xref: /openbmc/linux/fs/libfs.c (revision f7f43858)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 		   struct kstat *stat, u32 request_mask,
33 		   unsigned int query_flags)
34 {
35 	struct inode *inode = d_inode(path->dentry);
36 	generic_fillattr(&nop_mnt_idmap, inode, stat);
37 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41 
42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 	buf->f_type = dentry->d_sb->s_magic;
45 	buf->f_bsize = PAGE_SIZE;
46 	buf->f_namelen = NAME_MAX;
47 	return 0;
48 }
49 EXPORT_SYMBOL(simple_statfs);
50 
51 /*
52  * Retaining negative dentries for an in-memory filesystem just wastes
53  * memory and lookup time: arrange for them to be deleted immediately.
54  */
55 int always_delete_dentry(const struct dentry *dentry)
56 {
57 	return 1;
58 }
59 EXPORT_SYMBOL(always_delete_dentry);
60 
61 const struct dentry_operations simple_dentry_operations = {
62 	.d_delete = always_delete_dentry,
63 };
64 EXPORT_SYMBOL(simple_dentry_operations);
65 
66 /*
67  * Lookup the data. This is trivial - if the dentry didn't already
68  * exist, we know it is negative.  Set d_op to delete negative dentries.
69  */
70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 {
72 	if (dentry->d_name.len > NAME_MAX)
73 		return ERR_PTR(-ENAMETOOLONG);
74 	if (!dentry->d_sb->s_d_op)
75 		d_set_d_op(dentry, &simple_dentry_operations);
76 	d_add(dentry, NULL);
77 	return NULL;
78 }
79 EXPORT_SYMBOL(simple_lookup);
80 
81 int dcache_dir_open(struct inode *inode, struct file *file)
82 {
83 	file->private_data = d_alloc_cursor(file->f_path.dentry);
84 
85 	return file->private_data ? 0 : -ENOMEM;
86 }
87 EXPORT_SYMBOL(dcache_dir_open);
88 
89 int dcache_dir_close(struct inode *inode, struct file *file)
90 {
91 	dput(file->private_data);
92 	return 0;
93 }
94 EXPORT_SYMBOL(dcache_dir_close);
95 
96 /* parent is locked at least shared */
97 /*
98  * Returns an element of siblings' list.
99  * We are looking for <count>th positive after <p>; if
100  * found, dentry is grabbed and returned to caller.
101  * If no such element exists, NULL is returned.
102  */
103 static struct dentry *scan_positives(struct dentry *cursor,
104 					struct list_head *p,
105 					loff_t count,
106 					struct dentry *last)
107 {
108 	struct dentry *dentry = cursor->d_parent, *found = NULL;
109 
110 	spin_lock(&dentry->d_lock);
111 	while ((p = p->next) != &dentry->d_subdirs) {
112 		struct dentry *d = list_entry(p, struct dentry, d_child);
113 		// we must at least skip cursors, to avoid livelocks
114 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 			continue;
116 		if (simple_positive(d) && !--count) {
117 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 			if (simple_positive(d))
119 				found = dget_dlock(d);
120 			spin_unlock(&d->d_lock);
121 			if (likely(found))
122 				break;
123 			count = 1;
124 		}
125 		if (need_resched()) {
126 			list_move(&cursor->d_child, p);
127 			p = &cursor->d_child;
128 			spin_unlock(&dentry->d_lock);
129 			cond_resched();
130 			spin_lock(&dentry->d_lock);
131 		}
132 	}
133 	spin_unlock(&dentry->d_lock);
134 	dput(last);
135 	return found;
136 }
137 
138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139 {
140 	struct dentry *dentry = file->f_path.dentry;
141 	switch (whence) {
142 		case 1:
143 			offset += file->f_pos;
144 			fallthrough;
145 		case 0:
146 			if (offset >= 0)
147 				break;
148 			fallthrough;
149 		default:
150 			return -EINVAL;
151 	}
152 	if (offset != file->f_pos) {
153 		struct dentry *cursor = file->private_data;
154 		struct dentry *to = NULL;
155 
156 		inode_lock_shared(dentry->d_inode);
157 
158 		if (offset > 2)
159 			to = scan_positives(cursor, &dentry->d_subdirs,
160 					    offset - 2, NULL);
161 		spin_lock(&dentry->d_lock);
162 		if (to)
163 			list_move(&cursor->d_child, &to->d_child);
164 		else
165 			list_del_init(&cursor->d_child);
166 		spin_unlock(&dentry->d_lock);
167 		dput(to);
168 
169 		file->f_pos = offset;
170 
171 		inode_unlock_shared(dentry->d_inode);
172 	}
173 	return offset;
174 }
175 EXPORT_SYMBOL(dcache_dir_lseek);
176 
177 /*
178  * Directory is locked and all positive dentries in it are safe, since
179  * for ramfs-type trees they can't go away without unlink() or rmdir(),
180  * both impossible due to the lock on directory.
