an FL_EXISTS argument, the caller may determine
1017  * whether or not a lock was successfully freed by testing the return
1018  * value for -ENOENT.
1019  */
1020 static int flock_lock_inode(struct inode *inode, struct file_lock *request)
1021 {
1022 	struct file_lock *new_fl = NULL;
1023 	struct file_lock *fl;
1024 	struct file_lock_context *ctx;
1025 	int error = 0;
1026 	bool found = false;
1027 	LIST_HEAD(dispose);
1028 
1029 	ctx = locks_get_lock_context(inode, request->fl_type);
1030 	if (!ctx) {
1031 		if (request->fl_type != F_UNLCK)
1032 			return -ENOMEM;
1033 		return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0;
1034 	}
1035 
1036 	if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) {
1037 		new_fl = locks_alloc_lock();
1038 		if (!new_fl)
1039 			return -ENOMEM;
1040 	}
1041 
1042 	percpu_down_read(&file_rwsem);
1043 	spin_lock(&ctx->flc_lock);
1044 	if (request->fl_flags & FL_ACCESS)
1045 		goto find_conflict;
1046 
1047 	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1048 		if (request->fl_file != fl->fl_file)
1049 			continue;
1050 		if (request->fl_type == fl->fl_type)
1051 			goto out;
1052 		found = true;
1053 		locks_delete_lock_ctx(fl, &dispose);
1054 		break;
1055 	}
1056 
1057 	if (request->fl_type == F_UNLCK) {
1058 		if ((request->fl_flags & FL_EXISTS) && !found)
1059 			error = -ENOENT;
1060 		goto out;
1061 	}
1062 
1063 find_conflict:
1064 	list_for_each_entry(fl, &ctx->flc_flock, fl_list) {
1065 		if (!flock_locks_conflict(request, fl))
1066 			continue;
1067 		error = -EAGAIN;
1068 		if (!(request->fl_flags & FL_SLEEP))
1069 			goto out;
1070 		error = FILE_LOCK_DEFERRED;
1071 		locks_insert_block(fl, request, flock_locks_conflict);
1072 		goto out;
1073 	}
1074 	if (request->fl_flags & FL_ACCESS)
1075 		goto out;
1076 	locks_copy_lock(new_fl, request);
1077 	locks_move_blocks(new_fl, request);
1078 	locks_insert_lock_ctx(new_fl, &ctx->flc_flock);
1079 	new_fl = NULL;
1080 	error = 0;
1081 
1082 out:
1083 	spin_unlock(&ctx->flc_lock);
1084 	percpu_up_read(&file_rwsem);
1085 	if (new_fl)
1086 		locks_free_lock(new_fl);
1087 	locks_dispose_list(&dispose);
1088 	trace_flock_lock_inode(inode, request, error);
1089 	return error;
1090 }
1091 
1092 static int posix_lock_inode(struct inode *inode, struct file_lock *request,
1093 			    struct file_lock *conflock)
1094 {
1095 	struct file_lock *fl, *tmp;
1096 	struct file_lock *new_fl = NULL;
1097 	struct file_lock *new_fl2 = NULL;
1098 	struct file_lock *left = NULL;
1099 	struct file_lock *right = NULL;
1100 	struct file_lock_context *ctx;
1101 	int error;
1102 	bool added = false;
1103 	LIST_HEAD(dispose);
1104 	void *owner;
1105 	void (*func)(void);
1106 
1107 	ctx = locks_get_lock_context(inode, request->fl_type);
1108 	if (!ctx)
1109 		return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM;
1110 
1111 	/*
1112 	 * We may need two file_lock structures for this operation,
1113 	 * so we get them in advance to avoid races.
1114 	 *
1115 	 * In some cases we can be sure, that no new locks will be needed
1116 	 */
1117 	if (!(request->fl_flags & FL_ACCESS) &&
1118 	    (request->fl_type != F_UNLCK ||
1119 	     request->fl_start != 0 || request->fl_end != OFFSET_MAX)) {
1120 		new_fl = locks_alloc_lock();
1121 		new_fl2 = locks_alloc_lock();
1122 	}
1123 
1124 retry:
1125 	percpu_down_read(&file_rwsem);
1126 	spin_lock(&ctx->flc_lock);
1127 	/*
1128 	 * New lock request. Walk all POSIX locks and look for conflicts. If
1129 	 * there are any, either return error or put the request on the
1130 	 * blocker's list of waiters and the global blocked_hash.
1131 	 */
1132 	if (request->fl_type != F_UNLCK) {
1133 		list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1134 			if (!posix_locks_conflict(request, fl))
1135 				continue;
1136 			if (fl->fl_lmops && fl->fl_lmops->lm_lock_expirable
1137 				&& (*fl->fl_lmops->lm_lock_expirable)(fl)) {
1138 				owner = fl->fl_lmops->lm_mod_owner;
1139 				func = fl->fl_lmops->lm_expire_lock;
1140 				__module_get(owner);
1141 				spin_unlock(&ctx->flc_lock);
1142 				percpu_up_read(&file_rwsem);
1143 				(*func)();
1144 				module_put(owner);
1145 				goto retry;
1146 			}
1147 			if (conflock)
1148 				locks_copy_conflock(conflock, fl);
1149 			error = -EAGAIN;
1150 			if (!(request->fl_flags & FL_SLEEP))
1151 				goto out;
1152 			/*
1153 			 * Deadlock detection and insertion into the blocked
1154 			 * locks list must be done while holding the same lock!
1155 			 */
1156 			error = -EDEADLK;
1157 			spin_lock(&blocked_lock_lock);
1158 			/*
1159 			 * Ensure that we don't find any locks blocked on this
1160 			 * request during deadlock detection.
1161 			 */
1162 			__locks_wake_up_blocks(request);
1163 			if (likely(!posix_locks_deadlock(request, fl))) {
1164 				error = FILE_LOCK_DEFERRED;
1165 				__locks_insert_block(fl, request,
1166 						     posix_locks_conflict);
1167 			}
1168 			spin_unlock(&blocked_lock_lock);
1169 			goto out;
1170 		}
1171 	}
1172 
1173 	/* If we're just looking for a conflict, we're done. */
1174 	error = 0;
1175 	if (request->fl_flags & FL_ACCESS)
1176 		goto out;
1177 
1178 	/* Find the first old lock with the same owner as the new lock */
1179 	list_for_each_entry(fl, &ctx->flc_posix, fl_list) {
1180 		if (posix_same_owner(request, fl))
1181 			break;
1182 	}
1183 
1184 	/* Process locks with this owner. */
1185 	list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) {
1186 		if (!posix_same_owner(request, fl))
1187 			break;
1188 
1189 		/* Detect adjacent or overlapping regions (if same lock type) */
1190 		if (request->fl_type == fl->fl_type) {
1191 			/* In all comparisons of start vs end, use
1192 			 * "start - 1" rather than "end + 1". If end
1193 			 * is OFFSET_MAX, end + 1 will become negative.
1194 			 */
1195 			if (fl->fl_end < request->fl_start - 1)
1196 				continue;
1197 			/* If the next lock in the list has entirely bigger
1198 			 * addresses than the new one, insert the lock here.
1199 			 */
1200 			if (fl->fl_start - 1 > request->fl_end)
1201 				break;
1202 
1203 			/* If we come here, the new and old lock are of the
1204 			 * same type and adjacent or overlapping. Make one
1205 			 * lock yielding from the lower start address of both
1206 			 * locks to the higher end address.
1207 			 */
1208 			if (fl->fl_start > request->fl_start)
1209 				fl->fl_start = request->fl_start;
1210 			else
1211 				request->fl_start = fl->fl_start;
1212 			if (fl->fl_end < request->fl_end)
1213 				fl->fl_end = request->fl_end;
1214 			else
1215 				request->fl_end = fl->fl_end;
1216 			if (added) {
1217 				locks_delete_lock_ctx(fl, &dispose);
1218 				continue;
1219 			}
1220 			request = fl;
1221 			added = true;
1222 		} else {
1223 			/* Processing for different lock types is a bit
1224 			 * more complex.
1225 			 */
1226 			if (fl->fl_end < request->fl_start)
1227 				continue;
1228 			if (fl->fl_start > request->fl_end)
1229 				break;
1230 			if (request->fl_type == F_UNLCK)
1231 				added = true;
1232 			if (fl->fl_start < request->fl_start)
1233 				left = fl;
1234 			/* If the next lock in the list has a higher end
1235 			 * address than the new one, insert the new one here.
1236 			 */
1237 			if (fl->fl_end > request->fl_end) {
1238 				right = fl;
1239 				break;
1240 			}
1241 			if (fl->fl_start >= request->fl_start) {
1242 				/* The new lock completely replaces an old
1243 				 * one (This may happen several times).
