xref: /openbmc/linux/fs/libfs.c (revision d5532ee7)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h>
16 
17 #include <asm/uaccess.h>
18 
19 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
20 		   struct kstat *stat)
21 {
22 	struct inode *inode = dentry->d_inode;
23 	generic_fillattr(inode, stat);
24 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
25 	return 0;
26 }
27 
28 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
29 {
30 	buf->f_type = dentry->d_sb->s_magic;
31 	buf->f_bsize = PAGE_CACHE_SIZE;
32 	buf->f_namelen = NAME_MAX;
33 	return 0;
34 }
35 
36 /*
37  * Retaining negative dentries for an in-memory filesystem just wastes
38  * memory and lookup time: arrange for them to be deleted immediately.
39  */
40 static int simple_delete_dentry(struct dentry *dentry)
41 {
42 	return 1;
43 }
44 
45 /*
46  * Lookup the data. This is trivial - if the dentry didn't already
47  * exist, we know it is negative.  Set d_op to delete negative dentries.
48  */
49 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
50 {
51 	static const struct dentry_operations simple_dentry_operations = {
52 		.d_delete = simple_delete_dentry,
53 	};
54 
55 	if (dentry->d_name.len > NAME_MAX)
56 		return ERR_PTR(-ENAMETOOLONG);
57 	dentry->d_op = &simple_dentry_operations;
58 	d_add(dentry, NULL);
59 	return NULL;
60 }
61 
62 int dcache_dir_open(struct inode *inode, struct file *file)
63 {
64 	static struct qstr cursor_name = {.len = 1, .name = "."};
65 
66 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
67 
68 	return file->private_data ? 0 : -ENOMEM;
69 }
70 
71 int dcache_dir_close(struct inode *inode, struct file *file)
72 {
73 	dput(file->private_data);
74 	return 0;
75 }
76 
77 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
78 {
79 	mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
80 	switch (origin) {
81 		case 1:
82 			offset += file->f_pos;
83 		case 0:
84 			if (offset >= 0)
85 				break;
86 		default:
87 			mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
88 			return -EINVAL;
89 	}
90 	if (offset != file->f_pos) {
91 		file->f_pos = offset;
92 		if (file->f_pos >= 2) {
93 			struct list_head *p;
94 			struct dentry *cursor = file->private_data;
95 			loff_t n = file->f_pos - 2;
96 
97 			spin_lock(&dcache_lock);
98 			list_del(&cursor->d_u.d_child);
99 			p = file->f_path.dentry->d_subdirs.next;
100 			while (n && p != &file->f_path.dentry->d_subdirs) {
101 				struct dentry *next;
102 				next = list_entry(p, struct dentry, d_u.d_child);
103 				if (!d_unhashed(next) && next->d_inode)
104 					n--;
105 				p = p->next;
106 			}
107 			list_add_tail(&cursor->d_u.d_child, p);
108 			spin_unlock(&dcache_lock);
109 		}
110 	}
111 	mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
112 	return offset;
113 }
114 
115 /* Relationship between i_mode and the DT_xxx types */
116 static inline unsigned char dt_type(struct inode *inode)
117 {
118 	return (inode->i_mode >> 12) & 15;
119 }
120 
121 /*
122  * Directory is locked and all positive dentries in it are safe, since
123  * for ramfs-type trees they can't go away without unlink() or rmdir(),
124  * both impossible due to the lock on directory.
