xref: /openbmc/linux/fs/libfs.c (revision dbdc671d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/unicode.h>
24 #include <linux/fscrypt.h>
25 
26 #include <linux/uaccess.h>
27 
28 #include "internal.h"
29 
30 int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
31 		   struct kstat *stat, u32 request_mask,
32 		   unsigned int query_flags)
33 {
34 	struct inode *inode = d_inode(path->dentry);
35 	generic_fillattr(&init_user_ns, inode, stat);
36 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
37 	return 0;
38 }
39 EXPORT_SYMBOL(simple_getattr);
40 
41 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
42 {
43 	buf->f_type = dentry->d_sb->s_magic;
44 	buf->f_bsize = PAGE_SIZE;
45 	buf->f_namelen = NAME_MAX;
46 	return 0;
47 }
48 EXPORT_SYMBOL(simple_statfs);
49 
50 /*
51  * Retaining negative dentries for an in-memory filesystem just wastes
52  * memory and lookup time: arrange for them to be deleted immediately.
53  */
54 int always_delete_dentry(const struct dentry *dentry)
55 {
56 	return 1;
57 }
58 EXPORT_SYMBOL(always_delete_dentry);
59 
60 const struct dentry_operations simple_dentry_operations = {
61 	.d_delete = always_delete_dentry,
62 };
63 EXPORT_SYMBOL(simple_dentry_operations);
64 
65 /*
66  * Lookup the data. This is trivial - if the dentry didn't already
67  * exist, we know it is negative.  Set d_op to delete negative dentries.
68  */
69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70 {
71 	if (dentry->d_name.len > NAME_MAX)
72 		return ERR_PTR(-ENAMETOOLONG);
73 	if (!dentry->d_sb->s_d_op)
74 		d_set_d_op(dentry, &simple_dentry_operations);
75 	d_add(dentry, NULL);
76 	return NULL;
77 }
78 EXPORT_SYMBOL(simple_lookup);
79 
80 int dcache_dir_open(struct inode *inode, struct file *file)
81 {
82 	file->private_data = d_alloc_cursor(file->f_path.dentry);
83 
84 	return file->private_data ? 0 : -ENOMEM;
85 }
86 EXPORT_SYMBOL(dcache_dir_open);
87 
88 int dcache_dir_close(struct inode *inode, struct file *file)
89 {
90 	dput(file->private_data);
91 	return 0;
92 }
93 EXPORT_SYMBOL(dcache_dir_close);
94 
95 /* parent is locked at least shared */
96 /*
97  * Returns an element of siblings' list.
98  * We are looking for <count>th positive after <p>; if
99  * found, dentry is grabbed and returned to caller.
100  * If no such element exists, NULL is returned.
101  */
102 static struct dentry *scan_positives(struct dentry *cursor,
103 					struct list_head *p,
104 					loff_t count,
105 					struct dentry *last)
106 {
107 	struct dentry *dentry = cursor->d_parent, *found = NULL;
108 
109 	spin_lock(&dentry->d_lock);
110 	while ((p = p->next) != &dentry->d_subdirs) {
111 		struct dentry *d = list_entry(p, struct dentry, d_child);
112 		// we must at least skip cursors, to avoid livelocks
113 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
114 			continue;
115 		if (simple_positive(d) && !--count) {
116 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
117 			if (simple_positive(d))
118 				found = dget_dlock(d);
119 			spin_unlock(&d->d_lock);
120 			if (likely(found))
121 				break;
122 			count = 1;
123 		}
124 		if (need_resched()) {
125 			list_move(&cursor->d_child, p);
126 			p = &cursor->d_child;
127 			spin_unlock(&dentry->d_lock);
128 			cond_resched();
129 			spin_lock(&dentry->d_lock);
130 		}
131 	}
132 	spin_unlock(&dentry->d_lock);
133 	dput(last);
134 	return found;
135 }
136 
137 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
138 {
139 	struct dentry *dentry = file->f_path.dentry;
140 	switch (whence) {
141 		case 1:
142 			offset += file->f_pos;
143 			fallthrough;
144 		case 0:
145 			if (offset >= 0)
146 				break;
147 			fallthrough;
148 		default:
149 			return -EINVAL;
150 	}
151 	if (offset != file->f_pos) {
152 		struct dentry *cursor = file->private_data;
153 		struct dentry *to = NULL;
154 
155 		inode_lock_shared(dentry->d_inode);
156 
157 		if (offset > 2)
158 			to = scan_positives(cursor, &dentry->d_subdirs,
159 					    offset - 2, NULL);
160 		spin_lock(&dentry->d_lock);
161 		if (to)
162 			list_move(&cursor->d_child, &to->d_child);
163 		else
164 			list_del_init(&cursor->d_child);
165 		spin_unlock(&dentry->d_lock);
166 		dput(to);
167 
168 		file->f_pos = offset;
169 
170 		inode_unlock_shared(dentry->d_inode);
171 	}
172 	return offset;
173 }
174 EXPORT_SYMBOL(dcache_dir_lseek);
175 
176 /* Relationship between i_mode and the DT_xxx types */
177 static inline unsigned char dt_type(struct inode *inode)
178 {
179 	return (inode->i_mode >> 12) & 15;
180 }
181 
182 /*
183  * Directory is locked and all positive dentries in it are safe, since
184  * for ramfs-type trees they can't go away without unlink() or rmdir(),
185  * both impossible due to the lock on directory.