181  */
182 
183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 	struct dentry *dentry = file->f_path.dentry;
186 	struct dentry *cursor = file->private_data;
187 	struct list_head *anchor = &dentry->d_subdirs;
188 	struct dentry *next = NULL;
189 	struct list_head *p;
190 
191 	if (!dir_emit_dots(file, ctx))
192 		return 0;
193 
194 	if (ctx->pos == 2)
195 		p = anchor;
196 	else if (!list_empty(&cursor->d_child))
197 		p = &cursor->d_child;
198 	else
199 		return 0;
200 
201 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
202 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
203 			      d_inode(next)->i_ino,
204 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
205 			break;
206 		ctx->pos++;
207 		p = &next->d_child;
208 	}
209 	spin_lock(&dentry->d_lock);
210 	if (next)
211 		list_move_tail(&cursor->d_child, &next->d_child);
212 	else
213 		list_del_init(&cursor->d_child);
214 	spin_unlock(&dentry->d_lock);
215 	dput(next);
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(dcache_readdir);
220 
221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222 {
223 	return -EISDIR;
224 }
225 EXPORT_SYMBOL(generic_read_dir);
226 
227 const struct file_operations simple_dir_operations = {
228 	.open		= dcache_dir_open,
229 	.release	= dcache_dir_close,
230 	.llseek		= dcache_dir_lseek,
231 	.read		= generic_read_dir,
232 	.iterate_shared	= dcache_readdir,
233 	.fsync		= noop_fsync,
234 };
235 EXPORT_SYMBOL(simple_dir_operations);
236 
237 const struct inode_operations simple_dir_inode_operations = {
238 	.lookup		= simple_lookup,
239 };
240 EXPORT_SYMBOL(simple_dir_inode_operations);
241 
242 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
243 {
244 	struct dentry *child = NULL;
245 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
246 
247 	spin_lock(&parent->d_lock);
248 	while ((p = p->next) != &parent->d_subdirs) {
249 		struct dentry *d = container_of(p, struct dentry, d_child);
250 		if (simple_positive(d)) {
251 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
252 			if (simple_positive(d))
253 				child = dget_dlock(d);
254 			spin_unlock(&d->d_lock);
255 			if (likely(child))
256 				break;
257 		}
258 	}
259 	spin_unlock(&parent->d_lock);
260 	dput(prev);
261 	return child;
262 }
263 
264 void simple_recursive_removal(struct dentry *dentry,
265                               void (*callback)(struct dentry *))
266 {
267 	struct dentry *this = dget(dentry);
268 	while (true) {
269 		struct dentry *victim = NULL, *child;
270 		struct inode *inode = this->d_inode;
271 
272 		inode_lock(inode);
273 		if (d_is_dir(this))
274 			inode->i_flags |= S_DEAD;
275 		while ((child = find_next_child(this, victim)) == NULL) {
276 			// kill and ascend
277 			// update metadata while it's still locked
278 			inode_set_ctime_current(inode);
279 			clear_nlink(inode);
280 			inode_unlock(inode);
281 			victim = this;
282 			this = this->d_parent;
283 			inode = this->d_inode;
284 			inode_lock(inode);
285 			if (simple_positive(victim)) {
286 				d_invalidate(victim);	// avoid lost mounts
287 				if (d_is_dir(victim))
288 					fsnotify_rmdir(inode, victim);
289 				else
290 					fsnotify_unlink(inode, victim);
291 				if (callback)
292 					callback(victim);
293 				dput(victim);		// unpin it
294 			}
295 			if (victim == dentry) {
296 				inode->i_mtime = inode_set_ctime_current(inode);
297 				if (d_is_dir(dentry))
298 					drop_nlink(inode);
299 				inode_unlock(inode);
300 				dput(dentry);
301 				return;
302 			}
303 		}
304 		inode_unlock(inode);
305 		this = child;
306 	}
307 }
308 EXPORT_SYMBOL(simple_recursive_removal);
309 
310 static const struct super_operations simple_super_operations = {
311 	.statfs		= simple_statfs,
312 };
313 
314 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
315 {
316 	struct pseudo_fs_context *ctx = fc->fs_private;
317 	struct inode *root;
318 
319 	s->s_maxbytes = MAX_LFS_FILESIZE;
320 	s->s_blocksize = PAGE_SIZE;
321 	s->s_blocksize_bits = PAGE_SHIFT;
322 	s->s_magic = ctx->magic;
323 	s->s_op = ctx->ops ?: &simple_super_operations;
324 	s->s_xattr = ctx->xattr;
325 	s->s_time_gran = 1;
326 	root = new_inode(s);
327 	if (!root)
328 		return -ENOMEM;
329 
330 	/*
331 	 * since this is the first inode, make it number 1. New inodes created
332 	 * after this must take care not to collide with it (by passing
333 	 * max_reserved of 1 to iunique).
334 	 */
335 	root->i_ino = 1;
336 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
337 	root->i_atime = root->i_mtime = inode_set_ctime_current(root);
338 	s->s_root = d_make_root(root);
339 	if (!s->s_root)
340 		return -ENOMEM;
341 	s->s_d_op = ctx->dops;
342 	return 0;
343 }
344 
345 static int pseudo_fs_get_tree(struct fs_context *fc)
346 {
347 	return get_tree_nodev(fc, pseudo_fs_fill_super);
348 }
349 
350 static void pseudo_fs_free(struct fs_context *fc)
351 {
352 	kfree(fc->fs_private);
353 }
354 
355 static const struct fs_context_operations pseudo_fs_context_ops = {
356 	.free		= pseudo_fs_free,
357 	.get_tree	= pseudo_fs_get_tree,
358 };
359 
360 /*
361  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
362  * will never be mountable)
363  */
364 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
365 					unsigned long magic)
366 {
367 	struct pseudo_fs_context *ctx;
368 
369 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
370 	if (likely(ctx)) {
371 		ctx->magic = magic;
372 		fc->fs_private = ctx;
373 		fc->ops = &pseudo_fs_context_ops;
374 		fc->sb_flags |= SB_NOUSER;
375 		fc->global = true;
376 	}
377 	return ctx;
378 }
379 EXPORT_SYMBOL(init_pseudo);
380 
381 int simple_open(struct inode *inode, struct file *file)
382 {
383 	if (inode->i_private)
384 		file->private_data = inode->i_private;
385 	return 0;
386 }
387 EXPORT_SYMBOL(simple_open);
388 
389 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
390 {
391 	struct inode *inode = d_inode(old_dentry);
392 
393 	dir->i_mtime = inode_set_ctime_to_ts(dir,
394 					     inode_set_ctime_current(inode));
395 	inc_nlink(inode);
396 	ihold(inode);
397 	dget(dentry);
398 	d_instantiate(dentry, inode);
399 	return 0;
400 }
401 EXPORT_SYMBOL(simple_link);
402 
403 int simple_empty(struct dentry *dentry)
404 {
405 	struct dentry *child;
406 	int ret = 0;
407 
408 	spin_lock(&dentry->d_lock);
409 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
410 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
411 		if (simple_positive(child)) {
412 			spin_unlock(&child->d_lock);
413 			goto out;
414 		}
415 		spin_unlock(&child->d_lock);
416 	}
417 	ret = 1;
418 out:
419 	spin_unlock(&dentry->d_lock);
420 	return ret;
421 }
422 EXPORT_SYMBOL(simple_empty);
423 
424 int simple_unlink(struct inode *dir, struct dentry *dentry)
425 {
426 	struct inode *inode = d_inode(dentry);
427 
428 	dir->i_mtime = inode_set_ctime_to_ts(dir,
429 					     inode_set_ctime_current(inode));
430 	drop_nlink(inode);
431 	dput(dentry);
432 	return 0;
433 }
434 EXPORT_SYMBOL(simple_unlink);
435 
436 int simple_rmdir(struct inode *dir, struct dentry *dentry)
437 {
438 	if (!simple_empty(dentry))
439 		return -ENOTEMPTY;
440 
441 	drop_nlink(d_inode(dentry));
442 	simple_unlink(dir, dentry);
443 	drop_nlink(dir);
444 	return 0;
445 }
446 EXPORT_SYMBOL(simple_rmdir);
447 
448 /**
449  * simple_rename_timestamp - update the various inode timestamps for rename
450  * @old_dir: old parent directory
451  * @old_dentry: dentry that is being renamed
452  * @new_dir: new parent directory
453  * @new_dentry: target for rename
454  *
455  * POSIX mandates that the old and new parent directories have their ctime and
456  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
457  * their ctime updated.