125  */
126 
127 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
128 {
129 	struct dentry *dentry = filp->f_path.dentry;
130 	struct dentry *cursor = filp->private_data;
131 	struct list_head *p, *q = &cursor->d_u.d_child;
132 	ino_t ino;
133 	int i = filp->f_pos;
134 
135 	switch (i) {
136 		case 0:
137 			ino = dentry->d_inode->i_ino;
138 			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
139 				break;
140 			filp->f_pos++;
141 			i++;
142 			/* fallthrough */
143 		case 1:
144 			ino = parent_ino(dentry);
145 			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
146 				break;
147 			filp->f_pos++;
148 			i++;
149 			/* fallthrough */
150 		default:
151 			spin_lock(&dcache_lock);
152 			if (filp->f_pos == 2)
153 				list_move(q, &dentry->d_subdirs);
154 
155 			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
156 				struct dentry *next;
157 				next = list_entry(p, struct dentry, d_u.d_child);
158 				if (d_unhashed(next) || !next->d_inode)
159 					continue;
160 
161 				spin_unlock(&dcache_lock);
162 				if (filldir(dirent, next->d_name.name,
163 					    next->d_name.len, filp->f_pos,
164 					    next->d_inode->i_ino,
165 					    dt_type(next->d_inode)) < 0)
166 					return 0;
167 				spin_lock(&dcache_lock);
168 				/* next is still alive */
169 				list_move(q, p);
170 				p = q;
171 				filp->f_pos++;
172 			}
173 			spin_unlock(&dcache_lock);
174 	}
175 	return 0;
176 }
177 
178 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
179 {
180 	return -EISDIR;
181 }
182 
183 const struct file_operations simple_dir_operations = {
184 	.open		= dcache_dir_open,
185 	.release	= dcache_dir_close,
186 	.llseek		= dcache_dir_lseek,
187 	.read		= generic_read_dir,
188 	.readdir	= dcache_readdir,
189 	.fsync		= noop_fsync,
190 };
191 
192 const struct inode_operations simple_dir_inode_operations = {
193 	.lookup		= simple_lookup,
194 };
195 
196 static const struct super_operations simple_super_operations = {
197 	.statfs		= simple_statfs,
198 };
199 
200 /*
201  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
202  * will never be mountable)
203  */
204 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
205 	const struct super_operations *ops, unsigned long magic,
206 	struct vfsmount *mnt)
207 {
208 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
209 	struct dentry *dentry;
210 	struct inode *root;
211 	struct qstr d_name = {.name = name, .len = strlen(name)};
212 
213 	if (IS_ERR(s))
214 		return PTR_ERR(s);
215 
216 	s->s_flags = MS_NOUSER;
217 	s->s_maxbytes = MAX_LFS_FILESIZE;
218 	s->s_blocksize = PAGE_SIZE;
219 	s->s_blocksize_bits = PAGE_SHIFT;
220 	s->s_magic = magic;
221 	s->s_op = ops ? ops : &simple_super_operations;
222 	s->s_time_gran = 1;
223 	root = new_inode(s);
224 	if (!root)
225 		goto Enomem;
226 	/*
227 	 * since this is the first inode, make it number 1. New inodes created
228 	 * after this must take care not to collide with it (by passing
229 	 * max_reserved of 1 to iunique).
230 	 */
231 	root->i_ino = 1;
232 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
233 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
234 	dentry = d_alloc(NULL, &d_name);
235 	if (!dentry) {
236 		iput(root);
237 		goto Enomem;
238 	}
239 	dentry->d_sb = s;
240 	dentry->d_parent = dentry;
241 	d_instantiate(dentry, root);
242 	s->s_root = dentry;
243 	s->s_flags |= MS_ACTIVE;
244 	simple_set_mnt(mnt, s);
245 	return 0;
246 
247 Enomem:
248 	deactivate_locked_super(s);
249 	return -ENOMEM;
250 }
251 
252 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
253 {
254 	struct inode *inode = old_dentry->d_inode;
255 
256 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
257 	inc_nlink(inode);
258 	atomic_inc(&inode->i_count);
259 	dget(dentry);
260 	d_instantiate(dentry, inode);
261 	return 0;
262 }
263 
264 static inline int simple_positive(struct dentry *dentry)
265 {
266 	return dentry->d_inode && !d_unhashed(dentry);
267 }
268 
269 int simple_empty(struct dentry *dentry)
270 {
271 	struct dentry *child;
272 	int ret = 0;
273 
274 	spin_lock(&dcache_lock);
275 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
276 		if (simple_positive(child))
277 			goto out;
278 	ret = 1;
279 out:
280 	spin_unlock(&dcache_lock);
281 	return ret;
282 }
283 
284 int simple_unlink(struct inode *dir, struct dentry *dentry)
285 {
286 	struct inode *inode = dentry->d_inode;
287 
288 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
289 	drop_nlink(inode);
290 	dput(dentry);
291 	return 0;
292 }
293 
294 int simple_rmdir(struct inode *dir, struct dentry *dentry)
295 {
296 	if (!simple_empty(dentry))
297 		return -ENOTEMPTY;
298 
299 	drop_nlink(dentry->d_inode);
300 	simple_unlink(dir, dentry);
301 	drop_nlink(dir);
302 	return 0;
303 }
304 
305 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
306 		struct inode *new_dir, struct dentry *new_dentry)
307 {
308 	struct inode *inode = old_dentry->d_inode;
309 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
310 
311 	if (!simple_empty(new_dentry))
312 		return -ENOTEMPTY;
313 
314 	if (new_dentry->d_inode) {
315 		simple_unlink(new_dir, new_dentry);
316 		if (they_are_dirs)
317 			drop_nlink(old_dir);
318 	} else if (they_are_dirs) {
319 		drop_nlink(old_dir);
320 		inc_nlink(new_dir);
321 	}
322 
323 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
324 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
325 
326 	return 0;
327 }
328 
329 /**
330  * simple_setattr - setattr for simple filesystem
331  * @dentry: dentry
332  * @iattr: iattr structure
333  *
334  * Returns 0 on success, -error on failure.