186  */
187 
188 int dcache_readdir(struct file *file, struct dir_context *ctx)
189 {
190 	struct dentry *dentry = file->f_path.dentry;
191 	struct dentry *cursor = file->private_data;
192 	struct list_head *anchor = &dentry->d_subdirs;
193 	struct dentry *next = NULL;
194 	struct list_head *p;
195 
196 	if (!dir_emit_dots(file, ctx))
197 		return 0;
198 
199 	if (ctx->pos == 2)
200 		p = anchor;
201 	else if (!list_empty(&cursor->d_child))
202 		p = &cursor->d_child;
203 	else
204 		return 0;
205 
206 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
207 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
208 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
209 			break;
210 		ctx->pos++;
211 		p = &next->d_child;
212 	}
213 	spin_lock(&dentry->d_lock);
214 	if (next)
215 		list_move_tail(&cursor->d_child, &next->d_child);
216 	else
217 		list_del_init(&cursor->d_child);
218 	spin_unlock(&dentry->d_lock);
219 	dput(next);
220 
221 	return 0;
222 }
223 EXPORT_SYMBOL(dcache_readdir);
224 
225 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
226 {
227 	return -EISDIR;
228 }
229 EXPORT_SYMBOL(generic_read_dir);
230 
231 const struct file_operations simple_dir_operations = {
232 	.open		= dcache_dir_open,
233 	.release	= dcache_dir_close,
234 	.llseek		= dcache_dir_lseek,
235 	.read		= generic_read_dir,
236 	.iterate_shared	= dcache_readdir,
237 	.fsync		= noop_fsync,
238 };
239 EXPORT_SYMBOL(simple_dir_operations);
240 
241 const struct inode_operations simple_dir_inode_operations = {
242 	.lookup		= simple_lookup,
243 };
244 EXPORT_SYMBOL(simple_dir_inode_operations);
245 
246 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
247 {
248 	struct dentry *child = NULL;
249 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
250 
251 	spin_lock(&parent->d_lock);
252 	while ((p = p->next) != &parent->d_subdirs) {
253 		struct dentry *d = container_of(p, struct dentry, d_child);
254 		if (simple_positive(d)) {
255 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
256 			if (simple_positive(d))
257 				child = dget_dlock(d);
258 			spin_unlock(&d->d_lock);
259 			if (likely(child))
260 				break;
261 		}
262 	}
263 	spin_unlock(&parent->d_lock);
264 	dput(prev);
265 	return child;
266 }
267 
268 void simple_recursive_removal(struct dentry *dentry,
269                               void (*callback)(struct dentry *))
270 {
271 	struct dentry *this = dget(dentry);
272 	while (true) {
273 		struct dentry *victim = NULL, *child;
274 		struct inode *inode = this->d_inode;
275 
276 		inode_lock(inode);
277 		if (d_is_dir(this))
278 			inode->i_flags |= S_DEAD;
279 		while ((child = find_next_child(this, victim)) == NULL) {
280 			// kill and ascend
281 			// update metadata while it's still locked
282 			inode->i_ctime = current_time(inode);
283 			clear_nlink(inode);
284 			inode_unlock(inode);
285 			victim = this;
286 			this = this->d_parent;
287 			inode = this->d_inode;
288 			inode_lock(inode);
289 			if (simple_positive(victim)) {
290 				d_invalidate(victim);	// avoid lost mounts
291 				if (d_is_dir(victim))
292 					fsnotify_rmdir(inode, victim);
293 				else
294 					fsnotify_unlink(inode, victim);
295 				if (callback)
296 					callback(victim);
297 				dput(victim);		// unpin it
298 			}
299 			if (victim == dentry) {
300 				inode->i_ctime = inode->i_mtime =
301 					current_time(inode);
302 				if (d_is_dir(dentry))
303 					drop_nlink(inode);
304 				inode_unlock(inode);
305 				dput(dentry);
306 				return;
307 			}
308 		}
309 		inode_unlock(inode);
310 		this = child;
311 	}
312 }
313 EXPORT_SYMBOL(simple_recursive_removal);
314 
315 static const struct super_operations simple_super_operations = {
316 	.statfs		= simple_statfs,
317 };
318 
319 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
320 {
321 	struct pseudo_fs_context *ctx = fc->fs_private;
322 	struct inode *root;
323 
324 	s->s_maxbytes = MAX_LFS_FILESIZE;
325 	s->s_blocksize = PAGE_SIZE;
326 	s->s_blocksize_bits = PAGE_SHIFT;
327 	s->s_magic = ctx->magic;
328 	s->s_op = ctx->ops ?: &simple_super_operations;
329 	s->s_xattr = ctx->xattr;
330 	s->s_time_gran = 1;
331 	root = new_inode(s);
332 	if (!root)
333 		return -ENOMEM;
334 
335 	/*
336 	 * since this is the first inode, make it number 1. New inodes created
337 	 * after this must take care not to collide with it (by passing
338 	 * max_reserved of 1 to iunique).