1244 				 */
1245 				if (added) {
1246 					locks_delete_lock_ctx(fl, &dispose);
1247 					continue;
1248 				}
1249 				/*
1250 				 * Replace the old lock with new_fl, and
1251 				 * remove the old one. It's safe to do the
1252 				 * insert here since we know that we won't be
1253 				 * using new_fl later, and that the lock is
1254 				 * just replacing an existing lock.
1255 				 */
1256 				error = -ENOLCK;
1257 				if (!new_fl)
1258 					goto out;
1259 				locks_copy_lock(new_fl, request);
1260 				locks_move_blocks(new_fl, request);
1261 				request = new_fl;
1262 				new_fl = NULL;
1263 				locks_insert_lock_ctx(request, &fl->fl_list);
1264 				locks_delete_lock_ctx(fl, &dispose);
1265 				added = true;
1266 			}
1267 		}
1268 	}
1269 
1270 	/*
1271 	 * The above code only modifies existing locks in case of merging or
1272 	 * replacing. If new lock(s) need to be inserted all modifications are
1273 	 * done below this, so it's safe yet to bail out.
1274 	 */
1275 	error = -ENOLCK; /* "no luck" */
1276 	if (right && left == right && !new_fl2)
1277 		goto out;
1278 
1279 	error = 0;
1280 	if (!added) {
1281 		if (request->fl_type == F_UNLCK) {
1282 			if (request->fl_flags & FL_EXISTS)
1283 				error = -ENOENT;
1284 			goto out;
1285 		}
1286 
1287 		if (!new_fl) {
1288 			error = -ENOLCK;
1289 			goto out;
1290 		}
1291 		locks_copy_lock(new_fl, request);
1292 		locks_move_blocks(new_fl, request);
1293 		locks_insert_lock_ctx(new_fl, &fl->fl_list);
1294 		fl = new_fl;
1295 		new_fl = NULL;
1296 	}
1297 	if (right) {
1298 		if (left == right) {
1299 			/* The new lock breaks the old one in two pieces,
1300 			 * so we have to use the second new lock.
1301 			 */
1302 			left = new_fl2;
1303 			new_fl2 = NULL;
1304 			locks_copy_lock(left, right);
1305 			locks_insert_lock_ctx(left, &fl->fl_list);
1306 		}
1307 		right->fl_start = request->fl_end + 1;
1308 		locks_wake_up_blocks(right);
1309 	}
1310 	if (left) {
1311 		left->fl_end = request->fl_start - 1;
1312 		locks_wake_up_blocks(left);
1313 	}
1314  out:
1315 	spin_unlock(&ctx->flc_lock);
1316 	percpu_up_read(&file_rwsem);
1317 	/*
1318 	 * Free any unused locks.
1319 	 */
1320 	if (new_fl)
1321 		locks_free_lock(new_fl);
1322 	if (new_fl2)
1323 		locks_free_lock(new_fl2);
1324 	locks_dispose_list(&dispose);
1325 	trace_posix_lock_inode(inode, request, error);
1326 
1327 	return error;
1328 }
1329 
1330 /**
1331  * posix_lock_file - Apply a POSIX-style lock to a file
1332  * @filp: The file to apply the lock to
1333  * @fl: The lock to be applied
1334  * @conflock: Place to return a copy of the conflicting lock, if found.
1335  *
1336  * Add a POSIX style lock to a file.
1337  * We merge adjacent & overlapping locks whenever possible.
1338  * POSIX locks are sorted by owner task, then by starting address
1339  *
1340  * Note that if called with an FL_EXISTS argument, the caller may determine
1341  * whether or not a lock was successfully freed by testing the return
1342  * value for -ENOENT.
1343  */
1344 int posix_lock_file(struct file *filp, struct file_lock *fl,
1345 			struct file_lock *conflock)
1346 {
1347 	return posix_lock_inode(locks_inode(filp), fl, conflock);
1348 }
1349 EXPORT_SYMBOL(posix_lock_file);
1350 
1351 /**
1352  * posix_lock_inode_wait - Apply a POSIX-style lock to a file
1353  * @inode: inode of file to which lock request should be applied
1354  * @fl: The lock to be applied
1355  *
1356  * Apply a POSIX style lock request to an inode.
1357  */
1358 static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl)
1359 {
1360 	int error;
1361 	might_sleep ();
1362 	for (;;) {
1363 		error = posix_lock_inode(inode, fl, NULL);
1364 		if (error != FILE_LOCK_DEFERRED)
1365 			break;
1366 		error = wait_event_interruptible(fl->fl_wait,
1367 					list_empty(&fl->fl_blocked_member));
1368 		if (error)
1369 			break;
1370 	}
1371 	locks_delete_block(fl);
1372 	return error;
1373 }
1374 
1375 static void lease_clear_pending(struct file_lock *fl, int arg)
1376 {
1377 	switch (arg) {
1378 	case F_UNLCK:
1379 		fl->fl_flags &= ~FL_UNLOCK_PENDING;
1380 		fallthrough;
1381 	case F_RDLCK:
1382 		fl->fl_flags &= ~FL_DOWNGRADE_PENDING;
1383 	}
1384 }
1385 
1386 /* We already had a lease on this file; just change its type */
1387 int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose)
1388 {
1389 	int error = assign_type(fl, arg);
1390 
1391 	if (error)
1392 		return error;
1393 	lease_clear_pending(fl, arg);
1394 	locks_wake_up_blocks(fl);
1395 	if (arg == F_UNLCK) {
1396 		struct file *filp = fl->fl_file;
1397 
1398 		f_delown(filp);
1399 		filp->f_owner.signum = 0;
1400 		fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync);
1401 		if (fl->fl_fasync != NULL) {
1402 			printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync);
1403 			fl->fl_fasync = NULL;
1404 		}
1405 		locks_delete_lock_ctx(fl, dispose);
1406 	}
1407 	return 0;
1408 }
1409 EXPORT_SYMBOL(lease_modify);
1410 
1411 static bool past_time(unsigned long then)
1412 {
1413 	if (!then)
1414 		/* 0 is a special value meaning "this never expires": */
1415 		return false;
1416 	return time_after(jiffies, then);
1417 }
1418 
1419 static void time_out_leases(struct inode *inode, struct list_head *dispose)
1420 {
1421 	struct file_lock_context *ctx = inode->i_flctx;
1422 	struct file_lock *fl, *tmp;
1423 
1424 	lockdep_assert_held(&ctx->flc_lock);
1425 
1426 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1427 		trace_time_out_leases(inode, fl);
1428 		if (past_time(fl->fl_downgrade_time))
1429 			lease_modify(fl, F_RDLCK, dispose);
1430 		if (past_time(fl->fl_break_time))
1431 			lease_modify(fl, F_UNLCK, dispose);
1432 	}
1433 }
1434 
1435 static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker)
1436 {
1437 	bool rc;
1438 
1439 	if (lease->fl_lmops->lm_breaker_owns_lease
1440 			&& lease->fl_lmops->lm_breaker_owns_lease(lease))
1441 		return false;
1442 	if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) {
1443 		rc = false;
1444 		goto trace;
1445 	}
1446 	if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) {
1447 		rc = false;
1448 		goto trace;
1449 	}
1450 
1451 	rc = locks_conflict(breaker, lease);
1452 trace:
1453 	trace_leases_conflict(rc, lease, breaker);
1454 	return rc;
1455 }
1456 
1457 static bool
1458 any_leases_conflict(struct inode *inode, struct file_lock *breaker)
1459 {
1460 	struct file_lock_context *ctx = inode->i_flctx;
1461 	struct file_lock *fl;
1462 
1463 	lockdep_assert_held(&ctx->flc_lock);
1464 
1465 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1466 		if (leases_conflict(fl, breaker))
1467 			return true;
1468 	}
1469 	return false;
1470 }
1471 
1472 /**
1473  *	__break_lease	-	revoke all outstanding leases on file
1474  *	@inode: the inode of the file to return
1475  *	@mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR:
1476  *	    break all leases
1477  *	@type: FL_LEASE: break leases and delegations; FL_DELEG: break
1478  *	    only delegations
1479  *
1480  *	break_lease (inlined for speed) has checked there already is at least
1481  *	some kind of lock (maybe a lease) on this file.  Leases are broken on
1482  *	a call to open() or truncate().  This function can sleep unless you
1483  *	specified %O_NONBLOCK to your open().