335  *
336  * simple_setattr is a simple ->setattr implementation without a proper
337  * implementation of size changes.
338  *
339  * It can either be used for in-memory filesystems or special files
340  * on simple regular filesystems.  Anything that needs to change on-disk
341  * or wire state on size changes needs its own setattr method.
342  */
343 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
344 {
345 	struct inode *inode = dentry->d_inode;
346 	int error;
347 
348 	WARN_ON_ONCE(inode->i_op->truncate);
349 
350 	error = inode_change_ok(inode, iattr);
351 	if (error)
352 		return error;
353 
354 	if (iattr->ia_valid & ATTR_SIZE)
355 		truncate_setsize(inode, iattr->ia_size);
356 	setattr_copy(inode, iattr);
357 	mark_inode_dirty(inode);
358 	return 0;
359 }
360 EXPORT_SYMBOL(simple_setattr);
361 
362 int simple_readpage(struct file *file, struct page *page)
363 {
364 	clear_highpage(page);
365 	flush_dcache_page(page);
366 	SetPageUptodate(page);
367 	unlock_page(page);
368 	return 0;
369 }
370 
371 int simple_write_begin(struct file *file, struct address_space *mapping,
372 			loff_t pos, unsigned len, unsigned flags,
373 			struct page **pagep, void **fsdata)
374 {
375 	struct page *page;
376 	pgoff_t index;
377 
378 	index = pos >> PAGE_CACHE_SHIFT;
379 
380 	page = grab_cache_page_write_begin(mapping, index, flags);
381 	if (!page)
382 		return -ENOMEM;
383 
384 	*pagep = page;
385 
386 	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
387 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
388 
389 		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
390 	}
391 	return 0;
392 }
393 
394 /**
395  * simple_write_end - .write_end helper for non-block-device FSes
396  * @available: See .write_end of address_space_operations
397  * @file: 		"
398  * @mapping: 		"
399  * @pos: 		"
400  * @len: 		"
401  * @copied: 		"
402  * @page: 		"
403  * @fsdata: 		"
404  *
405  * simple_write_end does the minimum needed for updating a page after writing is
406  * done. It has the same API signature as the .write_end of
407  * address_space_operations vector. So it can just be set onto .write_end for
408  * FSes that don't need any other processing. i_mutex is assumed to be held.
409  * Block based filesystems should use generic_write_end().
410  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
411  * is not called, so a filesystem that actually does store data in .write_inode
412  * should extend on what's done here with a call to mark_inode_dirty() in the
413  * case that i_size has changed.
414  */
415 int simple_write_end(struct file *file, struct address_space *mapping,
416 			loff_t pos, unsigned len, unsigned copied,
417 			struct page *page, void *fsdata)
418 {
419 	struct inode *inode = page->mapping->host;
420 	loff_t last_pos = pos + copied;
421 
422 	/* zero the stale part of the page if we did a short copy */
423 	if (copied < len) {
424 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
425 
426 		zero_user(page, from + copied, len - copied);
427 	}
428 
429 	if (!PageUptodate(page))
430 		SetPageUptodate(page);
431 	/*
432 	 * No need to use i_size_read() here, the i_size
433 	 * cannot change under us because we hold the i_mutex.