339 	 */
340 	root->i_ino = 1;
341 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
342 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
343 	s->s_root = d_make_root(root);
344 	if (!s->s_root)
345 		return -ENOMEM;
346 	s->s_d_op = ctx->dops;
347 	return 0;
348 }
349 
350 static int pseudo_fs_get_tree(struct fs_context *fc)
351 {
352 	return get_tree_nodev(fc, pseudo_fs_fill_super);
353 }
354 
355 static void pseudo_fs_free(struct fs_context *fc)
356 {
357 	kfree(fc->fs_private);
358 }
359 
360 static const struct fs_context_operations pseudo_fs_context_ops = {
361 	.free		= pseudo_fs_free,
362 	.get_tree	= pseudo_fs_get_tree,
363 };
364 
365 /*
366  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
367  * will never be mountable)
368  */
369 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
370 					unsigned long magic)
371 {
372 	struct pseudo_fs_context *ctx;
373 
374 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
375 	if (likely(ctx)) {
376 		ctx->magic = magic;
377 		fc->fs_private = ctx;
378 		fc->ops = &pseudo_fs_context_ops;
379 		fc->sb_flags |= SB_NOUSER;
380 		fc->global = true;
381 	}
382 	return ctx;
383 }
384 EXPORT_SYMBOL(init_pseudo);
385 
386 int simple_open(struct inode *inode, struct file *file)
387 {
388 	if (inode->i_private)
389 		file->private_data = inode->i_private;
390 	return 0;
391 }
392 EXPORT_SYMBOL(simple_open);
393 
394 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
395 {
396 	struct inode *inode = d_inode(old_dentry);
397 
398 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
399 	inc_nlink(inode);
400 	ihold(inode);
401 	dget(dentry);
402 	d_instantiate(dentry, inode);
403 	return 0;
404 }
405 EXPORT_SYMBOL(simple_link);
406 
407 int simple_empty(struct dentry *dentry)
408 {
409 	struct dentry *child;
410 	int ret = 0;
411 
412 	spin_lock(&dentry->d_lock);
413 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
414 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
415 		if (simple_positive(child)) {
416 			spin_unlock(&child->d_lock);
417 			goto out;
418 		}
419 		spin_unlock(&child->d_lock);
420 	}
421 	ret = 1;
422 out:
423 	spin_unlock(&dentry->d_lock);
424 	return ret;
425 }
426 EXPORT_SYMBOL(simple_empty);
427 
428 int simple_unlink(struct inode *dir, struct dentry *dentry)
429 {
430 	struct inode *inode = d_inode(dentry);
431 
432 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
433 	drop_nlink(inode);
434 	dput(dentry);
435 	return 0;
436 }
437 EXPORT_SYMBOL(simple_unlink);
438 
439 int simple_rmdir(struct inode *dir, struct dentry *dentry)
440 {
441 	if (!simple_empty(dentry))
442 		return -ENOTEMPTY;
443 
444 	drop_nlink(d_inode(dentry));
445 	simple_unlink(dir, dentry);
446 	drop_nlink(dir);
447 	return 0;
448 }
449 EXPORT_SYMBOL(simple_rmdir);
450 
451 int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
452 		  struct dentry *old_dentry, struct inode *new_dir,
453 		  struct dentry *new_dentry, unsigned int flags)
454 {
455 	struct inode *inode = d_inode(old_dentry);
456 	int they_are_dirs = d_is_dir(old_dentry);
457 
458 	if (flags & ~RENAME_NOREPLACE)
459 		return -EINVAL;
460 
461 	if (!simple_empty(new_dentry))
462 		return -ENOTEMPTY;
463 
464 	if (d_really_is_positive(new_dentry)) {
465 		simple_unlink(new_dir, new_dentry);
466 		if (they_are_dirs) {
467 			drop_nlink(d_inode(new_dentry));
468 			drop_nlink(old_dir);
469 		}
470 	} else if (they_are_dirs) {
471 		drop_nlink(old_dir);
472 		inc_nlink(new_dir);
473 	}
474 
475 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
476 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
477 
478 	return 0;
479 }
480 EXPORT_SYMBOL(simple_rename);
481 
482 /**
483  * simple_setattr - setattr for simple filesystem
484  * @dentry: dentry
485  * @iattr: iattr structure
486  *
487  * Returns 0 on success, -error on failure.
488  *
489  * simple_setattr is a simple ->setattr implementation without a proper
490  * implementation of size changes.
491  *
492  * It can either be used for in-memory filesystems or special files
493  * on simple regular filesystems.  Anything that needs to change on-disk
494  * or wire state on size changes needs its own setattr method.
495  */
496 int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
497 		   struct iattr *iattr)
498 {
499 	struct inode *inode = d_inode(dentry);
500 	int error;
501 
502 	error = setattr_prepare(mnt_userns, dentry, iattr);
503 	if (error)
504 		return error;
505 
506 	if (iattr->ia_valid & ATTR_SIZE)
507 		truncate_setsize(inode, iattr->ia_size);
508 	setattr_copy(mnt_userns, inode, iattr);
509 	mark_inode_dirty(inode);
510 	return 0;
511 }
512 EXPORT_SYMBOL(simple_setattr);
513 
514 int simple_readpage(struct file *file, struct page *page)
515 {
516 	clear_highpage(page);
517 	flush_dcache_page(page);
518 	SetPageUptodate(page);
519 	unlock_page(page);
520 	return 0;
521 }
522 EXPORT_SYMBOL(simple_readpage);
523 
524 int simple_write_begin(struct file *file, struct address_space *mapping,
525 			loff_t pos, unsigned len, unsigned flags,
526 			struct page **pagep, void **fsdata)
527 {
528 	struct page *page;
529 	pgoff_t index;
530 
531 	index = pos >> PAGE_SHIFT;
532 
533 	page = grab_cache_page_write_begin(mapping, index, flags);
534 	if (!page)
535 		return -ENOMEM;
536 
537 	*pagep = page;
538 
539 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
540 		unsigned from = pos & (PAGE_SIZE - 1);
541 
542 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
543 	}
544 	return 0;
545 }
546 EXPORT_SYMBOL(simple_write_begin);
547 
548 /**
549  * simple_write_end - .write_end helper for non-block-device FSes
550  * @file: See .write_end of address_space_operations
551  * @mapping: 		"
552  * @pos: 		"
553  * @len: 		"
554  * @copied: 		"
555  * @page: 		"
556  * @fsdata: 		"
557  *
558  * simple_write_end does the minimum needed for updating a page after writing is
559  * done. It has the same API signature as the .write_end of
560  * address_space_operations vector. So it can just be set onto .write_end for
561  * FSes that don't need any other processing. i_mutex is assumed to be held.
562  * Block based filesystems should use generic_write_end().
563  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
564  * is not called, so a filesystem that actually does store data in .write_inode
565  * should extend on what's done here with a call to mark_inode_dirty() in the
566  * case that i_size has changed.
567  *
568  * Use *ONLY* with simple_readpage()
569  */
570 int simple_write_end(struct file *file, struct address_space *mapping,
571 			loff_t pos, unsigned len, unsigned copied,
572 			struct page *page, void *fsdata)
573 {
574 	struct inode *inode = page->mapping->host;
575 	loff_t last_pos = pos + copied;
576 
577 	/* zero the stale part of the page if we did a short copy */
578 	if (!PageUptodate(page)) {
579 		if (copied < len) {
580 			unsigned from = pos & (PAGE_SIZE - 1);
581 
582 			zero_user(page, from + copied, len - copied);
583 		}
584 		SetPageUptodate(page);
585 	}
586 	/*
587 	 * No need to use i_size_read() here, the i_size
588 	 * cannot change under us because we hold the i_mutex.