458  */
459 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
460 			     struct inode *new_dir, struct dentry *new_dentry)
461 {
462 	struct inode *newino = d_inode(new_dentry);
463 
464 	old_dir->i_mtime = inode_set_ctime_current(old_dir);
465 	if (new_dir != old_dir)
466 		new_dir->i_mtime = inode_set_ctime_current(new_dir);
467 	inode_set_ctime_current(d_inode(old_dentry));
468 	if (newino)
469 		inode_set_ctime_current(newino);
470 }
471 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
472 
473 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
474 			   struct inode *new_dir, struct dentry *new_dentry)
475 {
476 	bool old_is_dir = d_is_dir(old_dentry);
477 	bool new_is_dir = d_is_dir(new_dentry);
478 
479 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
480 		if (old_is_dir) {
481 			drop_nlink(old_dir);
482 			inc_nlink(new_dir);
483 		} else {
484 			drop_nlink(new_dir);
485 			inc_nlink(old_dir);
486 		}
487 	}
488 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(simple_rename_exchange);
492 
493 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
494 		  struct dentry *old_dentry, struct inode *new_dir,
495 		  struct dentry *new_dentry, unsigned int flags)
496 {
497 	int they_are_dirs = d_is_dir(old_dentry);
498 
499 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
500 		return -EINVAL;
501 
502 	if (flags & RENAME_EXCHANGE)
503 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
504 
505 	if (!simple_empty(new_dentry))
506 		return -ENOTEMPTY;
507 
508 	if (d_really_is_positive(new_dentry)) {
509 		simple_unlink(new_dir, new_dentry);
510 		if (they_are_dirs) {
511 			drop_nlink(d_inode(new_dentry));
512 			drop_nlink(old_dir);
513 		}
514 	} else if (they_are_dirs) {
515 		drop_nlink(old_dir);
516 		inc_nlink(new_dir);
517 	}
518 
519 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
520 	return 0;
521 }
522 EXPORT_SYMBOL(simple_rename);
523 
524 /**
525  * simple_setattr - setattr for simple filesystem
526  * @idmap: idmap of the target mount
527  * @dentry: dentry
528  * @iattr: iattr structure
529  *
530  * Returns 0 on success, -error on failure.
531  *
532  * simple_setattr is a simple ->setattr implementation without a proper
533  * implementation of size changes.
534  *
535  * It can either be used for in-memory filesystems or special files
536  * on simple regular filesystems.  Anything that needs to change on-disk
537  * or wire state on size changes needs its own setattr method.
538  */
539 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
540 		   struct iattr *iattr)
541 {
542 	struct inode *inode = d_inode(dentry);
543 	int error;
544 
545 	error = setattr_prepare(idmap, dentry, iattr);
546 	if (error)
547 		return error;
548 
549 	if (iattr->ia_valid & ATTR_SIZE)
550 		truncate_setsize(inode, iattr->ia_size);
551 	setattr_copy(idmap, inode, iattr);
552 	mark_inode_dirty(inode);
553 	return 0;
554 }
555 EXPORT_SYMBOL(simple_setattr);
556 
557 static int simple_read_folio(struct file *file, struct folio *folio)
558 {
559 	folio_zero_range(folio, 0, folio_size(folio));
560 	flush_dcache_folio(folio);
561 	folio_mark_uptodate(folio);
562 	folio_unlock(folio);
563 	return 0;
564 }
565 
566 int simple_write_begin(struct file *file, struct address_space *mapping,
567 			loff_t pos, unsigned len,
568 			struct page **pagep, void **fsdata)
569 {
570 	struct page *page;
571 	pgoff_t index;
572 
573 	index = pos >> PAGE_SHIFT;
574 
575 	page = grab_cache_page_write_begin(mapping, index);
576 	if (!page)
577 		return -ENOMEM;
578 
579 	*pagep = page;
580 
581 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
582 		unsigned from = pos & (PAGE_SIZE - 1);
583 
584 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
585 	}
586 	return 0;
587 }
588 EXPORT_SYMBOL(simple_write_begin);
589 
590 /**
591  * simple_write_end - .write_end helper for non-block-device FSes
592  * @file: See .write_end of address_space_operations
593  * @mapping: 		"
594  * @pos: 		"
595  * @len: 		"
596  * @copied: 		"
597  * @page: 		"
598  * @fsdata: 		"
599  *
600  * simple_write_end does the minimum needed for updating a page after writing is
601  * done. It has the same API signature as the .write_end of
602  * address_space_operations vector. So it can just be set onto .write_end for
603  * FSes that don't need any other processing. i_mutex is assumed to be held.
604  * Block based filesystems should use generic_write_end().
605  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
606  * is not called, so a filesystem that actually does store data in .write_inode
607  * should extend on what's done here with a call to mark_inode_dirty() in the
608  * case that i_size has changed.
609  *
610  * Use *ONLY* with simple_read_folio()
611  */
612 static int simple_write_end(struct file *file, struct address_space *mapping,
613 			loff_t pos, unsigned len, unsigned copied,
614 			struct page *page, void *fsdata)
615 {
616 	struct inode *inode = page->mapping->host;
617 	loff_t last_pos = pos + copied;
618 
619 	/* zero the stale part of the page if we did a short copy */
620 	if (!PageUptodate(page)) {
621 		if (copied < len) {
622 			unsigned from = pos & (PAGE_SIZE - 1);
623 
624 			zero_user(page, from + copied, len - copied);
625 		}
626 		SetPageUptodate(page);
627 	}
628 	/*
629 	 * No need to use i_size_read() here, the i_size
630 	 * cannot change under us because we hold the i_mutex.
631 	 */
632 	if (last_pos > inode->i_size)
633 		i_size_write(inode, last_pos);
634 
635 	set_page_dirty(page);
636 	unlock_page(page);
637 	put_page(page);
638 
639 	return copied;
640 }
641 
642 /*
643  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
644  */
645 const struct address_space_operations ram_aops = {
646 	.read_folio	= simple_read_folio,
647 	.write_begin	= simple_write_begin,
648 	.write_end	= simple_write_end,
649 	.dirty_folio	= noop_dirty_folio,
650 };
651 EXPORT_SYMBOL(ram_aops);
652 
653 /*
654  * the inodes created here are not hashed. If you use iunique to generate
655  * unique inode values later for this filesystem, then you must take care
656  * to pass it an appropriate max_reserved value to avoid collisions.