1484  */
1485 int __break_lease(struct inode *inode, unsigned int mode, unsigned int type)
1486 {
1487 	int error = 0;
1488 	struct file_lock_context *ctx;
1489 	struct file_lock *new_fl, *fl, *tmp;
1490 	unsigned long break_time;
1491 	int want_write = (mode & O_ACCMODE) != O_RDONLY;
1492 	LIST_HEAD(dispose);
1493 
1494 	new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK);
1495 	if (IS_ERR(new_fl))
1496 		return PTR_ERR(new_fl);
1497 	new_fl->fl_flags = type;
1498 
1499 	/* typically we will check that ctx is non-NULL before calling */
1500 	ctx = smp_load_acquire(&inode->i_flctx);
1501 	if (!ctx) {
1502 		WARN_ON_ONCE(1);
1503 		goto free_lock;
1504 	}
1505 
1506 	percpu_down_read(&file_rwsem);
1507 	spin_lock(&ctx->flc_lock);
1508 
1509 	time_out_leases(inode, &dispose);
1510 
1511 	if (!any_leases_conflict(inode, new_fl))
1512 		goto out;
1513 
1514 	break_time = 0;
1515 	if (lease_break_time > 0) {
1516 		break_time = jiffies + lease_break_time * HZ;
1517 		if (break_time == 0)
1518 			break_time++;	/* so that 0 means no break time */
1519 	}
1520 
1521 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) {
1522 		if (!leases_conflict(fl, new_fl))
1523 			continue;
1524 		if (want_write) {
1525 			if (fl->fl_flags & FL_UNLOCK_PENDING)
1526 				continue;
1527 			fl->fl_flags |= FL_UNLOCK_PENDING;
1528 			fl->fl_break_time = break_time;
1529 		} else {
1530 			if (lease_breaking(fl))
1531 				continue;
1532 			fl->fl_flags |= FL_DOWNGRADE_PENDING;
1533 			fl->fl_downgrade_time = break_time;
1534 		}
1535 		if (fl->fl_lmops->lm_break(fl))
1536 			locks_delete_lock_ctx(fl, &dispose);
1537 	}
1538 
1539 	if (list_empty(&ctx->flc_lease))
1540 		goto out;
1541 
1542 	if (mode & O_NONBLOCK) {
1543 		trace_break_lease_noblock(inode, new_fl);
1544 		error = -EWOULDBLOCK;
1545 		goto out;
1546 	}
1547 
1548 restart:
1549 	fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list);
1550 	break_time = fl->fl_break_time;
1551 	if (break_time != 0)
1552 		break_time -= jiffies;
1553 	if (break_time == 0)
1554 		break_time++;
1555 	locks_insert_block(fl, new_fl, leases_conflict);
1556 	trace_break_lease_block(inode, new_fl);
1557 	spin_unlock(&ctx->flc_lock);
1558 	percpu_up_read(&file_rwsem);
1559 
1560 	locks_dispose_list(&dispose);
1561 	error = wait_event_interruptible_timeout(new_fl->fl_wait,
1562 					list_empty(&new_fl->fl_blocked_member),
1563 					break_time);
1564 
1565 	percpu_down_read(&file_rwsem);
1566 	spin_lock(&ctx->flc_lock);
1567 	trace_break_lease_unblock(inode, new_fl);
1568 	locks_delete_block(new_fl);
1569 	if (error >= 0) {
1570 		/*
1571 		 * Wait for the next conflicting lease that has not been
1572 		 * broken yet
1573 		 */
1574 		if (error == 0)
1575 			time_out_leases(inode, &dispose);
1576 		if (any_leases_conflict(inode, new_fl))
1577 			goto restart;
1578 		error = 0;
1579 	}
1580 out:
1581 	spin_unlock(&ctx->flc_lock);
1582 	percpu_up_read(&file_rwsem);
1583 	locks_dispose_list(&dispose);
1584 free_lock:
1585 	locks_free_lock(new_fl);
1586 	return error;
1587 }
1588 EXPORT_SYMBOL(__break_lease);
1589 
1590 /**
1591  *	lease_get_mtime - update modified time of an inode with exclusive lease
1592  *	@inode: the inode
1593  *      @time:  pointer to a timespec which contains the last modified time
1594  *
1595  * This is to force NFS clients to flush their caches for files with
1596  * exclusive leases.  The justification is that if someone has an
1597  * exclusive lease, then they could be modifying it.
1598  */
1599 void lease_get_mtime(struct inode *inode, struct timespec64 *time)
1600 {
1601 	bool has_lease = false;
1602 	struct file_lock_context *ctx;
1603 	struct file_lock *fl;
1604 
1605 	ctx = smp_load_acquire(&inode->i_flctx);
1606 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1607 		spin_lock(&ctx->flc_lock);
1608 		fl = list_first_entry_or_null(&ctx->flc_lease,
1609 					      struct file_lock, fl_list);
1610 		if (fl && (fl->fl_type == F_WRLCK))
1611 			has_lease = true;
1612 		spin_unlock(&ctx->flc_lock);
1613 	}
1614 
1615 	if (has_lease)
1616 		*time = current_time(inode);
1617 }
1618 EXPORT_SYMBOL(lease_get_mtime);
1619 
1620 /**
1621  *	fcntl_getlease - Enquire what lease is currently active
1622  *	@filp: the file
1623  *
1624  *	The value returned by this function will be one of
1625  *	(if no lease break is pending):
1626  *
1627  *	%F_RDLCK to indicate a shared lease is held.
1628  *
1629  *	%F_WRLCK to indicate an exclusive lease is held.
1630  *
1631  *	%F_UNLCK to indicate no lease is held.
1632  *
1633  *	(if a lease break is pending):
1634  *
1635  *	%F_RDLCK to indicate an exclusive lease needs to be
1636  *		changed to a shared lease (or removed).
1637  *
1638  *	%F_UNLCK to indicate the lease needs to be removed.
1639  *
1640  *	XXX: sfr & willy disagree over whether F_INPROGRESS
1641  *	should be returned to userspace.
1642  */
1643 int fcntl_getlease(struct file *filp)
1644 {
1645 	struct file_lock *fl;
1646 	struct inode *inode = locks_inode(filp);
1647 	struct file_lock_context *ctx;
1648 	int type = F_UNLCK;
1649 	LIST_HEAD(dispose);
1650 
1651 	ctx = smp_load_acquire(&inode->i_flctx);
1652 	if (ctx && !list_empty_careful(&ctx->flc_lease)) {
1653 		percpu_down_read(&file_rwsem);
1654 		spin_lock(&ctx->flc_lock);
1655 		time_out_leases(inode, &dispose);
1656 		list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1657 			if (fl->fl_file != filp)
1658 				continue;
1659 			type = target_leasetype(fl);
1660 			break;
1661 		}
1662 		spin_unlock(&ctx->flc_lock);
1663 		percpu_up_read(&file_rwsem);
1664 
1665 		locks_dispose_list(&dispose);
1666 	}
1667 	return type;
1668 }
1669 
1670 /**
1671  * check_conflicting_open - see if the given file points to an inode that has
1672  *			    an existing open that would conflict with the
1673  *			    desired lease.
1674  * @filp:	file to check
1675  * @arg:	type of lease that we're trying to acquire
1676  * @flags:	current lock flags
1677  *
1678  * Check to see if there's an existing open fd on this file that would
1679  * conflict with the lease we're trying to set.
1680  */
1681 static int
1682 check_conflicting_open(struct file *filp, const long arg, int flags)
1683 {
1684 	struct inode *inode = locks_inode(filp);
1685 	int self_wcount = 0, self_rcount = 0;
1686 
1687 	if (flags & FL_LAYOUT)
1688 		return 0;
1689 	if (flags & FL_DELEG)
1690 		/* We leave these checks to the caller */
1691 		return 0;
1692 
1693 	if (arg == F_RDLCK)
1694 		return inode_is_open_for_write(inode) ? -EAGAIN : 0;
1695 	else if (arg != F_WRLCK)
1696 		return 0;
1697 
1698 	/*
1699 	 * Make sure that only read/write count is from lease requestor.
1700 	 * Note that this will result in denying write leases when i_writecount
1701 	 * is negative, which is what we want.  (We shouldn't grant write leases
1702 	 * on files open for execution.)
1703 	 */
1704 	if (filp->f_mode & FMODE_WRITE)
1705 		self_wcount = 1;
1706 	else if (filp->f_mode & FMODE_READ)
1707 		self_rcount = 1;
1708 
1709 	if (atomic_read(&inode->i_writecount) != self_wcount ||
1710 	    atomic_read(&inode->i_readcount) != self_rcount)
1711 		return -EAGAIN;
1712 
1713 	return 0;
1714 }
1715 
1716 static int
1717 generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv)
1718 {
1719 	struct file_lock *fl, *my_fl = NULL, *lease;
1720 	struct inode *inode = locks_inode(filp);
1721 	struct file_lock_context *ctx;
1722 	bool is_deleg = (*flp)->fl_flags & FL_DELEG;
1723 	int error;
1724 	LIST_HEAD(dispose);
1725 
1726 	lease = *flp;
1727 	trace_generic_add_lease(inode, lease);
1728 
1729 	/* Note that arg is never F_UNLCK here */
1730 	ctx = locks_get_lock_context(inode, arg);
1731 	if (!ctx)
1732 		return -ENOMEM;
1733 
1734 	/*
1735 	 * In the delegation case we need mutual exclusion with
1736 	 * a number of operations that take the i_mutex.  We trylock
1737 	 * because delegations are an optional optimization, and if
1738 	 * there's some chance of a conflict--we'd rather not
1739 	 * bother, maybe that's a sign this just isn't a good file to
1740 	 * hand out a delegation on.