589 	 */
590 	if (last_pos > inode->i_size)
591 		i_size_write(inode, last_pos);
592 
593 	set_page_dirty(page);
594 	unlock_page(page);
595 	put_page(page);
596 
597 	return copied;
598 }
599 EXPORT_SYMBOL(simple_write_end);
600 
601 /*
602  * the inodes created here are not hashed. If you use iunique to generate
603  * unique inode values later for this filesystem, then you must take care
604  * to pass it an appropriate max_reserved value to avoid collisions.
605  */
606 int simple_fill_super(struct super_block *s, unsigned long magic,
607 		      const struct tree_descr *files)
608 {
609 	struct inode *inode;
610 	struct dentry *root;
611 	struct dentry *dentry;
612 	int i;
613 
614 	s->s_blocksize = PAGE_SIZE;
615 	s->s_blocksize_bits = PAGE_SHIFT;
616 	s->s_magic = magic;
617 	s->s_op = &simple_super_operations;
618 	s->s_time_gran = 1;
619 
620 	inode = new_inode(s);
621 	if (!inode)
622 		return -ENOMEM;
623 	/*
624 	 * because the root inode is 1, the files array must not contain an
625 	 * entry at index 1
626 	 */
627 	inode->i_ino = 1;
628 	inode->i_mode = S_IFDIR | 0755;
629 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
630 	inode->i_op = &simple_dir_inode_operations;
631 	inode->i_fop = &simple_dir_operations;
632 	set_nlink(inode, 2);
633 	root = d_make_root(inode);
634 	if (!root)
635 		return -ENOMEM;
636 	for (i = 0; !files->name || files->name[0]; i++, files++) {
637 		if (!files->name)
638 			continue;
639 
640 		/* warn if it tries to conflict with the root inode */
641 		if (unlikely(i == 1))
642 			printk(KERN_WARNING "%s: %s passed in a files array"
643 				"with an index of 1!\n", __func__,
644 				s->s_type->name);
645 
646 		dentry = d_alloc_name(root, files->name);
647 		if (!dentry)
648 			goto out;
649 		inode = new_inode(s);
650 		if (!inode) {
651 			dput(dentry);
652 			goto out;
653 		}
654 		inode->i_mode = S_IFREG | files->mode;
655 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
656 		inode->i_fop = files->ops;
657 		inode->i_ino = i;
658 		d_add(dentry, inode);
659 	}
660 	s->s_root = root;
661 	return 0;
662 out:
663 	d_genocide(root);
664 	shrink_dcache_parent(root);
665 	dput(root);
666 	return -ENOMEM;
667 }
668 EXPORT_SYMBOL(simple_fill_super);
669 
670 static DEFINE_SPINLOCK(pin_fs_lock);
671 
672 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
673 {
674 	struct vfsmount *mnt = NULL;
675 	spin_lock(&pin_fs_lock);
676 	if (unlikely(!*mount)) {
677 		spin_unlock(&pin_fs_lock);
678 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
679 		if (IS_ERR(mnt))
680 			return PTR_ERR(mnt);
681 		spin_lock(&pin_fs_lock);
682 		if (!*mount)
683 			*mount = mnt;
684 	}
685 	mntget(*mount);
686 	++*count;
687 	spin_unlock(&pin_fs_lock);
688 	mntput(mnt);
689 	return 0;
690 }
691 EXPORT_SYMBOL(simple_pin_fs);
692 
693 void simple_release_fs(struct vfsmount **mount, int *count)
694 {
695 	struct vfsmount *mnt;
696 	spin_lock(&pin_fs_lock);
697 	mnt = *mount;
698 	if (!--*count)
699 		*mount = NULL;
700 	spin_unlock(&pin_fs_lock);
701 	mntput(mnt);
702 }
703 EXPORT_SYMBOL(simple_release_fs);
704 
705 /**
706  * simple_read_from_buffer - copy data from the buffer to user space
707  * @to: the user space buffer to read to
708  * @count: the maximum number of bytes to read
709  * @ppos: the current position in the buffer
710  * @from: the buffer to read from
711  * @available: the size of the buffer
712  *
713  * The simple_read_from_buffer() function reads up to @count bytes from the
714  * buffer @from at offset @ppos into the user space address starting at @to.
715  *
716  * On success, the number of bytes read is returned and the offset @ppos is
717  * advanced by this number, or negative value is returned on error.
718  **/
719 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
720 				const void *from, size_t available)
721 {
722 	loff_t pos = *ppos;
723 	size_t ret;
724 
725 	if (pos < 0)
726 		return -EINVAL;
727 	if (pos >= available || !count)
728 		return 0;
729 	if (count > available - pos)
730 		count = available - pos;
731 	ret = copy_to_user(to, from + pos, count);
732 	if (ret == count)
733 		return -EFAULT;
734 	count -= ret;
735 	*ppos = pos + count;
736 	return count;
737 }
738 EXPORT_SYMBOL(simple_read_from_buffer);
739 
740 /**
741  * simple_write_to_buffer - copy data from user space to the buffer
742  * @to: the buffer to write to
743  * @available: the size of the buffer
744  * @ppos: the current position in the buffer
745  * @from: the user space buffer to read from
746  * @count: the maximum number of bytes to read
747  *
748  * The simple_write_to_buffer() function reads up to @count bytes from the user
749  * space address starting at @from into the buffer @to at offset @ppos.
750  *
751  * On success, the number of bytes written is returned and the offset @ppos is
752  * advanced by this number, or negative value is returned on error.