657  */
658 int simple_fill_super(struct super_block *s, unsigned long magic,
659 		      const struct tree_descr *files)
660 {
661 	struct inode *inode;
662 	struct dentry *root;
663 	struct dentry *dentry;
664 	int i;
665 
666 	s->s_blocksize = PAGE_SIZE;
667 	s->s_blocksize_bits = PAGE_SHIFT;
668 	s->s_magic = magic;
669 	s->s_op = &simple_super_operations;
670 	s->s_time_gran = 1;
671 
672 	inode = new_inode(s);
673 	if (!inode)
674 		return -ENOMEM;
675 	/*
676 	 * because the root inode is 1, the files array must not contain an
677 	 * entry at index 1
678 	 */
679 	inode->i_ino = 1;
680 	inode->i_mode = S_IFDIR | 0755;
681 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
682 	inode->i_op = &simple_dir_inode_operations;
683 	inode->i_fop = &simple_dir_operations;
684 	set_nlink(inode, 2);
685 	root = d_make_root(inode);
686 	if (!root)
687 		return -ENOMEM;
688 	for (i = 0; !files->name || files->name[0]; i++, files++) {
689 		if (!files->name)
690 			continue;
691 
692 		/* warn if it tries to conflict with the root inode */
693 		if (unlikely(i == 1))
694 			printk(KERN_WARNING "%s: %s passed in a files array"
695 				"with an index of 1!\n", __func__,
696 				s->s_type->name);
697 
698 		dentry = d_alloc_name(root, files->name);
699 		if (!dentry)
700 			goto out;
701 		inode = new_inode(s);
702 		if (!inode) {
703 			dput(dentry);
704 			goto out;
705 		}
706 		inode->i_mode = S_IFREG | files->mode;
707 		inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
708 		inode->i_fop = files->ops;
709 		inode->i_ino = i;
710 		d_add(dentry, inode);
711 	}
712 	s->s_root = root;
713 	return 0;
714 out:
715 	d_genocide(root);
716 	shrink_dcache_parent(root);
717 	dput(root);
718 	return -ENOMEM;
719 }
720 EXPORT_SYMBOL(simple_fill_super);
721 
722 static DEFINE_SPINLOCK(pin_fs_lock);
723 
724 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
725 {
726 	struct vfsmount *mnt = NULL;
727 	spin_lock(&pin_fs_lock);
728 	if (unlikely(!*mount)) {
729 		spin_unlock(&pin_fs_lock);
730 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
731 		if (IS_ERR(mnt))
732 			return PTR_ERR(mnt);
733 		spin_lock(&pin_fs_lock);
734 		if (!*mount)
735 			*mount = mnt;
736 	}
737 	mntget(*mount);
738 	++*count;
739 	spin_unlock(&pin_fs_lock);
740 	mntput(mnt);
741 	return 0;
742 }
743 EXPORT_SYMBOL(simple_pin_fs);
744 
745 void simple_release_fs(struct vfsmount **mount, int *count)
746 {
747 	struct vfsmount *mnt;
748 	spin_lock(&pin_fs_lock);
749 	mnt = *mount;
750 	if (!--*count)
751 		*mount = NULL;
752 	spin_unlock(&pin_fs_lock);
753 	mntput(mnt);
754 }
755 EXPORT_SYMBOL(simple_release_fs);
756 
757 /**
758  * simple_read_from_buffer - copy data from the buffer to user space
759  * @to: the user space buffer to read to
760  * @count: the maximum number of bytes to read
761  * @ppos: the current position in the buffer
762  * @from: the buffer to read from
763  * @available: the size of the buffer
764  *
765  * The simple_read_from_buffer() function reads up to @count bytes from the
766  * buffer @from at offset @ppos into the user space address starting at @to.
767  *
768  * On success, the number of bytes read is returned and the offset @ppos is
769  * advanced by this number, or negative value is returned on error.
770  **/
771 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
772 				const void *from, size_t available)
773 {
774 	loff_t pos = *ppos;
775 	size_t ret;
776 
777 	if (pos < 0)
778 		return -EINVAL;
779 	if (pos >= available || !count)
780 		return 0;
781 	if (count > available - pos)
782 		count = available - pos;
783 	ret = copy_to_user(to, from + pos, count);
784 	if (ret == count)
785 		return -EFAULT;
786 	count -= ret;
787 	*ppos = pos + count;
788 	return count;
789 }
790 EXPORT_SYMBOL(simple_read_from_buffer);
791 
792 /**
793  * simple_write_to_buffer - copy data from user space to the buffer
794  * @to: the buffer to write to
795  * @available: the size of the buffer
796  * @ppos: the current position in the buffer
797  * @from: the user space buffer to read from
798  * @count: the maximum number of bytes to read
799  *
800  * The simple_write_to_buffer() function reads up to @count bytes from the user
801  * space address starting at @from into the buffer @to at offset @ppos.
802  *
803  * On success, the number of bytes written is returned and the offset @ppos is
804  * advanced by this number, or negative value is returned on error.
805  **/
806 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
807 		const void __user *from, size_t count)
808 {
809 	loff_t pos = *ppos;
810 	size_t res;
811 
812 	if (pos < 0)
813 		return -EINVAL;
814 	if (pos >= available || !count)
815 		return 0;
816 	if (count > available - pos)
817 		count = available - pos;
818 	res = copy_from_user(to + pos, from, count);
819 	if (res == count)
820 		return -EFAULT;
821 	count -= res;
822 	*ppos = pos + count;
823 	return count;
824 }
825 EXPORT_SYMBOL(simple_write_to_buffer);
826 
827 /**
828  * memory_read_from_buffer - copy data from the buffer
829  * @to: the kernel space buffer to read to
830  * @count: the maximum number of bytes to read
831  * @ppos: the current position in the buffer
832  * @from: the buffer to read from
833  * @available: the size of the buffer
834  *
835  * The memory_read_from_buffer() function reads up to @count bytes from the
836  * buffer @from at offset @ppos into the kernel space address starting at @to.
837  *
838  * On success, the number of bytes read is returned and the offset @ppos is
839  * advanced by this number, or negative value is returned on error.
840  **/
841 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
842 				const void *from, size_t available)
843 {
844 	loff_t pos = *ppos;
845 
846 	if (pos < 0)
847 		return -EINVAL;
848 	if (pos >= available)
849 		return 0;
850 	if (count > available - pos)
851 		count = available - pos;
852 	memcpy(to, from + pos, count);
853 	*ppos = pos + count;
854 
855 	return count;
856 }
857 EXPORT_SYMBOL(memory_read_from_buffer);
858 
859 /*
860  * Transaction based IO.