434 	 */
435 	if (last_pos > inode->i_size)
436 		i_size_write(inode, last_pos);
437 
438 	set_page_dirty(page);
439 	unlock_page(page);
440 	page_cache_release(page);
441 
442 	return copied;
443 }
444 
445 /*
446  * the inodes created here are not hashed. If you use iunique to generate
447  * unique inode values later for this filesystem, then you must take care
448  * to pass it an appropriate max_reserved value to avoid collisions.
449  */
450 int simple_fill_super(struct super_block *s, unsigned long magic,
451 		      struct tree_descr *files)
452 {
453 	struct inode *inode;
454 	struct dentry *root;
455 	struct dentry *dentry;
456 	int i;
457 
458 	s->s_blocksize = PAGE_CACHE_SIZE;
459 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
460 	s->s_magic = magic;
461 	s->s_op = &simple_super_operations;
462 	s->s_time_gran = 1;
463 
464 	inode = new_inode(s);
465 	if (!inode)
466 		return -ENOMEM;
467 	/*
468 	 * because the root inode is 1, the files array must not contain an
469 	 * entry at index 1
470 	 */
471 	inode->i_ino = 1;
472 	inode->i_mode = S_IFDIR | 0755;
473 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
474 	inode->i_op = &simple_dir_inode_operations;
475 	inode->i_fop = &simple_dir_operations;
476 	inode->i_nlink = 2;
477 	root = d_alloc_root(inode);
478 	if (!root) {
479 		iput(inode);
480 		return -ENOMEM;
481 	}
482 	for (i = 0; !files->name || files->name[0]; i++, files++) {
483 		if (!files->name)
484 			continue;
485 
486 		/* warn if it tries to conflict with the root inode */
487 		if (unlikely(i == 1))
488 			printk(KERN_WARNING "%s: %s passed in a files array"
489 				"with an index of 1!\n", __func__,
490 				s->s_type->name);
491 
492 		dentry = d_alloc_name(root, files->name);
493 		if (!dentry)
494 			goto out;
495 		inode = new_inode(s);
496 		if (!inode)
497 			goto out;
498 		inode->i_mode = S_IFREG | files->mode;
499 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
500 		inode->i_fop = files->ops;
501 		inode->i_ino = i;
502 		d_add(dentry, inode);
503 	}
504 	s->s_root = root;
505 	return 0;
506 out:
507 	d_genocide(root);
508 	dput(root);
509 	return -ENOMEM;
510 }
511 
512 static DEFINE_SPINLOCK(pin_fs_lock);
513 
514 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
515 {
516 	struct vfsmount *mnt = NULL;
517 	spin_lock(&pin_fs_lock);
518 	if (unlikely(!*mount)) {
519 		spin_unlock(&pin_fs_lock);
520 		mnt = vfs_kern_mount(type, 0, type->name, NULL);
521 		if (IS_ERR(mnt))
522 			return PTR_ERR(mnt);
523 		spin_lock(&pin_fs_lock);
524 		if (!*mount)
525 			*mount = mnt;
526 	}
527 	mntget(*mount);
528 	++*count;
529 	spin_unlock(&pin_fs_lock);
530 	mntput(mnt);
531 	return 0;
532 }
533 
534 void simple_release_fs(struct vfsmount **mount, int *count)
535 {
536 	struct vfsmount *mnt;
537 	spin_lock(&pin_fs_lock);
538 	mnt = *mount;
539 	if (!--*count)
540 		*mount = NULL;
541 	spin_unlock(&pin_fs_lock);
542 	mntput(mnt);
543 }
544 
545 /**
546  * simple_read_from_buffer - copy data from the buffer to user space
547  * @to: the user space buffer to read to
548  * @count: the maximum number of bytes to read
549  * @ppos: the current position in the buffer
550  * @from: the buffer to read from
551  * @available: the size of the buffer
552  *
553  * The simple_read_from_buffer() function reads up to @count bytes from the
554  * buffer @from at offset @ppos into the user space address starting at @to.