753  **/
754 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
755 		const void __user *from, size_t count)
756 {
757 	loff_t pos = *ppos;
758 	size_t res;
759 
760 	if (pos < 0)
761 		return -EINVAL;
762 	if (pos >= available || !count)
763 		return 0;
764 	if (count > available - pos)
765 		count = available - pos;
766 	res = copy_from_user(to + pos, from, count);
767 	if (res == count)
768 		return -EFAULT;
769 	count -= res;
770 	*ppos = pos + count;
771 	return count;
772 }
773 EXPORT_SYMBOL(simple_write_to_buffer);
774 
775 /**
776  * memory_read_from_buffer - copy data from the buffer
777  * @to: the kernel space buffer to read to
778  * @count: the maximum number of bytes to read
779  * @ppos: the current position in the buffer
780  * @from: the buffer to read from
781  * @available: the size of the buffer
782  *
783  * The memory_read_from_buffer() function reads up to @count bytes from the
784  * buffer @from at offset @ppos into the kernel space address starting at @to.
785  *
786  * On success, the number of bytes read is returned and the offset @ppos is
787  * advanced by this number, or negative value is returned on error.
788  **/
789 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
790 				const void *from, size_t available)
791 {
792 	loff_t pos = *ppos;
793 
794 	if (pos < 0)
795 		return -EINVAL;
796 	if (pos >= available)
797 		return 0;
798 	if (count > available - pos)
799 		count = available - pos;
800 	memcpy(to, from + pos, count);
801 	*ppos = pos + count;
802 
803 	return count;
804 }
805 EXPORT_SYMBOL(memory_read_from_buffer);
806 
807 /*
808  * Transaction based IO.
809  * The file expects a single write which triggers the transaction, and then
810  * possibly a read which collects the result - which is stored in a
811  * file-local buffer.
812  */
813 
814 void simple_transaction_set(struct file *file, size_t n)
815 {
816 	struct simple_transaction_argresp *ar = file->private_data;
817 
818 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
819 
820 	/*
821 	 * The barrier ensures that ar->size will really remain zero until
822 	 * ar->data is ready for reading.
823 	 */
824 	smp_mb();
825 	ar->size = n;
826 }
827 EXPORT_SYMBOL(simple_transaction_set);
828 
829 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
830 {
831 	struct simple_transaction_argresp *ar;
832 	static DEFINE_SPINLOCK(simple_transaction_lock);
833 
834 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
835 		return ERR_PTR(-EFBIG);
836 
837 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
838 	if (!ar)
839 		return ERR_PTR(-ENOMEM);
840 
841 	spin_lock(&simple_transaction_lock);
842 
843 	/* only one write allowed per open */
844 	if (file->private_data) {
845 		spin_unlock(&simple_transaction_lock);
846 		free_page((unsigned long)ar);
847 		return ERR_PTR(-EBUSY);
848 	}
849 
850 	file->private_data = ar;
851 
852 	spin_unlock(&simple_transaction_lock);
853 
854 	if (copy_from_user(ar->data, buf, size))
855 		return ERR_PTR(-EFAULT);
856 
857 	return ar->data;
858 }
859 EXPORT_SYMBOL(simple_transaction_get);
860 
861 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
862 {
863 	struct simple_transaction_argresp *ar = file->private_data;
864 
865 	if (!ar)
866 		return 0;
867 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
868 }
869 EXPORT_SYMBOL(simple_transaction_read);
870 
871 int simple_transaction_release(struct inode *inode, struct file *file)
872 {
873 	free_page((unsigned long)file->private_data);
874 	return 0;
875 }
876 EXPORT_SYMBOL(simple_transaction_release);
877 
878 /* Simple attribute files */
879 
880 struct simple_attr {
881 	int (*get)(void *, u64 *);
882 	int (*set)(void *, u64);
883 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
884 	char set_buf[24];
885 	void *data;
886 	const char *fmt;	/* format for read operation */
887 	struct mutex mutex;	/* protects access to these buffers */
888 };
889 
890 /* simple_attr_open is called by an actual attribute open file operation
891  * to set the attribute specific access operations. */
892 int simple_attr_open(struct inode *inode, struct file *file,
893 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
894 		     const char *fmt)
895 {
896 	struct simple_attr *attr;
897 
898 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
899 	if (!attr)
900 		return -ENOMEM;
901 
902 	attr->get = get;
903 	attr->set = set;
904 	attr->data = inode->i_private;
905 	attr->fmt = fmt;
906 	mutex_init(&attr->mutex);
907 
908 	file->private_data = attr;
909 
910 	return nonseekable_open(inode, file);
911 }
912 EXPORT_SYMBOL_GPL(simple_attr_open);
913 
914 int simple_attr_release(struct inode *inode, struct file *file)
915 {
916 	kfree(file->private_data);
917 	return 0;
918 }
919 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
920 
921 /* read from the buffer that is filled with the get function */
922 ssize_t simple_attr_read(struct file *file, char __user *buf,
923 			 size_t len, loff_t *ppos)
924 {
925 	struct simple_attr *attr;
926 	size_t size;
927 	ssize_t ret;
928 
929 	attr = file->private_data;
930 
931 	if (!attr->get)
932 		return -EACCES;
933 
934 	ret = mutex_lock_interruptible(&attr->mutex);
935 	if (ret)
936 		return ret;
937 
938 	if (*ppos && attr->get_buf[0]) {
939 		/* continued read */
940 		size = strlen(attr->get_buf);
941 	} else {
942 		/* first read */
943 		u64 val;
944 		ret = attr->get(attr->data, &val);
945 		if (ret)
946 			goto out;
947 
948 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
949 				 attr->fmt, (unsigned long long)val);
950 	}
951 
952 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
953 out:
954 	mutex_unlock(&attr->mutex);
955 	return ret;
956 }
957 EXPORT_SYMBOL_GPL(simple_attr_read);
958 
959 /* interpret the buffer as a number to call the set function with */
960 ssize_t simple_attr_write(struct file *file, const char __user *buf,
961 			  size_t len, loff_t *ppos)
962 {
963 	struct simple_attr *attr;
964 	unsigned long long val;
965 	size_t size;
966 	ssize_t ret;
967 
968 	attr = file->private_data;
969 	if (!attr->set)
970 		return -EACCES;
971 
972 	ret = mutex_lock_interruptible(&attr->mutex);
973 	if (ret)
974 		return ret;
975 
976 	ret = -EFAULT;
977 	size = min(sizeof(attr->set_buf) - 1, len);
978 	if (copy_from_user(attr->set_buf, buf, size))
979 		goto out;
980 
981 	attr->set_buf[size] = '\0';
982 	ret = kstrtoull(attr->set_buf, 0, &val);
983 	if (ret)
984 		goto out;
985 	ret = attr->set(attr->data, val);
986 	if (ret == 0)
987 		ret = len; /* on success, claim we got the whole input */
988 out:
989 	mutex_unlock(&attr->mutex);
990 	return ret;
991 }
992 EXPORT_SYMBOL_GPL(simple_attr_write);
993 
994 /**
995  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
996  * @sb:		filesystem to do the file handle conversion on
997  * @fid:	file handle to convert
998  * @fh_len:	length of the file handle in bytes
999  * @fh_type:	type of file handle
1000  * @get_inode:	filesystem callback to retrieve inode
1001  *
1002  * This function decodes @fid as long as it has one of the well-known
1003  * Linux filehandle types and calls @get_inode on it to retrieve the
1004  * inode for the object specified in the file handle.