1741 	 */
1742 	if (is_deleg && !inode_trylock(inode))
1743 		return -EAGAIN;
1744 
1745 	if (is_deleg && arg == F_WRLCK) {
1746 		/* Write delegations are not currently supported: */
1747 		inode_unlock(inode);
1748 		WARN_ON_ONCE(1);
1749 		return -EINVAL;
1750 	}
1751 
1752 	percpu_down_read(&file_rwsem);
1753 	spin_lock(&ctx->flc_lock);
1754 	time_out_leases(inode, &dispose);
1755 	error = check_conflicting_open(filp, arg, lease->fl_flags);
1756 	if (error)
1757 		goto out;
1758 
1759 	/*
1760 	 * At this point, we know that if there is an exclusive
1761 	 * lease on this file, then we hold it on this filp
1762 	 * (otherwise our open of this file would have blocked).
1763 	 * And if we are trying to acquire an exclusive lease,
1764 	 * then the file is not open by anyone (including us)
1765 	 * except for this filp.
1766 	 */
1767 	error = -EAGAIN;
1768 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1769 		if (fl->fl_file == filp &&
1770 		    fl->fl_owner == lease->fl_owner) {
1771 			my_fl = fl;
1772 			continue;
1773 		}
1774 
1775 		/*
1776 		 * No exclusive leases if someone else has a lease on
1777 		 * this file:
1778 		 */
1779 		if (arg == F_WRLCK)
1780 			goto out;
1781 		/*
1782 		 * Modifying our existing lease is OK, but no getting a
1783 		 * new lease if someone else is opening for write:
1784 		 */
1785 		if (fl->fl_flags & FL_UNLOCK_PENDING)
1786 			goto out;
1787 	}
1788 
1789 	if (my_fl != NULL) {
1790 		lease = my_fl;
1791 		error = lease->fl_lmops->lm_change(lease, arg, &dispose);
1792 		if (error)
1793 			goto out;
1794 		goto out_setup;
1795 	}
1796 
1797 	error = -EINVAL;
1798 	if (!leases_enable)
1799 		goto out;
1800 
1801 	locks_insert_lock_ctx(lease, &ctx->flc_lease);
1802 	/*
1803 	 * The check in break_lease() is lockless. It's possible for another
1804 	 * open to race in after we did the earlier check for a conflicting
1805 	 * open but before the lease was inserted. Check again for a
1806 	 * conflicting open and cancel the lease if there is one.
1807 	 *
1808 	 * We also add a barrier here to ensure that the insertion of the lock
1809 	 * precedes these checks.
1810 	 */
1811 	smp_mb();
1812 	error = check_conflicting_open(filp, arg, lease->fl_flags);
1813 	if (error) {
1814 		locks_unlink_lock_ctx(lease);
1815 		goto out;
1816 	}
1817 
1818 out_setup:
1819 	if (lease->fl_lmops->lm_setup)
1820 		lease->fl_lmops->lm_setup(lease, priv);
1821 out:
1822 	spin_unlock(&ctx->flc_lock);
1823 	percpu_up_read(&file_rwsem);
1824 	locks_dispose_list(&dispose);
1825 	if (is_deleg)
1826 		inode_unlock(inode);
1827 	if (!error && !my_fl)
1828 		*flp = NULL;
1829 	return error;
1830 }
1831 
1832 static int generic_delete_lease(struct file *filp, void *owner)
1833 {
1834 	int error = -EAGAIN;
1835 	struct file_lock *fl, *victim = NULL;
1836 	struct inode *inode = locks_inode(filp);
1837 	struct file_lock_context *ctx;
1838 	LIST_HEAD(dispose);
1839 
1840 	ctx = smp_load_acquire(&inode->i_flctx);
1841 	if (!ctx) {
1842 		trace_generic_delete_lease(inode, NULL);
1843 		return error;
1844 	}
1845 
1846 	percpu_down_read(&file_rwsem);
1847 	spin_lock(&ctx->flc_lock);
1848 	list_for_each_entry(fl, &ctx->flc_lease, fl_list) {
1849 		if (fl->fl_file == filp &&
1850 		    fl->fl_owner == owner) {
1851 			victim = fl;
1852 			break;
1853 		}
1854 	}
1855 	trace_generic_delete_lease(inode, victim);
1856 	if (victim)
1857 		error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose);
1858 	spin_unlock(&ctx->flc_lock);
1859 	percpu_up_read(&file_rwsem);
1860 	locks_dispose_list(&dispose);
1861 	return error;
1862 }
1863 
1864 /**
1865  *	generic_setlease	-	sets a lease on an open file
1866  *	@filp:	file pointer
1867  *	@arg:	type of lease to obtain
1868  *	@flp:	input - file_lock to use, output - file_lock inserted
1869  *	@priv:	private data for lm_setup (may be NULL if lm_setup
1870  *		doesn't require it)
1871  *
1872  *	The (input) flp->fl_lmops->lm_break function is required
1873  *	by break_lease().
1874  */
1875 int generic_setlease(struct file *filp, long arg, struct file_lock **flp,
1876 			void **priv)
1877 {
1878 	struct inode *inode = locks_inode(filp);
1879 	int error;
1880 
1881 	if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE))
1882 		return -EACCES;
1883 	if (!S_ISREG(inode->i_mode))
1884 		return -EINVAL;
1885 	error = security_file_lock(filp, arg);
1886 	if (error)
1887 		return error;
1888 
1889 	switch (arg) {
1890 	case F_UNLCK:
1891 		return generic_delete_lease(filp, *priv);
1892 	case F_RDLCK:
1893 	case F_WRLCK:
1894 		if (!(*flp)->fl_lmops->lm_break) {
1895 			WARN_ON_ONCE(1);
1896 			return -ENOLCK;
1897 		}
1898 
1899 		return generic_add_lease(filp, arg, flp, priv);
1900 	default:
1901 		return -EINVAL;
1902 	}
1903 }
1904 EXPORT_SYMBOL(generic_setlease);
1905 
1906 #if IS_ENABLED(CONFIG_SRCU)
1907 /*
1908  * Kernel subsystems can register to be notified on any attempt to set
1909  * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd
1910  * to close files that it may have cached when there is an attempt to set a
1911  * conflicting lease.
1912  */
1913 static struct srcu_notifier_head lease_notifier_chain;
1914 
1915 static inline void
1916 lease_notifier_chain_init(void)
1917 {
1918 	srcu_init_notifier_head(&lease_notifier_chain);
1919 }
1920 
1921 static inline void
1922 setlease_notifier(long arg, struct file_lock *lease)
1923 {
1924 	if (arg != F_UNLCK)
1925 		srcu_notifier_call_chain(&lease_notifier_chain, arg, lease);
1926 }
1927 
1928 int lease_register_notifier(struct notifier_block *nb)
1929 {
1930 	return srcu_notifier_chain_register(&lease_notifier_chain, nb);
1931 }
1932 EXPORT_SYMBOL_GPL(lease_register_notifier);
1933 
1934 void lease_unregister_notifier(struct notifier_block *nb)
1935 {
1936 	srcu_notifier_chain_unregister(&lease_notifier_chain, nb);
1937 }
1938 EXPORT_SYMBOL_GPL(lease_unregister_notifier);
1939 
1940 #else /* !IS_ENABLED(CONFIG_SRCU) */
1941 static inline void
1942 lease_notifier_chain_init(void)
1943 {
1944 }
1945 
1946 static inline void
1947 setlease_notifier(long arg, struct file_lock *lease)
1948 {
1949 }
1950 
1951 int lease_register_notifier(struct notifier_block *nb)
1952 {
1953 	return 0;
1954 }
1955 EXPORT_SYMBOL_GPL(lease_register_notifier);
1956 
1957 void lease_unregister_notifier(struct notifier_block *nb)
1958 {
1959 }
1960 EXPORT_SYMBOL_GPL(lease_unregister_notifier);
1961 
1962 #endif /* IS_ENABLED(CONFIG_SRCU) */
1963 
1964 /**
1965  * vfs_setlease        -       sets a lease on an open file
1966  * @filp:	file pointer
1967  * @arg:	type of lease to obtain
1968  * @lease:	file_lock to use when adding a lease
1969  * @priv:	private info for lm_setup when adding a lease (may be
1970  *		NULL if lm_setup doesn't require it)
1971  *
1972  * Call this to establish a lease on the file. The "lease" argument is not
1973  * used for F_UNLCK requests and may be NULL. For commands that set or alter
1974  * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be
1975  * set; if not, this function will return -ENOLCK (and generate a scary-looking
1976  * stack trace).