555  *
556  * On success, the number of bytes read is returned and the offset @ppos is
557  * advanced by this number, or negative value is returned on error.
558  **/
559 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
560 				const void *from, size_t available)
561 {
562 	loff_t pos = *ppos;
563 	size_t ret;
564 
565 	if (pos < 0)
566 		return -EINVAL;
567 	if (pos >= available || !count)
568 		return 0;
569 	if (count > available - pos)
570 		count = available - pos;
571 	ret = copy_to_user(to, from + pos, count);
572 	if (ret == count)
573 		return -EFAULT;
574 	count -= ret;
575 	*ppos = pos + count;
576 	return count;
577 }
578 
579 /**
580  * simple_write_to_buffer - copy data from user space to the buffer
581  * @to: the buffer to write to
582  * @available: the size of the buffer
583  * @ppos: the current position in the buffer
584  * @from: the user space buffer to read from
585  * @count: the maximum number of bytes to read
586  *
587  * The simple_write_to_buffer() function reads up to @count bytes from the user
588  * space address starting at @from into the buffer @to at offset @ppos.
589  *
590  * On success, the number of bytes written is returned and the offset @ppos is
591  * advanced by this number, or negative value is returned on error.
592  **/
593 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
594 		const void __user *from, size_t count)
595 {
596 	loff_t pos = *ppos;
597 	size_t res;
598 
599 	if (pos < 0)
600 		return -EINVAL;
601 	if (pos >= available || !count)
602 		return 0;
603 	if (count > available - pos)
604 		count = available - pos;
605 	res = copy_from_user(to + pos, from, count);
606 	if (res == count)
607 		return -EFAULT;
608 	count -= res;
609 	*ppos = pos + count;
610 	return count;
611 }
612 
613 /**
614  * memory_read_from_buffer - copy data from the buffer
615  * @to: the kernel space buffer to read to
616  * @count: the maximum number of bytes to read
617  * @ppos: the current position in the buffer
618  * @from: the buffer to read from
619  * @available: the size of the buffer
620  *
621  * The memory_read_from_buffer() function reads up to @count bytes from the
622  * buffer @from at offset @ppos into the kernel space address starting at @to.
623  *
624  * On success, the number of bytes read is returned and the offset @ppos is
625  * advanced by this number, or negative value is returned on error.
626  **/
627 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
628 				const void *from, size_t available)
629 {
630 	loff_t pos = *ppos;
631 
632 	if (pos < 0)
633 		return -EINVAL;
634 	if (pos >= available)
635 		return 0;
636 	if (count > available - pos)
637 		count = available - pos;
638 	memcpy(to, from + pos, count);
639 	*ppos = pos + count;
640 
641 	return count;
642 }
643 
644 /*
645  * Transaction based IO.
646  * The file expects a single write which triggers the transaction, and then
647  * possibly a read which collects the result - which is stored in a
648  * file-local buffer.
649  */
650 
651 void simple_transaction_set(struct file *file, size_t n)
652 {
653 	struct simple_transaction_argresp *ar = file->private_data;
654 
655 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
656 
657 	/*
658 	 * The barrier ensures that ar->size will really remain zero until
659 	 * ar->data is ready for reading.