1005  */
1006 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1007 		int fh_len, int fh_type, struct inode *(*get_inode)
1008 			(struct super_block *sb, u64 ino, u32 gen))
1009 {
1010 	struct inode *inode = NULL;
1011 
1012 	if (fh_len < 2)
1013 		return NULL;
1014 
1015 	switch (fh_type) {
1016 	case FILEID_INO32_GEN:
1017 	case FILEID_INO32_GEN_PARENT:
1018 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1019 		break;
1020 	}
1021 
1022 	return d_obtain_alias(inode);
1023 }
1024 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1025 
1026 /**
1027  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1028  * @sb:		filesystem to do the file handle conversion on
1029  * @fid:	file handle to convert
1030  * @fh_len:	length of the file handle in bytes
1031  * @fh_type:	type of file handle
1032  * @get_inode:	filesystem callback to retrieve inode
1033  *
1034  * This function decodes @fid as long as it has one of the well-known
1035  * Linux filehandle types and calls @get_inode on it to retrieve the
1036  * inode for the _parent_ object specified in the file handle if it
1037  * is specified in the file handle, or NULL otherwise.
1038  */
1039 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1040 		int fh_len, int fh_type, struct inode *(*get_inode)
1041 			(struct super_block *sb, u64 ino, u32 gen))
1042 {
1043 	struct inode *inode = NULL;
1044 
1045 	if (fh_len <= 2)
1046 		return NULL;
1047 
1048 	switch (fh_type) {
1049 	case FILEID_INO32_GEN_PARENT:
1050 		inode = get_inode(sb, fid->i32.parent_ino,
1051 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1052 		break;
1053 	}
1054 
1055 	return d_obtain_alias(inode);
1056 }
1057 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1058 
1059 /**
1060  * __generic_file_fsync - generic fsync implementation for simple filesystems
1061  *
1062  * @file:	file to synchronize
1063  * @start:	start offset in bytes
1064  * @end:	end offset in bytes (inclusive)
1065  * @datasync:	only synchronize essential metadata if true
1066  *
1067  * This is a generic implementation of the fsync method for simple
1068  * filesystems which track all non-inode metadata in the buffers list
1069  * hanging off the address_space structure.
1070  */
1071 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1072 				 int datasync)
1073 {
1074 	struct inode *inode = file->f_mapping->host;
1075 	int err;
1076 	int ret;
1077 
1078 	err = file_write_and_wait_range(file, start, end);
1079 	if (err)
1080 		return err;
1081 
1082 	inode_lock(inode);
1083 	ret = sync_mapping_buffers(inode->i_mapping);
1084 	if (!(inode->i_state & I_DIRTY_ALL))
1085 		goto out;
1086 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1087 		goto out;
1088 
1089 	err = sync_inode_metadata(inode, 1);
1090 	if (ret == 0)
1091 		ret = err;
1092 
1093 out:
1094 	inode_unlock(inode);
1095 	/* check and advance again to catch errors after syncing out buffers */
1096 	err = file_check_and_advance_wb_err(file);
1097 	if (ret == 0)
1098 		ret = err;
1099 	return ret;
1100 }
1101 EXPORT_SYMBOL(__generic_file_fsync);
1102 
1103 /**
1104  * generic_file_fsync - generic fsync implementation for simple filesystems
1105  *			with flush
1106  * @file:	file to synchronize
1107  * @start:	start offset in bytes
1108  * @end:	end offset in bytes (inclusive)
1109  * @datasync:	only synchronize essential metadata if true
1110  *
1111  */
1112 
1113 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1114 		       int datasync)
1115 {
1116 	struct inode *inode = file->f_mapping->host;
1117 	int err;
1118 
1119 	err = __generic_file_fsync(file, start, end, datasync);
1120 	if (err)
1121 		return err;
1122 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1123 }
1124 EXPORT_SYMBOL(generic_file_fsync);
1125 
1126 /**
1127  * generic_check_addressable - Check addressability of file system
1128  * @blocksize_bits:	log of file system block size
1129  * @num_blocks:		number of blocks in file system
1130  *
1131  * Determine whether a file system with @num_blocks blocks (and a
1132  * block size of 2**@blocksize_bits) is addressable by the sector_t
1133  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1134  */
1135 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1136 {
1137 	u64 last_fs_block = num_blocks - 1;
1138 	u64 last_fs_page =
1139 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1140 
1141 	if (unlikely(num_blocks == 0))
1142 		return 0;
1143 
1144 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1145 		return -EINVAL;
1146 
1147 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1148 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1149 		return -EFBIG;
1150 	}
1151 	return 0;
1152 }
1153 EXPORT_SYMBOL(generic_check_addressable);
1154 
1155 /*
1156  * No-op implementation of ->fsync for in-memory filesystems.
1157  */
1158 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1159 {
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL(noop_fsync);
1163 
1164 int noop_set_page_dirty(struct page *page)
1165 {
1166 	/*
1167 	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1168 	 * tracking in the page object, dax does all dirty tracking in
1169 	 * the inode address_space in response to mkwrite faults. In the
1170 	 * dax case we only need to worry about potentially dirty CPU
1171 	 * caches, not dirty page cache pages to write back.