1977  *
1978  * The "priv" pointer is passed directly to the lm_setup function as-is. It
1979  * may be NULL if the lm_setup operation doesn't require it.
1980  */
1981 int
1982 vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv)
1983 {
1984 	if (lease)
1985 		setlease_notifier(arg, *lease);
1986 	if (filp->f_op->setlease)
1987 		return filp->f_op->setlease(filp, arg, lease, priv);
1988 	else
1989 		return generic_setlease(filp, arg, lease, priv);
1990 }
1991 EXPORT_SYMBOL_GPL(vfs_setlease);
1992 
1993 static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg)
1994 {
1995 	struct file_lock *fl;
1996 	struct fasync_struct *new;
1997 	int error;
1998 
1999 	fl = lease_alloc(filp, arg);
2000 	if (IS_ERR(fl))
2001 		return PTR_ERR(fl);
2002 
2003 	new = fasync_alloc();
2004 	if (!new) {
2005 		locks_free_lock(fl);
2006 		return -ENOMEM;
2007 	}
2008 	new->fa_fd = fd;
2009 
2010 	error = vfs_setlease(filp, arg, &fl, (void **)&new);
2011 	if (fl)
2012 		locks_free_lock(fl);
2013 	if (new)
2014 		fasync_free(new);
2015 	return error;
2016 }
2017 
2018 /**
2019  *	fcntl_setlease	-	sets a lease on an open file
2020  *	@fd: open file descriptor
2021  *	@filp: file pointer
2022  *	@arg: type of lease to obtain
2023  *
2024  *	Call this fcntl to establish a lease on the file.
2025  *	Note that you also need to call %F_SETSIG to
2026  *	receive a signal when the lease is broken.
2027  */
2028 int fcntl_setlease(unsigned int fd, struct file *filp, long arg)
2029 {
2030 	if (arg == F_UNLCK)
2031 		return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp);
2032 	return do_fcntl_add_lease(fd, filp, arg);
2033 }
2034 
2035 /**
2036  * flock_lock_inode_wait - Apply a FLOCK-style lock to a file
2037  * @inode: inode of the file to apply to
2038  * @fl: The lock to be applied
2039  *
2040  * Apply a FLOCK style lock request to an inode.
2041  */
2042 static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2043 {
2044 	int error;
2045 	might_sleep();
2046 	for (;;) {
2047 		error = flock_lock_inode(inode, fl);
2048 		if (error != FILE_LOCK_DEFERRED)
2049 			break;
2050 		error = wait_event_interruptible(fl->fl_wait,
2051 				list_empty(&fl->fl_blocked_member));
2052 		if (error)
2053 			break;
2054 	}
2055 	locks_delete_block(fl);
2056 	return error;
2057 }
2058 
2059 /**
2060  * locks_lock_inode_wait - Apply a lock to an inode
2061  * @inode: inode of the file to apply to
2062  * @fl: The lock to be applied
2063  *
2064  * Apply a POSIX or FLOCK style lock request to an inode.
2065  */
2066 int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl)
2067 {
2068 	int res = 0;
2069 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
2070 		case FL_POSIX:
2071 			res = posix_lock_inode_wait(inode, fl);
2072 			break;
2073 		case FL_FLOCK:
2074 			res = flock_lock_inode_wait(inode, fl);
2075 			break;
2076 		default:
2077 			BUG();
2078 	}
2079 	return res;
2080 }
2081 EXPORT_SYMBOL(locks_lock_inode_wait);
2082 
2083 /**
2084  *	sys_flock: - flock() system call.
2085  *	@fd: the file descriptor to lock.
2086  *	@cmd: the type of lock to apply.
2087  *
2088  *	Apply a %FL_FLOCK style lock to an open file descriptor.
2089  *	The @cmd can be one of:
2090  *
2091  *	- %LOCK_SH -- a shared lock.
2092  *	- %LOCK_EX -- an exclusive lock.
2093  *	- %LOCK_UN -- remove an existing lock.
2094  *	- %LOCK_MAND -- a 'mandatory' flock. (DEPRECATED)
2095  *
2096  *	%LOCK_MAND support has been removed from the kernel.
2097  */
2098 SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd)
2099 {
2100 	struct fd f = fdget(fd);
2101 	struct file_lock *lock;
2102 	int can_sleep, unlock;
2103 	int error;
2104 
2105 	error = -EBADF;
2106 	if (!f.file)
2107 		goto out;
2108 
2109 	can_sleep = !(cmd & LOCK_NB);
2110 	cmd &= ~LOCK_NB;
2111 	unlock = (cmd == LOCK_UN);
2112 
2113 	if (!unlock && !(f.file->f_mode & (FMODE_READ|FMODE_WRITE)))
2114 		goto out_putf;
2115 
2116 	/*
2117 	 * LOCK_MAND locks were broken for a long time in that they never
2118 	 * conflicted with one another and didn't prevent any sort of open,
2119 	 * read or write activity.
2120 	 *
2121 	 * Just ignore these requests now, to preserve legacy behavior, but
2122 	 * throw a warning to let people know that they don't actually work.
2123 	 */
2124 	if (cmd & LOCK_MAND) {
2125 		pr_warn_once("Attempt to set a LOCK_MAND lock via flock(2). This support has been removed and the request ignored.\n");
2126 		error = 0;
2127 		goto out_putf;
2128 	}
2129 
2130 	lock = flock_make_lock(f.file, cmd, NULL);
2131 	if (IS_ERR(lock)) {
2132 		error = PTR_ERR(lock);
2133 		goto out_putf;
2134 	}
2135 
2136 	if (can_sleep)
2137 		lock->fl_flags |= FL_SLEEP;
2138 
2139 	error = security_file_lock(f.file, lock->fl_type);
2140 	if (error)
2141 		goto out_free;
2142 
2143 	if (f.file->f_op->flock)
2144 		error = f.file->f_op->flock(f.file,
2145 					  (can_sleep) ? F_SETLKW : F_SETLK,
2146 					  lock);
2147 	else
2148 		error = locks_lock_file_wait(f.file, lock);
2149 
2150  out_free:
2151 	locks_free_lock(lock);
2152 
2153  out_putf:
2154 	fdput(f);
2155  out:
2156 	return error;
2157 }
2158 
2159 /**
2160  * vfs_test_lock - test file byte range lock
2161  * @filp: The file to test lock for
2162  * @fl: The lock to test; also used to hold result
2163  *
2164  * Returns -ERRNO on failure.  Indicates presence of conflicting lock by
2165  * setting conf->fl_type to something other than F_UNLCK.
2166  */
2167 int vfs_test_lock(struct file *filp, struct file_lock *fl)
2168 {
2169 	if (filp->f_op->lock)
2170 		return filp->f_op->lock(filp, F_GETLK, fl);
2171 	posix_test_lock(filp, fl);
2172 	return 0;
2173 }
2174 EXPORT_SYMBOL_GPL(vfs_test_lock);
2175 
2176 /**
2177  * locks_translate_pid - translate a file_lock's fl_pid number into a namespace
2178  * @fl: The file_lock who's fl_pid should be translated
2179  * @ns: The namespace into which the pid should be translated
2180  *
2181  * Used to tranlate a fl_pid into a namespace virtual pid number
2182  */
2183 static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns)
2184 {
2185 	pid_t vnr;
2186 	struct pid *pid;
2187 
2188 	if (IS_OFDLCK(fl))
2189 		return -1;
2190 	if (IS_REMOTELCK(fl))
2191 		return fl->fl_pid;
2192 	/*
2193 	 * If the flock owner process is dead and its pid has been already
2194 	 * freed, the translation below won't work, but we still want to show
2195 	 * flock owner pid number in init pidns.
2196 	 */
2197 	if (ns == &init_pid_ns)
2198 		return (pid_t)fl->fl_pid;
2199 
2200 	rcu_read_lock();
2201 	pid = find_pid_ns(fl->fl_pid, &init_pid_ns);
2202 	vnr = pid_nr_ns(pid, ns);
2203 	rcu_read_unlock();
2204 	return vnr;
2205 }
2206 
2207 static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl)
2208 {
2209 	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2210 #if BITS_PER_LONG == 32
2211 	/*
2212 	 * Make sure we can represent the posix lock via
2213 	 * legacy 32bit flock.