861  * The file expects a single write which triggers the transaction, and then
862  * possibly a read which collects the result - which is stored in a
863  * file-local buffer.
864  */
865 
866 void simple_transaction_set(struct file *file, size_t n)
867 {
868 	struct simple_transaction_argresp *ar = file->private_data;
869 
870 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
871 
872 	/*
873 	 * The barrier ensures that ar->size will really remain zero until
874 	 * ar->data is ready for reading.
875 	 */
876 	smp_mb();
877 	ar->size = n;
878 }
879 EXPORT_SYMBOL(simple_transaction_set);
880 
881 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
882 {
883 	struct simple_transaction_argresp *ar;
884 	static DEFINE_SPINLOCK(simple_transaction_lock);
885 
886 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
887 		return ERR_PTR(-EFBIG);
888 
889 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
890 	if (!ar)
891 		return ERR_PTR(-ENOMEM);
892 
893 	spin_lock(&simple_transaction_lock);
894 
895 	/* only one write allowed per open */
896 	if (file->private_data) {
897 		spin_unlock(&simple_transaction_lock);
898 		free_page((unsigned long)ar);
899 		return ERR_PTR(-EBUSY);
900 	}
901 
902 	file->private_data = ar;
903 
904 	spin_unlock(&simple_transaction_lock);
905 
906 	if (copy_from_user(ar->data, buf, size))
907 		return ERR_PTR(-EFAULT);
908 
909 	return ar->data;
910 }
911 EXPORT_SYMBOL(simple_transaction_get);
912 
913 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
914 {
915 	struct simple_transaction_argresp *ar = file->private_data;
916 
917 	if (!ar)
918 		return 0;
919 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
920 }
921 EXPORT_SYMBOL(simple_transaction_read);
922 
923 int simple_transaction_release(struct inode *inode, struct file *file)
924 {
925 	free_page((unsigned long)file->private_data);
926 	return 0;
927 }
928 EXPORT_SYMBOL(simple_transaction_release);
929 
930 /* Simple attribute files */
931 
932 struct simple_attr {
933 	int (*get)(void *, u64 *);
934 	int (*set)(void *, u64);
935 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
936 	char set_buf[24];
937 	void *data;
938 	const char *fmt;	/* format for read operation */
939 	struct mutex mutex;	/* protects access to these buffers */
940 };
941 
942 /* simple_attr_open is called by an actual attribute open file operation
943  * to set the attribute specific access operations. */
944 int simple_attr_open(struct inode *inode, struct file *file,
945 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
946 		     const char *fmt)
947 {
948 	struct simple_attr *attr;
949 
950 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
951 	if (!attr)
952 		return -ENOMEM;
953 
954 	attr->get = get;
955 	attr->set = set;
956 	attr->data = inode->i_private;
957 	attr->fmt = fmt;
958 	mutex_init(&attr->mutex);
959 
960 	file->private_data = attr;
961 
962 	return nonseekable_open(inode, file);
963 }
964 EXPORT_SYMBOL_GPL(simple_attr_open);
965 
966 int simple_attr_release(struct inode *inode, struct file *file)
967 {
968 	kfree(file->private_data);
969 	return 0;
970 }
971 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
972 
973 /* read from the buffer that is filled with the get function */
974 ssize_t simple_attr_read(struct file *file, char __user *buf,
975 			 size_t len, loff_t *ppos)
976 {
977 	struct simple_attr *attr;
978 	size_t size;
979 	ssize_t ret;
980 
981 	attr = file->private_data;
982 
983 	if (!attr->get)
984 		return -EACCES;
985 
986 	ret = mutex_lock_interruptible(&attr->mutex);
987 	if (ret)
988 		return ret;
989 
990 	if (*ppos && attr->get_buf[0]) {
991 		/* continued read */
992 		size = strlen(attr->get_buf);
993 	} else {
994 		/* first read */
995 		u64 val;
996 		ret = attr->get(attr->data, &val);
997 		if (ret)
998 			goto out;
999 
1000 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1001 				 attr->fmt, (unsigned long long)val);
1002 	}
1003 
1004 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1005 out:
1006 	mutex_unlock(&attr->mutex);
1007 	return ret;
1008 }
1009 EXPORT_SYMBOL_GPL(simple_attr_read);
1010 
1011 /* interpret the buffer as a number to call the set function with */
1012 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1013 			  size_t len, loff_t *ppos, bool is_signed)
1014 {
1015 	struct simple_attr *attr;
1016 	unsigned long long val;
1017 	size_t size;
1018 	ssize_t ret;
1019 
1020 	attr = file->private_data;
1021 	if (!attr->set)
1022 		return -EACCES;
1023 
1024 	ret = mutex_lock_interruptible(&attr->mutex);
1025 	if (ret)
1026 		return ret;
1027 
1028 	ret = -EFAULT;
1029 	size = min(sizeof(attr->set_buf) - 1, len);
1030 	if (copy_from_user(attr->set_buf, buf, size))
1031 		goto out;
1032 
1033 	attr->set_buf[size] = '\0';
1034 	if (is_signed)
1035 		ret = kstrtoll(attr->set_buf, 0, &val);
1036 	else
1037 		ret = kstrtoull(attr->set_buf, 0, &val);
1038 	if (ret)
1039 		goto out;
1040 	ret = attr->set(attr->data, val);
1041 	if (ret == 0)
1042 		ret = len; /* on success, claim we got the whole input */
1043 out:
1044 	mutex_unlock(&attr->mutex);
1045 	return ret;
1046 }
1047 
1048 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1049 			  size_t len, loff_t *ppos)
1050 {
1051 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1052 }
1053 EXPORT_SYMBOL_GPL(simple_attr_write);
1054 
1055 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1056 			  size_t len, loff_t *ppos)
1057 {
1058 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1059 }
1060 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1061 
1062 /**
1063  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1064  * @sb:		filesystem to do the file handle conversion on
1065  * @fid:	file handle to convert
1066  * @fh_len:	length of the file handle in bytes
1067  * @fh_type:	type of file handle
1068  * @get_inode:	filesystem callback to retrieve inode
1069  *
1070  * This function decodes @fid as long as it has one of the well-known
1071  * Linux filehandle types and calls @get_inode on it to retrieve the
1072  * inode for the object specified in the file handle.