1172 	 *
1173 	 * This callback is defined to prevent fallback to
1174 	 * __set_page_dirty_buffers() in set_page_dirty().
1175 	 */
1176 	return 0;
1177 }
1178 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1179 
1180 void noop_invalidatepage(struct page *page, unsigned int offset,
1181 		unsigned int length)
1182 {
1183 	/*
1184 	 * There is no page cache to invalidate in the dax case, however
1185 	 * we need this callback defined to prevent falling back to
1186 	 * block_invalidatepage() in do_invalidatepage().
1187 	 */
1188 }
1189 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1190 
1191 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1192 {
1193 	/*
1194 	 * iomap based filesystems support direct I/O without need for
1195 	 * this callback. However, it still needs to be set in
1196 	 * inode->a_ops so that open/fcntl know that direct I/O is
1197 	 * generally supported.
1198 	 */
1199 	return -EINVAL;
1200 }
1201 EXPORT_SYMBOL_GPL(noop_direct_IO);
1202 
1203 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1204 void kfree_link(void *p)
1205 {
1206 	kfree(p);
1207 }
1208 EXPORT_SYMBOL(kfree_link);
1209 
1210 /*
1211  * nop .set_page_dirty method so that people can use .page_mkwrite on
1212  * anon inodes.
1213  */
1214 static int anon_set_page_dirty(struct page *page)
1215 {
1216 	return 0;
1217 };
1218 
1219 struct inode *alloc_anon_inode(struct super_block *s)
1220 {
1221 	static const struct address_space_operations anon_aops = {
1222 		.set_page_dirty = anon_set_page_dirty,
1223 	};
1224 	struct inode *inode = new_inode_pseudo(s);
1225 
1226 	if (!inode)
1227 		return ERR_PTR(-ENOMEM);
1228 
1229 	inode->i_ino = get_next_ino();
1230 	inode->i_mapping->a_ops = &anon_aops;
1231 
1232 	/*
1233 	 * Mark the inode dirty from the very beginning,
1234 	 * that way it will never be moved to the dirty
1235 	 * list because mark_inode_dirty() will think
1236 	 * that it already _is_ on the dirty list.
1237 	 */
1238 	inode->i_state = I_DIRTY;
1239 	inode->i_mode = S_IRUSR | S_IWUSR;
1240 	inode->i_uid = current_fsuid();
1241 	inode->i_gid = current_fsgid();
1242 	inode->i_flags |= S_PRIVATE;
1243 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1244 	return inode;
1245 }
1246 EXPORT_SYMBOL(alloc_anon_inode);
1247 
1248 /**
1249  * simple_nosetlease - generic helper for prohibiting leases
1250  * @filp: file pointer
1251  * @arg: type of lease to obtain
1252  * @flp: new lease supplied for insertion
1253  * @priv: private data for lm_setup operation
1254  *
1255  * Generic helper for filesystems that do not wish to allow leases to be set.
1256  * All arguments are ignored and it just returns -EINVAL.
1257  */
1258 int
1259 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1260 		  void **priv)
1261 {
1262 	return -EINVAL;
1263 }
1264 EXPORT_SYMBOL(simple_nosetlease);
1265 
1266 /**
1267  * simple_get_link - generic helper to get the target of "fast" symlinks
1268  * @dentry: not used here
1269  * @inode: the symlink inode
1270  * @done: not used here
1271  *
1272  * Generic helper for filesystems to use for symlink inodes where a pointer to
1273  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1274  * since as an optimization the path lookup code uses any non-NULL ->i_link
1275  * directly, without calling ->get_link().  But ->get_link() still must be set,
1276  * to mark the inode_operations as being for a symlink.
1277  *
1278  * Return: the symlink target
1279  */
1280 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1281 			    struct delayed_call *done)
1282 {
1283 	return inode->i_link;
1284 }
1285 EXPORT_SYMBOL(simple_get_link);
1286 
1287 const struct inode_operations simple_symlink_inode_operations = {
1288 	.get_link = simple_get_link,
1289 };
1290 EXPORT_SYMBOL(simple_symlink_inode_operations);
1291 
1292 /*
1293  * Operations for a permanently empty directory.
1294  */
1295 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1296 {
1297 	return ERR_PTR(-ENOENT);
1298 }
1299 
1300 static int empty_dir_getattr(struct user_namespace *mnt_userns,
1301 			     const struct path *path, struct kstat *stat,
1302 			     u32 request_mask, unsigned int query_flags)
1303 {
1304 	struct inode *inode = d_inode(path->dentry);
1305 	generic_fillattr(&init_user_ns, inode, stat);
1306 	return 0;
1307 }
1308 
1309 static int empty_dir_setattr(struct user_namespace *mnt_userns,
1310 			     struct dentry *dentry, struct iattr *attr)
1311 {
1312 	return -EPERM;
1313 }
1314 
1315 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1316 {
1317 	return -EOPNOTSUPP;
1318 }
1319 
1320 static const struct inode_operations empty_dir_inode_operations = {
1321 	.lookup		= empty_dir_lookup,
1322 	.permission	= generic_permission,
1323 	.setattr	= empty_dir_setattr,
1324 	.getattr	= empty_dir_getattr,
1325 	.listxattr	= empty_dir_listxattr,
1326 };
1327 
1328 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1329 {
1330 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1331 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1332 }
1333 
1334 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1335 {
1336 	dir_emit_dots(file, ctx);
1337 	return 0;
1338 }
1339 
1340 static const struct file_operations empty_dir_operations = {
1341 	.llseek		= empty_dir_llseek,
1342 	.read		= generic_read_dir,
1343 	.iterate_shared	= empty_dir_readdir,
1344 	.fsync		= noop_fsync,
1345 };
1346 
1347 
1348 void make_empty_dir_inode(struct inode *inode)
1349 {
1350 	set_nlink(inode, 2);
1351 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1352 	inode->i_uid = GLOBAL_ROOT_UID;
1353 	inode->i_gid = GLOBAL_ROOT_GID;
1354 	inode->i_rdev = 0;
1355 	inode->i_size = 0;
1356 	inode->i_blkbits = PAGE_SHIFT;
1357 	inode->i_blocks = 0;
1358 
1359 	inode->i_op = &empty_dir_inode_operations;
1360 	inode->i_opflags &= ~IOP_XATTR;
1361 	inode->i_fop = &empty_dir_operations;
1362 }
1363 
1364 bool is_empty_dir_inode(struct inode *inode)
1365 {
1366 	return (inode->i_fop == &empty_dir_operations) &&
1367 		(inode->i_op == &empty_dir_inode_operations);
1368 }
1369 
1370 #ifdef CONFIG_UNICODE
1371 /*
1372  * Determine if the name of a dentry should be casefolded.