2214 	 */
2215 	if (fl->fl_start > OFFT_OFFSET_MAX)
2216 		return -EOVERFLOW;
2217 	if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX)
2218 		return -EOVERFLOW;
2219 #endif
2220 	flock->l_start = fl->fl_start;
2221 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2222 		fl->fl_end - fl->fl_start + 1;
2223 	flock->l_whence = 0;
2224 	flock->l_type = fl->fl_type;
2225 	return 0;
2226 }
2227 
2228 #if BITS_PER_LONG == 32
2229 static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl)
2230 {
2231 	flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current));
2232 	flock->l_start = fl->fl_start;
2233 	flock->l_len = fl->fl_end == OFFSET_MAX ? 0 :
2234 		fl->fl_end - fl->fl_start + 1;
2235 	flock->l_whence = 0;
2236 	flock->l_type = fl->fl_type;
2237 }
2238 #endif
2239 
2240 /* Report the first existing lock that would conflict with l.
2241  * This implements the F_GETLK command of fcntl().
2242  */
2243 int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock)
2244 {
2245 	struct file_lock *fl;
2246 	int error;
2247 
2248 	fl = locks_alloc_lock();
2249 	if (fl == NULL)
2250 		return -ENOMEM;
2251 	error = -EINVAL;
2252 	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2253 		goto out;
2254 
2255 	error = flock_to_posix_lock(filp, fl, flock);
2256 	if (error)
2257 		goto out;
2258 
2259 	if (cmd == F_OFD_GETLK) {
2260 		error = -EINVAL;
2261 		if (flock->l_pid != 0)
2262 			goto out;
2263 
2264 		fl->fl_flags |= FL_OFDLCK;
2265 		fl->fl_owner = filp;
2266 	}
2267 
2268 	error = vfs_test_lock(filp, fl);
2269 	if (error)
2270 		goto out;
2271 
2272 	flock->l_type = fl->fl_type;
2273 	if (fl->fl_type != F_UNLCK) {
2274 		error = posix_lock_to_flock(flock, fl);
2275 		if (error)
2276 			goto out;
2277 	}
2278 out:
2279 	locks_free_lock(fl);
2280 	return error;
2281 }
2282 
2283 /**
2284  * vfs_lock_file - file byte range lock
2285  * @filp: The file to apply the lock to
2286  * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.)
2287  * @fl: The lock to be applied
2288  * @conf: Place to return a copy of the conflicting lock, if found.
2289  *
2290  * A caller that doesn't care about the conflicting lock may pass NULL
2291  * as the final argument.
2292  *
2293  * If the filesystem defines a private ->lock() method, then @conf will
2294  * be left unchanged; so a caller that cares should initialize it to
2295  * some acceptable default.
2296  *
2297  * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX
2298  * locks, the ->lock() interface may return asynchronously, before the lock has
2299  * been granted or denied by the underlying filesystem, if (and only if)
2300  * lm_grant is set. Callers expecting ->lock() to return asynchronously
2301  * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if)
2302  * the request is for a blocking lock. When ->lock() does return asynchronously,
2303  * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock
2304  * request completes.
2305  * If the request is for non-blocking lock the file system should return
2306  * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine
2307  * with the result. If the request timed out the callback routine will return a
2308  * nonzero return code and the file system should release the lock. The file
2309  * system is also responsible to keep a corresponding posix lock when it
2310  * grants a lock so the VFS can find out which locks are locally held and do
2311  * the correct lock cleanup when required.
2312  * The underlying filesystem must not drop the kernel lock or call
2313  * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED
2314  * return code.
2315  */
2316 int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf)
2317 {
2318 	if (filp->f_op->lock)
2319 		return filp->f_op->lock(filp, cmd, fl);
2320 	else
2321 		return posix_lock_file(filp, fl, conf);
2322 }
2323 EXPORT_SYMBOL_GPL(vfs_lock_file);
2324 
2325 static int do_lock_file_wait(struct file *filp, unsigned int cmd,
2326 			     struct file_lock *fl)
2327 {
2328 	int error;
2329 
2330 	error = security_file_lock(filp, fl->fl_type);
2331 	if (error)
2332 		return error;
2333 
2334 	for (;;) {
2335 		error = vfs_lock_file(filp, cmd, fl, NULL);
2336 		if (error != FILE_LOCK_DEFERRED)
2337 			break;
2338 		error = wait_event_interruptible(fl->fl_wait,
2339 					list_empty(&fl->fl_blocked_member));
2340 		if (error)
2341 			break;
2342 	}
2343 	locks_delete_block(fl);
2344 
2345 	return error;
2346 }
2347 
2348 /* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */
2349 static int
2350 check_fmode_for_setlk(struct file_lock *fl)
2351 {
2352 	switch (fl->fl_type) {
2353 	case F_RDLCK:
2354 		if (!(fl->fl_file->f_mode & FMODE_READ))
2355 			return -EBADF;
2356 		break;
2357 	case F_WRLCK:
2358 		if (!(fl->fl_file->f_mode & FMODE_WRITE))
2359 			return -EBADF;
2360 	}
2361 	return 0;
2362 }
2363 
2364 /* Apply the lock described by l to an open file descriptor.
2365  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2366  */
2367 int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd,
2368 		struct flock *flock)
2369 {
2370 	struct file_lock *file_lock = locks_alloc_lock();
2371 	struct inode *inode = locks_inode(filp);
2372 	struct file *f;
2373 	int error;
2374 
2375 	if (file_lock == NULL)
2376 		return -ENOLCK;
2377 
2378 	error = flock_to_posix_lock(filp, file_lock, flock);
2379 	if (error)
2380 		goto out;
2381 
2382 	error = check_fmode_for_setlk(file_lock);
2383 	if (error)
2384 		goto out;
2385 
2386 	/*
2387 	 * If the cmd is requesting file-private locks, then set the
2388 	 * FL_OFDLCK flag and override the owner.
2389 	 */
2390 	switch (cmd) {
2391 	case F_OFD_SETLK:
2392 		error = -EINVAL;
2393 		if (flock->l_pid != 0)
2394 			goto out;
2395 
2396 		cmd = F_SETLK;
2397 		file_lock->fl_flags |= FL_OFDLCK;
2398 		file_lock->fl_owner = filp;
2399 		break;
2400 	case F_OFD_SETLKW:
2401 		error = -EINVAL;
2402 		if (flock->l_pid != 0)
2403 			goto out;
2404 
2405 		cmd = F_SETLKW;
2406 		file_lock->fl_flags |= FL_OFDLCK;
2407 		file_lock->fl_owner = filp;
2408 		fallthrough;
2409 	case F_SETLKW:
2410 		file_lock->fl_flags |= FL_SLEEP;
2411 	}
2412 
2413 	error = do_lock_file_wait(filp, cmd, file_lock);
2414 
2415 	/*
2416 	 * Attempt to detect a close/fcntl race and recover by releasing the
2417 	 * lock that was just acquired. There is no need to do that when we're
2418 	 * unlocking though, or for OFD locks.
2419 	 */
2420 	if (!error && file_lock->fl_type != F_UNLCK &&
2421 	    !(file_lock->fl_flags & FL_OFDLCK)) {
2422 		struct files_struct *files = current->files;
2423 		/*
2424 		 * We need that spin_lock here - it prevents reordering between
2425 		 * update of i_flctx->flc_posix and check for it done in
2426 		 * close(). rcu_read_lock() wouldn't do.
2427 		 */
2428 		spin_lock(&files->file_lock);
2429 		f = files_lookup_fd_locked(files, fd);
2430 		spin_unlock(&files->file_lock);
2431 		if (f != filp) {
2432 			file_lock->fl_type = F_UNLCK;
2433 			error = do_lock_file_wait(filp, cmd, file_lock);
2434 			WARN_ON_ONCE(error);
2435 			error = -EBADF;
2436 		}
2437 	}
2438 out:
2439 	trace_fcntl_setlk(inode, file_lock, error);
2440 	locks_free_lock(file_lock);
2441 	return error;
2442 }
2443 
2444 #if BITS_PER_LONG == 32
2445 /* Report the first existing lock that would conflict with l.
2446  * This implements the F_GETLK command of fcntl().