1073  */
1074 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1075 		int fh_len, int fh_type, struct inode *(*get_inode)
1076 			(struct super_block *sb, u64 ino, u32 gen))
1077 {
1078 	struct inode *inode = NULL;
1079 
1080 	if (fh_len < 2)
1081 		return NULL;
1082 
1083 	switch (fh_type) {
1084 	case FILEID_INO32_GEN:
1085 	case FILEID_INO32_GEN_PARENT:
1086 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1087 		break;
1088 	}
1089 
1090 	return d_obtain_alias(inode);
1091 }
1092 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1093 
1094 /**
1095  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1096  * @sb:		filesystem to do the file handle conversion on
1097  * @fid:	file handle to convert
1098  * @fh_len:	length of the file handle in bytes
1099  * @fh_type:	type of file handle
1100  * @get_inode:	filesystem callback to retrieve inode
1101  *
1102  * This function decodes @fid as long as it has one of the well-known
1103  * Linux filehandle types and calls @get_inode on it to retrieve the
1104  * inode for the _parent_ object specified in the file handle if it
1105  * is specified in the file handle, or NULL otherwise.
1106  */
1107 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1108 		int fh_len, int fh_type, struct inode *(*get_inode)
1109 			(struct super_block *sb, u64 ino, u32 gen))
1110 {
1111 	struct inode *inode = NULL;
1112 
1113 	if (fh_len <= 2)
1114 		return NULL;
1115 
1116 	switch (fh_type) {
1117 	case FILEID_INO32_GEN_PARENT:
1118 		inode = get_inode(sb, fid->i32.parent_ino,
1119 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1120 		break;
1121 	}
1122 
1123 	return d_obtain_alias(inode);
1124 }
1125 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1126 
1127 /**
1128  * __generic_file_fsync - generic fsync implementation for simple filesystems
1129  *
1130  * @file:	file to synchronize
1131  * @start:	start offset in bytes
1132  * @end:	end offset in bytes (inclusive)
1133  * @datasync:	only synchronize essential metadata if true
1134  *
1135  * This is a generic implementation of the fsync method for simple
1136  * filesystems which track all non-inode metadata in the buffers list
1137  * hanging off the address_space structure.
1138  */
1139 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1140 				 int datasync)
1141 {
1142 	struct inode *inode = file->f_mapping->host;
1143 	int err;
1144 	int ret;
1145 
1146 	err = file_write_and_wait_range(file, start, end);
1147 	if (err)
1148 		return err;
1149 
1150 	inode_lock(inode);
1151 	ret = sync_mapping_buffers(inode->i_mapping);
1152 	if (!(inode->i_state & I_DIRTY_ALL))
1153 		goto out;
1154 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1155 		goto out;
1156 
1157 	err = sync_inode_metadata(inode, 1);
1158 	if (ret == 0)
1159 		ret = err;
1160 
1161 out:
1162 	inode_unlock(inode);
1163 	/* check and advance again to catch errors after syncing out buffers */
1164 	err = file_check_and_advance_wb_err(file);
1165 	if (ret == 0)
1166 		ret = err;
1167 	return ret;
1168 }
1169 EXPORT_SYMBOL(__generic_file_fsync);
1170 
1171 /**
1172  * generic_file_fsync - generic fsync implementation for simple filesystems
1173  *			with flush
1174  * @file:	file to synchronize
1175  * @start:	start offset in bytes
1176  * @end:	end offset in bytes (inclusive)
1177  * @datasync:	only synchronize essential metadata if true
1178  *
1179  */
1180 
1181 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1182 		       int datasync)
1183 {
1184 	struct inode *inode = file->f_mapping->host;
1185 	int err;
1186 
1187 	err = __generic_file_fsync(file, start, end, datasync);
1188 	if (err)
1189 		return err;
1190 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1191 }
1192 EXPORT_SYMBOL(generic_file_fsync);
1193 
1194 /**
1195  * generic_check_addressable - Check addressability of file system
1196  * @blocksize_bits:	log of file system block size
1197  * @num_blocks:		number of blocks in file system
1198  *
1199  * Determine whether a file system with @num_blocks blocks (and a
1200  * block size of 2**@blocksize_bits) is addressable by the sector_t
1201  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1202  */
1203 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1204 {
1205 	u64 last_fs_block = num_blocks - 1;
1206 	u64 last_fs_page =
1207 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1208 
1209 	if (unlikely(num_blocks == 0))
1210 		return 0;
1211 
1212 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1213 		return -EINVAL;
1214 
1215 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1216 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1217 		return -EFBIG;
1218 	}
1219 	return 0;
1220 }
1221 EXPORT_SYMBOL(generic_check_addressable);
1222 
1223 /*
1224  * No-op implementation of ->fsync for in-memory filesystems.
1225  */
1226 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1227 {
1228 	return 0;
1229 }
1230 EXPORT_SYMBOL(noop_fsync);
1231 
1232 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1233 {
1234 	/*
1235 	 * iomap based filesystems support direct I/O without need for
1236 	 * this callback. However, it still needs to be set in
1237 	 * inode->a_ops so that open/fcntl know that direct I/O is
1238 	 * generally supported.
1239 	 */
1240 	return -EINVAL;
1241 }
1242 EXPORT_SYMBOL_GPL(noop_direct_IO);
1243 
1244 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1245 void kfree_link(void *p)
1246 {
1247 	kfree(p);
1248 }
1249 EXPORT_SYMBOL(kfree_link);
1250 
1251 struct inode *alloc_anon_inode(struct super_block *s)
1252 {
1253 	static const struct address_space_operations anon_aops = {
1254 		.dirty_folio	= noop_dirty_folio,
1255 	};
1256 	struct inode *inode = new_inode_pseudo(s);
1257 
1258 	if (!inode)
1259 		return ERR_PTR(-ENOMEM);
1260 
1261 	inode->i_ino = get_next_ino();
1262 	inode->i_mapping->a_ops = &anon_aops;
1263 
1264 	/*
1265 	 * Mark the inode dirty from the very beginning,
1266 	 * that way it will never be moved to the dirty
1267 	 * list because mark_inode_dirty() will think
1268 	 * that it already _is_ on the dirty list.
1269 	 */
1270 	inode->i_state = I_DIRTY;
1271 	inode->i_mode = S_IRUSR | S_IWUSR;
1272 	inode->i_uid = current_fsuid();
1273 	inode->i_gid = current_fsgid();
1274 	inode->i_flags |= S_PRIVATE;
1275 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1276 	return inode;
1277 }
1278 EXPORT_SYMBOL(alloc_anon_inode);
1279 
1280 /**
1281  * simple_nosetlease - generic helper for prohibiting leases
1282  * @filp: file pointer
1283  * @arg: type of lease to obtain
1284  * @flp: new lease supplied for insertion
1285  * @priv: private data for lm_setup operation
1286  *
1287  * Generic helper for filesystems that do not wish to allow leases to be set.