660 	 */
661 	smp_mb();
662 	ar->size = n;
663 }
664 
665 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
666 {
667 	struct simple_transaction_argresp *ar;
668 	static DEFINE_SPINLOCK(simple_transaction_lock);
669 
670 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
671 		return ERR_PTR(-EFBIG);
672 
673 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
674 	if (!ar)
675 		return ERR_PTR(-ENOMEM);
676 
677 	spin_lock(&simple_transaction_lock);
678 
679 	/* only one write allowed per open */
680 	if (file->private_data) {
681 		spin_unlock(&simple_transaction_lock);
682 		free_page((unsigned long)ar);
683 		return ERR_PTR(-EBUSY);
684 	}
685 
686 	file->private_data = ar;
687 
688 	spin_unlock(&simple_transaction_lock);
689 
690 	if (copy_from_user(ar->data, buf, size))
691 		return ERR_PTR(-EFAULT);
692 
693 	return ar->data;
694 }
695 
696 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
697 {
698 	struct simple_transaction_argresp *ar = file->private_data;
699 
700 	if (!ar)
701 		return 0;
702 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
703 }
704 
705 int simple_transaction_release(struct inode *inode, struct file *file)
706 {
707 	free_page((unsigned long)file->private_data);
708 	return 0;
709 }
710 
711 /* Simple attribute files */
712 
713 struct simple_attr {
714 	int (*get)(void *, u64 *);
715 	int (*set)(void *, u64);
716 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
717 	char set_buf[24];
718 	void *data;
719 	const char *fmt;	/* format for read operation */
720 	struct mutex mutex;	/* protects access to these buffers */
721 };
722 
723 /* simple_attr_open is called by an actual attribute open file operation
724  * to set the attribute specific access operations. */
725 int simple_attr_open(struct inode *inode, struct file *file,
726 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
727 		     const char *fmt)
728 {
729 	struct simple_attr *attr;
730 
731 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
732 	if (!attr)
733 		return -ENOMEM;
734 
735 	attr->get = get;
736 	attr->set = set;
737 	attr->data = inode->i_private;
738 	attr->fmt = fmt;
739 	mutex_init(&attr->mutex);
740 
741 	file->private_data = attr;
742 
743 	return nonseekable_open(inode, file);
744 }
745 
746 int simple_attr_release(struct inode *inode, struct file *file)
747 {
748 	kfree(file->private_data);
749 	return 0;
750 }
751 
752 /* read from the buffer that is filled with the get function */
753 ssize_t simple_attr_read(struct file *file, char __user *buf,
754 			 size_t len, loff_t *ppos)
755 {
756 	struct simple_attr *attr;
757 	size_t size;
758 	ssize_t ret;
759 
760 	attr = file->private_data;
761 
762 	if (!attr->get)
763 		return -EACCES;
764 
765 	ret = mutex_lock_interruptible(&attr->mutex);
766 	if (ret)
767 		return ret;
768 
769 	if (*ppos) {		/* continued read */
770 		size = strlen(attr->get_buf);
771 	} else {		/* first read */
772 		u64 val;
773 		ret = attr->get(attr->data, &val);
774 		if (ret)
775 			goto out;
776 
777 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
778 				 attr->fmt, (unsigned long long)val);
779 	}
780 
781 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
782 out:
783 	mutex_unlock(&attr->mutex);
784 	return ret;
785 }
786 
787 /* interpret the buffer as a number to call the set function with */
788 ssize_t simple_attr_write(struct file *file, const char __user *buf,
789 			  size_t len, loff_t *ppos)
790 {
791 	struct simple_attr *attr;
792 	u64 val;
793 	size_t size;
794 	ssize_t ret;
795 
796 	attr = file->private_data;
797 	if (!attr->set)
798 		return -EACCES;
799 
800 	ret = mutex_lock_interruptible(&attr->mutex);
801 	if (ret)
802 		return ret;
803 
804 	ret = -EFAULT;
805 	size = min(sizeof(attr->set_buf) - 1, len);
806 	if (copy_from_user(attr->set_buf, buf, size))
807 		goto out;
808 
809 	attr->set_buf[size] = '\0';
810 	val = simple_strtol(attr->set_buf, NULL, 0);
811 	ret = attr->set(attr->data, val);
812 	if (ret == 0)
813 		ret = len; /* on success, claim we got the whole input */
814 out:
815 	mutex_unlock(&attr->mutex);
816 	return ret;
817 }
818 
819 /**
820  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
821  * @sb:		filesystem to do the file handle conversion on
822  * @fid:	file handle to convert
823  * @fh_len:	length of the file handle in bytes
824  * @fh_type:	type of file handle
825  * @get_inode:	filesystem callback to retrieve inode
826  *
827  * This function decodes @fid as long as it has one of the well-known
828  * Linux filehandle types and calls @get_inode on it to retrieve the
829  * inode for the object specified in the file handle.