2447  */
2448 int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock)
2449 {
2450 	struct file_lock *fl;
2451 	int error;
2452 
2453 	fl = locks_alloc_lock();
2454 	if (fl == NULL)
2455 		return -ENOMEM;
2456 
2457 	error = -EINVAL;
2458 	if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK)
2459 		goto out;
2460 
2461 	error = flock64_to_posix_lock(filp, fl, flock);
2462 	if (error)
2463 		goto out;
2464 
2465 	if (cmd == F_OFD_GETLK) {
2466 		error = -EINVAL;
2467 		if (flock->l_pid != 0)
2468 			goto out;
2469 
2470 		cmd = F_GETLK64;
2471 		fl->fl_flags |= FL_OFDLCK;
2472 		fl->fl_owner = filp;
2473 	}
2474 
2475 	error = vfs_test_lock(filp, fl);
2476 	if (error)
2477 		goto out;
2478 
2479 	flock->l_type = fl->fl_type;
2480 	if (fl->fl_type != F_UNLCK)
2481 		posix_lock_to_flock64(flock, fl);
2482 
2483 out:
2484 	locks_free_lock(fl);
2485 	return error;
2486 }
2487 
2488 /* Apply the lock described by l to an open file descriptor.
2489  * This implements both the F_SETLK and F_SETLKW commands of fcntl().
2490  */
2491 int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd,
2492 		struct flock64 *flock)
2493 {
2494 	struct file_lock *file_lock = locks_alloc_lock();
2495 	struct file *f;
2496 	int error;
2497 
2498 	if (file_lock == NULL)
2499 		return -ENOLCK;
2500 
2501 	error = flock64_to_posix_lock(filp, file_lock, flock);
2502 	if (error)
2503 		goto out;
2504 
2505 	error = check_fmode_for_setlk(file_lock);
2506 	if (error)
2507 		goto out;
2508 
2509 	/*
2510 	 * If the cmd is requesting file-private locks, then set the
2511 	 * FL_OFDLCK flag and override the owner.
2512 	 */
2513 	switch (cmd) {
2514 	case F_OFD_SETLK:
2515 		error = -EINVAL;
2516 		if (flock->l_pid != 0)
2517 			goto out;
2518 
2519 		cmd = F_SETLK64;
2520 		file_lock->fl_flags |= FL_OFDLCK;
2521 		file_lock->fl_owner = filp;
2522 		break;
2523 	case F_OFD_SETLKW:
2524 		error = -EINVAL;
2525 		if (flock->l_pid != 0)
2526 			goto out;
2527 
2528 		cmd = F_SETLKW64;
2529 		file_lock->fl_flags |= FL_OFDLCK;
2530 		file_lock->fl_owner = filp;
2531 		fallthrough;
2532 	case F_SETLKW64:
2533 		file_lock->fl_flags |= FL_SLEEP;
2534 	}
2535 
2536 	error = do_lock_file_wait(filp, cmd, file_lock);
2537 
2538 	/*
2539 	 * Attempt to detect a close/fcntl race and recover by releasing the
2540 	 * lock that was just acquired. There is no need to do that when we're
2541 	 * unlocking though, or for OFD locks.
2542 	 */
2543 	if (!error && file_lock->fl_type != F_UNLCK &&
2544 	    !(file_lock->fl_flags & FL_OFDLCK)) {
2545 		struct files_struct *files = current->files;
2546 		/*
2547 		 * We need that spin_lock here - it prevents reordering between
2548 		 * update of i_flctx->flc_posix and check for it done in
2549 		 * close(). rcu_read_lock() wouldn't do.
2550 		 */
2551 		spin_lock(&files->file_lock);
2552 		f = files_lookup_fd_locked(files, fd);
2553 		spin_unlock(&files->file_lock);
2554 		if (f != filp) {
2555 			file_lock->fl_type = F_UNLCK;
2556 			error = do_lock_file_wait(filp, cmd, file_lock);
2557 			WARN_ON_ONCE(error);
2558 			error = -EBADF;
2559 		}
2560 	}
2561 out:
2562 	locks_free_lock(file_lock);
2563 	return error;
2564 }
2565 #endif /* BITS_PER_LONG == 32 */
2566 
2567 /*
2568  * This function is called when the file is being removed
2569  * from the task's fd array.  POSIX locks belonging to this task
2570  * are deleted at this time.
2571  */
2572 void locks_remove_posix(struct file *filp, fl_owner_t owner)
2573 {
2574 	int error;
2575 	struct inode *inode = locks_inode(filp);
2576 	struct file_lock lock;
2577 	struct file_lock_context *ctx;
2578 
2579 	/*
2580 	 * If there are no locks held on this file, we don't need to call
2581 	 * posix_lock_file().  Another process could be setting a lock on this
2582 	 * file at the same time, but we wouldn't remove that lock anyway.
2583 	 */
2584 	ctx =  smp_load_acquire(&inode->i_flctx);
2585 	if (!ctx || list_empty(&ctx->flc_posix))
2586 		return;
2587 
2588 	locks_init_lock(&lock);
2589 	lock.fl_type = F_UNLCK;
2590 	lock.fl_flags = FL_POSIX | FL_CLOSE;
2591 	lock.fl_start = 0;
2592 	lock.fl_end = OFFSET_MAX;
2593 	lock.fl_owner = owner;
2594 	lock.fl_pid = current->tgid;
2595 	lock.fl_file = filp;
2596 	lock.fl_ops = NULL;
2597 	lock.fl_lmops = NULL;
2598 
2599 	error = vfs_lock_file(filp, F_SETLK, &lock, NULL);
2600 
2601 	if (lock.fl_ops && lock.fl_ops->fl_release_private)
2602 		lock.fl_ops->fl_release_private(&lock);
2603 	trace_locks_remove_posix(inode, &lock, error);
2604 }
2605 EXPORT_SYMBOL(locks_remove_posix);
2606 
2607 /* The i_flctx must be valid when calling into here */
2608 static void
2609 locks_remove_flock(struct file *filp, struct file_lock_context *flctx)
2610 {
2611 	struct file_lock fl;
2612 	struct inode *inode = locks_inode(filp);
2613 
2614 	if (list_empty(&flctx->flc_flock))
2615 		return;
2616 
2617 	flock_make_lock(filp, LOCK_UN, &fl);
2618 	fl.fl_flags |= FL_CLOSE;
2619 
2620 	if (filp->f_op->flock)
2621 		filp->f_op->flock(filp, F_SETLKW, &fl);
2622 	else
2623 		flock_lock_inode(inode, &fl);
2624 
2625 	if (fl.fl_ops && fl.fl_ops->fl_release_private)
2626 		fl.fl_ops->fl_release_private(&fl);
2627 }
2628 
2629 /* The i_flctx must be valid when calling into here */
2630 static void
2631 locks_remove_lease(struct file *filp, struct file_lock_context *ctx)
2632 {
2633 	struct file_lock *fl, *tmp;
2634 	LIST_HEAD(dispose);
2635 
2636 	if (list_empty(&ctx->flc_lease))
2637 		return;
2638 
2639 	percpu_down_read(&file_rwsem);
2640 	spin_lock(&ctx->flc_lock);
2641 	list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list)
2642 		if (filp == fl->fl_file)
2643 			lease_modify(fl, F_UNLCK, &dispose);
2644 	spin_unlock(&ctx->flc_lock);
2645 	percpu_up_read(&file_rwsem);
2646 
2647 	locks_dispose_list(&dispose);
2648 }
2649 
2650 /*
2651  * This function is called on the last close of an open file.
2652  */
2653 void locks_remove_file(struct file *filp)
2654 {
2655 	struct file_lock_context *ctx;
2656 
2657 	ctx = smp_load_acquire(&locks_inode(filp)->i_flctx);
2658 	if (!ctx)
2659 		return;
2660 
2661 	/* remove any OFD locks */
2662 	locks_remove_posix(filp, filp);
2663 
2664 	/* remove flock locks */
2665 	locks_remove_flock(filp, ctx);
2666 
2667 	/* remove any leases */
2668 	locks_remove_lease(filp, ctx);
2669 
2670 	spin_lock(&ctx->flc_lock);
2671 	locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX");
2672 	locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK");
2673 	locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE");
2674 	spin_unlock(&ctx->flc_lock);
2675 }
2676 
2677 /**
2678  * vfs_cancel_lock - file byte range unblock lock
2679  * @filp: The file to apply the unblock to
2680  * @fl: The lock to be unblocked
2681  *
2682  * Used by lock managers to cancel blocked requests
2683  */
2684 int vfs_cancel_lock(struct file *filp, struct file_lock *fl)
2685 {
2686 	if (filp->f_op->lock)
2687 		return filp->f_op->lock(filp, F_CANCELLK, fl);
2688 	return 0;
2689 }
2690 EXPORT_SYMBOL_GPL(vfs_cancel_lock);
2691 
2692 #ifdef CONFIG_PROC_FS
2693 #include <linux/proc_fs.h>
2694 #include <linux/seq_file.h>
2695 
2696 struct locks_iterator {
2697 	int	li_cpu;
2698 	loff_t	li_pos;
2699 };
2700 
2701 static void lock_get_status(struct seq_file *f, struct file_lock *fl,
2702 			    loff_t id, char *pfx, int repeat)
2703 {
2704 	struct inode *inode = NULL;
2705 	unsigned int fl_pid;
2706 	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2707 	int type;
2708 
2709 	fl_pid = locks_translate_pid(fl, proc_pidns);
2710 	/*
2711 	 * If lock owner is dead (and pid is freed) or not visible in current
2712 	 * pidns, zero is shown as a pid value. Check lock info from
2713 	 * init_pid_ns to get saved lock pid value.