1288  * All arguments are ignored and it just returns -EINVAL.
1289  */
1290 int
1291 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1292 		  void **priv)
1293 {
1294 	return -EINVAL;
1295 }
1296 EXPORT_SYMBOL(simple_nosetlease);
1297 
1298 /**
1299  * simple_get_link - generic helper to get the target of "fast" symlinks
1300  * @dentry: not used here
1301  * @inode: the symlink inode
1302  * @done: not used here
1303  *
1304  * Generic helper for filesystems to use for symlink inodes where a pointer to
1305  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1306  * since as an optimization the path lookup code uses any non-NULL ->i_link
1307  * directly, without calling ->get_link().  But ->get_link() still must be set,
1308  * to mark the inode_operations as being for a symlink.
1309  *
1310  * Return: the symlink target
1311  */
1312 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1313 			    struct delayed_call *done)
1314 {
1315 	return inode->i_link;
1316 }
1317 EXPORT_SYMBOL(simple_get_link);
1318 
1319 const struct inode_operations simple_symlink_inode_operations = {
1320 	.get_link = simple_get_link,
1321 };
1322 EXPORT_SYMBOL(simple_symlink_inode_operations);
1323 
1324 /*
1325  * Operations for a permanently empty directory.
1326  */
1327 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1328 {
1329 	return ERR_PTR(-ENOENT);
1330 }
1331 
1332 static int empty_dir_getattr(struct mnt_idmap *idmap,
1333 			     const struct path *path, struct kstat *stat,
1334 			     u32 request_mask, unsigned int query_flags)
1335 {
1336 	struct inode *inode = d_inode(path->dentry);
1337 	generic_fillattr(&nop_mnt_idmap, inode, stat);
1338 	return 0;
1339 }
1340 
1341 static int empty_dir_setattr(struct mnt_idmap *idmap,
1342 			     struct dentry *dentry, struct iattr *attr)
1343 {
1344 	return -EPERM;
1345 }
1346 
1347 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1348 {
1349 	return -EOPNOTSUPP;
1350 }
1351 
1352 static const struct inode_operations empty_dir_inode_operations = {
1353 	.lookup		= empty_dir_lookup,
1354 	.permission	= generic_permission,
1355 	.setattr	= empty_dir_setattr,
1356 	.getattr	= empty_dir_getattr,
1357 	.listxattr	= empty_dir_listxattr,
1358 };
1359 
1360 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1361 {
1362 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1363 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1364 }
1365 
1366 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1367 {
1368 	dir_emit_dots(file, ctx);
1369 	return 0;
1370 }
1371 
1372 static const struct file_operations empty_dir_operations = {
1373 	.llseek		= empty_dir_llseek,
1374 	.read		= generic_read_dir,
1375 	.iterate_shared	= empty_dir_readdir,
1376 	.fsync		= noop_fsync,
1377 };
1378 
1379 
1380 void make_empty_dir_inode(struct inode *inode)
1381 {
1382 	set_nlink(inode, 2);
1383 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1384 	inode->i_uid = GLOBAL_ROOT_UID;
1385 	inode->i_gid = GLOBAL_ROOT_GID;
1386 	inode->i_rdev = 0;
1387 	inode->i_size = 0;
1388 	inode->i_blkbits = PAGE_SHIFT;
1389 	inode->i_blocks = 0;
1390 
1391 	inode->i_op = &empty_dir_inode_operations;
1392 	inode->i_opflags &= ~IOP_XATTR;
1393 	inode->i_fop = &empty_dir_operations;
1394 }
1395 
1396 bool is_empty_dir_inode(struct inode *inode)
1397 {
1398 	return (inode->i_fop == &empty_dir_operations) &&
1399 		(inode->i_op == &empty_dir_inode_operations);
1400 }
1401 
1402 #if IS_ENABLED(CONFIG_UNICODE)
1403 /*
1404  * Determine if the name of a dentry should be casefolded.
1405  *
1406  * Return: if names will need casefolding
1407  */
1408 static bool needs_casefold(const struct inode *dir)
1409 {
1410 	return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1411 }
1412 
1413 /**
1414  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1415  * @dentry:	dentry whose name we are checking against
1416  * @len:	len of name of dentry
1417  * @str:	str pointer to name of dentry
1418  * @name:	Name to compare against
1419  *
1420  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1421  */
1422 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1423 				const char *str, const struct qstr *name)
1424 {
1425 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1426 	const struct inode *dir = READ_ONCE(parent->d_inode);
1427 	const struct super_block *sb = dentry->d_sb;
1428 	const struct unicode_map *um = sb->s_encoding;
1429 	struct qstr qstr = QSTR_INIT(str, len);
1430 	char strbuf[DNAME_INLINE_LEN];
1431 	int ret;
1432 
1433 	if (!dir || !needs_casefold(dir))
1434 		goto fallback;
1435 	/*
1436 	 * If the dentry name is stored in-line, then it may be concurrently
1437 	 * modified by a rename.  If this happens, the VFS will eventually retry
1438 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1439 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1440 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1441 	 */
1442 	if (len <= DNAME_INLINE_LEN - 1) {
1443 		memcpy(strbuf, str, len);
1444 		strbuf[len] = 0;
1445 		qstr.name = strbuf;
1446 		/* prevent compiler from optimizing out the temporary buffer */
1447 		barrier();
1448 	}
1449 	ret = utf8_strncasecmp(um, name, &qstr);
1450 	if (ret >= 0)
1451 		return ret;
1452 
1453 	if (sb_has_strict_encoding(sb))
1454 		return -EINVAL;
1455 fallback:
1456 	if (len != name->len)
1457 		return 1;
1458 	return !!memcmp(str, name->name, len);
1459 }
1460 
1461 /**
1462  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1463  * @dentry:	dentry of the parent directory
1464  * @str:	qstr of name whose hash we should fill in
1465  *
1466  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1467  */
1468 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1469 {
1470 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1471 	struct super_block *sb = dentry->d_sb;
1472 	const struct unicode_map *um = sb->s_encoding;
1473 	int ret = 0;
1474 
1475 	if (!dir || !needs_casefold(dir))
1476 		return 0;
1477 
1478 	ret = utf8_casefold_hash(um, dentry, str);
1479 	if (ret < 0 && sb_has_strict_encoding(sb))
1480 		return -EINVAL;
1481 	return 0;
1482 }
1483 
1484 static const struct dentry_operations generic_ci_dentry_ops = {
1485 	.d_hash = generic_ci_d_hash,
1486 	.d_compare = generic_ci_d_compare,
1487 };
1488 #endif
1489 
1490 #ifdef CONFIG_FS_ENCRYPTION
1491 static const struct dentry_operations generic_encrypted_dentry_ops = {
1492 	.d_revalidate = fscrypt_d_revalidate,
1493 };
1494 #endif
1495 
1496 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1497 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1498 	.d_hash = generic_ci_d_hash,
1499 	.d_compare = generic_ci_d_compare,
1500 	.d_revalidate = fscrypt_d_revalidate,
1501 };
1502 #endif
1503 
1504 /**
1505  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1506  * @dentry:	dentry to set ops on
1507  *
1508  * Casefolded directories need d_hash and d_compare set, so that the dentries
1509  * contained in them are handled case-insensitively.  Note that these operations
1510  * are needed on the parent directory rather than on the dentries in it, and
1511  * while the casefolding flag can be toggled on and off on an empty directory,
1512  * dentry_operations can't be changed later.  As a result, if the filesystem has
1513  * casefolding support enabled at all, we have to give all dentries the
1514  * casefolding operations even if their inode doesn't have the casefolding flag
1515  * currently (and thus the casefolding ops would be no-ops for now).