1373  *
1374  * Return: if names will need casefolding
1375  */
1376 static bool needs_casefold(const struct inode *dir)
1377 {
1378 	return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1379 }
1380 
1381 /**
1382  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1383  * @dentry:	dentry whose name we are checking against
1384  * @len:	len of name of dentry
1385  * @str:	str pointer to name of dentry
1386  * @name:	Name to compare against
1387  *
1388  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1389  */
1390 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1391 				const char *str, const struct qstr *name)
1392 {
1393 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1394 	const struct inode *dir = READ_ONCE(parent->d_inode);
1395 	const struct super_block *sb = dentry->d_sb;
1396 	const struct unicode_map *um = sb->s_encoding;
1397 	struct qstr qstr = QSTR_INIT(str, len);
1398 	char strbuf[DNAME_INLINE_LEN];
1399 	int ret;
1400 
1401 	if (!dir || !needs_casefold(dir))
1402 		goto fallback;
1403 	/*
1404 	 * If the dentry name is stored in-line, then it may be concurrently
1405 	 * modified by a rename.  If this happens, the VFS will eventually retry
1406 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1407 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1408 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1409 	 */
1410 	if (len <= DNAME_INLINE_LEN - 1) {
1411 		memcpy(strbuf, str, len);
1412 		strbuf[len] = 0;
1413 		qstr.name = strbuf;
1414 		/* prevent compiler from optimizing out the temporary buffer */
1415 		barrier();
1416 	}
1417 	ret = utf8_strncasecmp(um, name, &qstr);
1418 	if (ret >= 0)
1419 		return ret;
1420 
1421 	if (sb_has_strict_encoding(sb))
1422 		return -EINVAL;
1423 fallback:
1424 	if (len != name->len)
1425 		return 1;
1426 	return !!memcmp(str, name->name, len);
1427 }
1428 
1429 /**
1430  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1431  * @dentry:	dentry of the parent directory
1432  * @str:	qstr of name whose hash we should fill in
1433  *
1434  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1435  */
1436 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1437 {
1438 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1439 	struct super_block *sb = dentry->d_sb;
1440 	const struct unicode_map *um = sb->s_encoding;
1441 	int ret = 0;
1442 
1443 	if (!dir || !needs_casefold(dir))
1444 		return 0;
1445 
1446 	ret = utf8_casefold_hash(um, dentry, str);
1447 	if (ret < 0 && sb_has_strict_encoding(sb))
1448 		return -EINVAL;
1449 	return 0;
1450 }
1451 
1452 static const struct dentry_operations generic_ci_dentry_ops = {
1453 	.d_hash = generic_ci_d_hash,
1454 	.d_compare = generic_ci_d_compare,
1455 };
1456 #endif
1457 
1458 #ifdef CONFIG_FS_ENCRYPTION
1459 static const struct dentry_operations generic_encrypted_dentry_ops = {
1460 	.d_revalidate = fscrypt_d_revalidate,
1461 };
1462 #endif
1463 
1464 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1465 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1466 	.d_hash = generic_ci_d_hash,
1467 	.d_compare = generic_ci_d_compare,
1468 	.d_revalidate = fscrypt_d_revalidate,
1469 };
1470 #endif
1471 
1472 /**
1473  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1474  * @dentry:	dentry to set ops on
1475  *
1476  * Casefolded directories need d_hash and d_compare set, so that the dentries
1477  * contained in them are handled case-insensitively.  Note that these operations
1478  * are needed on the parent directory rather than on the dentries in it, and
1479  * while the casefolding flag can be toggled on and off on an empty directory,
1480  * dentry_operations can't be changed later.  As a result, if the filesystem has
1481  * casefolding support enabled at all, we have to give all dentries the
1482  * casefolding operations even if their inode doesn't have the casefolding flag
1483  * currently (and thus the casefolding ops would be no-ops for now).
1484  *
1485  * Encryption works differently in that the only dentry operation it needs is
1486  * d_revalidate, which it only needs on dentries that have the no-key name flag.
1487  * The no-key flag can't be set "later", so we don't have to worry about that.
1488  *
1489  * Finally, to maximize compatibility with overlayfs (which isn't compatible
1490  * with certain dentry operations) and to avoid taking an unnecessary
1491  * performance hit, we use custom dentry_operations for each possible
1492  * combination rather than always installing all operations.
1493  */
1494 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1495 {
1496 #ifdef CONFIG_FS_ENCRYPTION
1497 	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1498 #endif
1499 #ifdef CONFIG_UNICODE
1500 	bool needs_ci_ops = dentry->d_sb->s_encoding;
1501 #endif
1502 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1503 	if (needs_encrypt_ops && needs_ci_ops) {
1504 		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1505 		return;
1506 	}
1507 #endif
1508 #ifdef CONFIG_FS_ENCRYPTION
1509 	if (needs_encrypt_ops) {
1510 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1511 		return;
1512 	}
1513 #endif
1514 #ifdef CONFIG_UNICODE
1515 	if (needs_ci_ops) {
1516 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1517 		return;
1518 	}
1519 #endif
1520 }
1521 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1522