2714 	 */
2715 
2716 	if (fl->fl_file != NULL)
2717 		inode = locks_inode(fl->fl_file);
2718 
2719 	seq_printf(f, "%lld: ", id);
2720 
2721 	if (repeat)
2722 		seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx);
2723 
2724 	if (IS_POSIX(fl)) {
2725 		if (fl->fl_flags & FL_ACCESS)
2726 			seq_puts(f, "ACCESS");
2727 		else if (IS_OFDLCK(fl))
2728 			seq_puts(f, "OFDLCK");
2729 		else
2730 			seq_puts(f, "POSIX ");
2731 
2732 		seq_printf(f, " %s ",
2733 			     (inode == NULL) ? "*NOINODE*" : "ADVISORY ");
2734 	} else if (IS_FLOCK(fl)) {
2735 		seq_puts(f, "FLOCK  ADVISORY  ");
2736 	} else if (IS_LEASE(fl)) {
2737 		if (fl->fl_flags & FL_DELEG)
2738 			seq_puts(f, "DELEG  ");
2739 		else
2740 			seq_puts(f, "LEASE  ");
2741 
2742 		if (lease_breaking(fl))
2743 			seq_puts(f, "BREAKING  ");
2744 		else if (fl->fl_file)
2745 			seq_puts(f, "ACTIVE    ");
2746 		else
2747 			seq_puts(f, "BREAKER   ");
2748 	} else {
2749 		seq_puts(f, "UNKNOWN UNKNOWN  ");
2750 	}
2751 	type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type;
2752 
2753 	seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" :
2754 			     (type == F_RDLCK) ? "READ" : "UNLCK");
2755 	if (inode) {
2756 		/* userspace relies on this representation of dev_t */
2757 		seq_printf(f, "%d %02x:%02x:%lu ", fl_pid,
2758 				MAJOR(inode->i_sb->s_dev),
2759 				MINOR(inode->i_sb->s_dev), inode->i_ino);
2760 	} else {
2761 		seq_printf(f, "%d <none>:0 ", fl_pid);
2762 	}
2763 	if (IS_POSIX(fl)) {
2764 		if (fl->fl_end == OFFSET_MAX)
2765 			seq_printf(f, "%Ld EOF\n", fl->fl_start);
2766 		else
2767 			seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end);
2768 	} else {
2769 		seq_puts(f, "0 EOF\n");
2770 	}
2771 }
2772 
2773 static struct file_lock *get_next_blocked_member(struct file_lock *node)
2774 {
2775 	struct file_lock *tmp;
2776 
2777 	/* NULL node or root node */
2778 	if (node == NULL || node->fl_blocker == NULL)
2779 		return NULL;
2780 
2781 	/* Next member in the linked list could be itself */
2782 	tmp = list_next_entry(node, fl_blocked_member);
2783 	if (list_entry_is_head(tmp, &node->fl_blocker->fl_blocked_requests, fl_blocked_member)
2784 		|| tmp == node) {
2785 		return NULL;
2786 	}
2787 
2788 	return tmp;
2789 }
2790 
2791 static int locks_show(struct seq_file *f, void *v)
2792 {
2793 	struct locks_iterator *iter = f->private;
2794 	struct file_lock *cur, *tmp;
2795 	struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb);
2796 	int level = 0;
2797 
2798 	cur = hlist_entry(v, struct file_lock, fl_link);
2799 
2800 	if (locks_translate_pid(cur, proc_pidns) == 0)
2801 		return 0;
2802 
2803 	/* View this crossed linked list as a binary tree, the first member of fl_blocked_requests
2804 	 * is the left child of current node, the next silibing in fl_blocked_member is the
2805 	 * right child, we can alse get the parent of current node from fl_blocker, so this
2806 	 * question becomes traversal of a binary tree
2807 	 */
2808 	while (cur != NULL) {
2809 		if (level)
2810 			lock_get_status(f, cur, iter->li_pos, "-> ", level);
2811 		else
2812 			lock_get_status(f, cur, iter->li_pos, "", level);
2813 
2814 		if (!list_empty(&cur->fl_blocked_requests)) {
2815 			/* Turn left */
2816 			cur = list_first_entry_or_null(&cur->fl_blocked_requests,
2817 				struct file_lock, fl_blocked_member);
2818 			level++;
2819 		} else {
2820 			/* Turn right */
2821 			tmp = get_next_blocked_member(cur);
2822 			/* Fall back to parent node */
2823 			while (tmp == NULL && cur->fl_blocker != NULL) {
2824 				cur = cur->fl_blocker;
2825 				level--;
2826 				tmp = get_next_blocked_member(cur);
2827 			}
2828 			cur = tmp;
2829 		}
2830 	}
2831 
2832 	return 0;
2833 }
2834 
2835 static void __show_fd_locks(struct seq_file *f,
2836 			struct list_head *head, int *id,
2837 			struct file *filp, struct files_struct *files)
2838 {
2839 	struct file_lock *fl;
2840 
2841 	list_for_each_entry(fl, head, fl_list) {
2842 
2843 		if (filp != fl->fl_file)
2844 			continue;
2845 		if (fl->fl_owner != files &&
2846 		    fl->fl_owner != filp)
2847 			continue;
2848 
2849 		(*id)++;
2850 		seq_puts(f, "lock:\t");
2851 		lock_get_status(f, fl, *id, "", 0);
2852 	}
2853 }
2854 
2855 void show_fd_locks(struct seq_file *f,
2856 		  struct file *filp, struct files_struct *files)
2857 {
2858 	struct inode *inode = locks_inode(filp);
2859 	struct file_lock_context *ctx;
2860 	int id = 0;
2861 
2862 	ctx = smp_load_acquire(&inode->i_flctx);
2863 	if (!ctx)
2864 		return;
2865 
2866 	spin_lock(&ctx->flc_lock);
2867 	__show_fd_locks(f, &ctx->flc_flock, &id, filp, files);
2868 	__show_fd_locks(f, &ctx->flc_posix, &id, filp, files);
2869 	__show_fd_locks(f, &ctx->flc_lease, &id, filp, files);
2870 	spin_unlock(&ctx->flc_lock);
2871 }
2872 
2873 static void *locks_start(struct seq_file *f, loff_t *pos)
2874 	__acquires(&blocked_lock_lock)
2875 {
2876 	struct locks_iterator *iter = f->private;
2877 
2878 	iter->li_pos = *pos + 1;
2879 	percpu_down_write(&file_rwsem);
2880 	spin_lock(&blocked_lock_lock);
2881 	return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos);
2882 }
2883 
2884 static void *locks_next(struct seq_file *f, void *v, loff_t *pos)
2885 {
2886 	struct locks_iterator *iter = f->private;
2887 
2888 	++iter->li_pos;
2889 	return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos);
2890 }
2891 
2892 static void locks_stop(struct seq_file *f, void *v)
2893 	__releases(&blocked_lock_lock)
2894 {
2895 	spin_unlock(&blocked_lock_lock);
2896 	percpu_up_write(&file_rwsem);
2897 }
2898 
2899 static const struct seq_operations locks_seq_operations = {
2900 	.start	= locks_start,
2901 	.next	= locks_next,
2902 	.stop	= locks_stop,
2903 	.show	= locks_show,
2904 };
2905 
2906 static int __init proc_locks_init(void)
2907 {
2908 	proc_create_seq_private("locks", 0, NULL, &locks_seq_operations,
2909 			sizeof(struct locks_iterator), NULL);
2910 	return 0;
2911 }
2912 fs_initcall(proc_locks_init);
2913 #endif
2914 
2915 static int __init filelock_init(void)
2916 {
2917 	int i;
2918 
2919 	flctx_cache = kmem_cache_create("file_lock_ctx",
2920 			sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL);
2921 
2922 	filelock_cache = kmem_cache_create("file_lock_cache",
2923 			sizeof(struct file_lock), 0, SLAB_PANIC, NULL);
2924 
2925 	for_each_possible_cpu(i) {
2926 		struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i);
2927 
2928 		spin_lock_init(&fll->lock);
2929 		INIT_HLIST_HEAD(&fll->hlist);
2930 	}
2931 
2932 	lease_notifier_chain_init();
2933 	return 0;
2934 }
2935 core_initcall(filelock_init);
2936