1516  *
1517  * Encryption works differently in that the only dentry operation it needs is
1518  * d_revalidate, which it only needs on dentries that have the no-key name flag.
1519  * The no-key flag can't be set "later", so we don't have to worry about that.
1520  *
1521  * Finally, to maximize compatibility with overlayfs (which isn't compatible
1522  * with certain dentry operations) and to avoid taking an unnecessary
1523  * performance hit, we use custom dentry_operations for each possible
1524  * combination rather than always installing all operations.
1525  */
1526 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1527 {
1528 #ifdef CONFIG_FS_ENCRYPTION
1529 	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1530 #endif
1531 #if IS_ENABLED(CONFIG_UNICODE)
1532 	bool needs_ci_ops = dentry->d_sb->s_encoding;
1533 #endif
1534 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1535 	if (needs_encrypt_ops && needs_ci_ops) {
1536 		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1537 		return;
1538 	}
1539 #endif
1540 #ifdef CONFIG_FS_ENCRYPTION
1541 	if (needs_encrypt_ops) {
1542 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1543 		return;
1544 	}
1545 #endif
1546 #if IS_ENABLED(CONFIG_UNICODE)
1547 	if (needs_ci_ops) {
1548 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1549 		return;
1550 	}
1551 #endif
1552 }
1553 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1554 
1555 /**
1556  * inode_maybe_inc_iversion - increments i_version
1557  * @inode: inode with the i_version that should be updated
1558  * @force: increment the counter even if it's not necessary?
1559  *
1560  * Every time the inode is modified, the i_version field must be seen to have
1561  * changed by any observer.
1562  *
1563  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1564  * the value, and clear the queried flag.
1565  *
1566  * In the common case where neither is set, then we can return "false" without
1567  * updating i_version.
1568  *
1569  * If this function returns false, and no other metadata has changed, then we
1570  * can avoid logging the metadata.
1571  */
1572 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1573 {
1574 	u64 cur, new;
1575 
1576 	/*
1577 	 * The i_version field is not strictly ordered with any other inode
1578 	 * information, but the legacy inode_inc_iversion code used a spinlock
1579 	 * to serialize increments.
1580 	 *
1581 	 * Here, we add full memory barriers to ensure that any de-facto
1582 	 * ordering with other info is preserved.
1583 	 *
1584 	 * This barrier pairs with the barrier in inode_query_iversion()
1585 	 */
1586 	smp_mb();
1587 	cur = inode_peek_iversion_raw(inode);
1588 	do {
1589 		/* If flag is clear then we needn't do anything */
1590 		if (!force && !(cur & I_VERSION_QUERIED))
1591 			return false;
1592 
1593 		/* Since lowest bit is flag, add 2 to avoid it */
1594 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1595 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1596 	return true;
1597 }
1598 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1599 
1600 /**
1601  * inode_query_iversion - read i_version for later use
1602  * @inode: inode from which i_version should be read
1603  *
1604  * Read the inode i_version counter. This should be used by callers that wish
1605  * to store the returned i_version for later comparison. This will guarantee
1606  * that a later query of the i_version will result in a different value if
1607  * anything has changed.
1608  *
1609  * In this implementation, we fetch the current value, set the QUERIED flag and
1610  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1611  * that fails, we try again with the newly fetched value from the cmpxchg.
1612  */
1613 u64 inode_query_iversion(struct inode *inode)
1614 {
1615 	u64 cur, new;
1616 
1617 	cur = inode_peek_iversion_raw(inode);
1618 	do {
1619 		/* If flag is already set, then no need to swap */
1620 		if (cur & I_VERSION_QUERIED) {
1621 			/*
1622 			 * This barrier (and the implicit barrier in the
1623 			 * cmpxchg below) pairs with the barrier in
1624 			 * inode_maybe_inc_iversion().
1625 			 */
1626 			smp_mb();
1627 			break;
1628 		}
1629 
1630 		new = cur | I_VERSION_QUERIED;
1631 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1632 	return cur >> I_VERSION_QUERIED_SHIFT;
1633 }
1634 EXPORT_SYMBOL(inode_query_iversion);
1635 
1636 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1637 		ssize_t direct_written, ssize_t buffered_written)
1638 {
1639 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1640 	loff_t pos = iocb->ki_pos - buffered_written;
1641 	loff_t end = iocb->ki_pos - 1;
1642 	int err;
1643 
1644 	/*
1645 	 * If the buffered write fallback returned an error, we want to return
1646 	 * the number of bytes which were written by direct I/O, or the error
1647 	 * code if that was zero.
1648 	 *
1649 	 * Note that this differs from normal direct-io semantics, which will
1650 	 * return -EFOO even if some bytes were written.
1651 	 */
1652 	if (unlikely(buffered_written < 0)) {
1653 		if (direct_written)
1654 			return direct_written;
1655 		return buffered_written;
1656 	}
1657 
1658 	/*
1659 	 * We need to ensure that the page cache pages are written to disk and
1660 	 * invalidated to preserve the expected O_DIRECT semantics.
1661 	 */
1662 	err = filemap_write_and_wait_range(mapping, pos, end);
1663 	if (err < 0) {
1664 		/*
1665 		 * We don't know how much we wrote, so just return the number of
1666 		 * bytes which were direct-written
1667 		 */
1668 		if (direct_written)
1669 			return direct_written;
1670 		return err;
1671 	}
1672 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1673 	return direct_written + buffered_written;
1674 }
1675 EXPORT_SYMBOL_GPL(direct_write_fallback);
1676