830  */
831 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
832 		int fh_len, int fh_type, struct inode *(*get_inode)
833 			(struct super_block *sb, u64 ino, u32 gen))
834 {
835 	struct inode *inode = NULL;
836 
837 	if (fh_len < 2)
838 		return NULL;
839 
840 	switch (fh_type) {
841 	case FILEID_INO32_GEN:
842 	case FILEID_INO32_GEN_PARENT:
843 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
844 		break;
845 	}
846 
847 	return d_obtain_alias(inode);
848 }
849 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
850 
851 /**
852  * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
853  * @sb:		filesystem to do the file handle conversion on
854  * @fid:	file handle to convert
855  * @fh_len:	length of the file handle in bytes
856  * @fh_type:	type of file handle
857  * @get_inode:	filesystem callback to retrieve inode
858  *
859  * This function decodes @fid as long as it has one of the well-known
860  * Linux filehandle types and calls @get_inode on it to retrieve the
861  * inode for the _parent_ object specified in the file handle if it
862  * is specified in the file handle, or NULL otherwise.
863  */
864 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
865 		int fh_len, int fh_type, struct inode *(*get_inode)
866 			(struct super_block *sb, u64 ino, u32 gen))
867 {
868 	struct inode *inode = NULL;
869 
870 	if (fh_len <= 2)
871 		return NULL;
872 
873 	switch (fh_type) {
874 	case FILEID_INO32_GEN_PARENT:
875 		inode = get_inode(sb, fid->i32.parent_ino,
876 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
877 		break;
878 	}
879 
880 	return d_obtain_alias(inode);
881 }
882 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
883 
884 /**
885  * generic_file_fsync - generic fsync implementation for simple filesystems
886  * @file:	file to synchronize
887  * @datasync:	only synchronize essential metadata if true
888  *
889  * This is a generic implementation of the fsync method for simple
890  * filesystems which track all non-inode metadata in the buffers list
891  * hanging off the address_space structure.
892  */
893 int generic_file_fsync(struct file *file, int datasync)
894 {
895 	struct writeback_control wbc = {
896 		.sync_mode = WB_SYNC_ALL,
897 		.nr_to_write = 0, /* metadata-only; caller takes care of data */
898 	};
899 	struct inode *inode = file->f_mapping->host;
900 	int err;
901 	int ret;
902 
903 	ret = sync_mapping_buffers(inode->i_mapping);
904 	if (!(inode->i_state & I_DIRTY))
905 		return ret;
906 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
907 		return ret;
908 
909 	err = sync_inode(inode, &wbc);
910 	if (ret == 0)
911 		ret = err;
912 	return ret;
913 }
914 EXPORT_SYMBOL(generic_file_fsync);
915 
916 /*
917  * No-op implementation of ->fsync for in-memory filesystems.
918  */
919 int noop_fsync(struct file *file, int datasync)
920 {
921 	return 0;
922 }
923 
924 EXPORT_SYMBOL(dcache_dir_close);
925 EXPORT_SYMBOL(dcache_dir_lseek);
926 EXPORT_SYMBOL(dcache_dir_open);
927 EXPORT_SYMBOL(dcache_readdir);
928 EXPORT_SYMBOL(generic_read_dir);
929 EXPORT_SYMBOL(get_sb_pseudo);
930 EXPORT_SYMBOL(simple_write_begin);
931 EXPORT_SYMBOL(simple_write_end);
932 EXPORT_SYMBOL(simple_dir_inode_operations);
933 EXPORT_SYMBOL(simple_dir_operations);
934 EXPORT_SYMBOL(simple_empty);
935 EXPORT_SYMBOL(simple_fill_super);
936 EXPORT_SYMBOL(simple_getattr);
937 EXPORT_SYMBOL(simple_link);
938 EXPORT_SYMBOL(simple_lookup);
939 EXPORT_SYMBOL(simple_pin_fs);
940 EXPORT_SYMBOL(simple_readpage);
941 EXPORT_SYMBOL(simple_release_fs);
942 EXPORT_SYMBOL(simple_rename);
943 EXPORT_SYMBOL(simple_rmdir);
944 EXPORT_SYMBOL(simple_statfs);
945 EXPORT_SYMBOL(noop_fsync);
946 EXPORT_SYMBOL(simple_unlink);
947 EXPORT_SYMBOL(simple_read_from_buffer);
948 EXPORT_SYMBOL(simple_write_to_buffer);
949 EXPORT_SYMBOL(memory_read_from_buffer);
950 EXPORT_SYMBOL(simple_transaction_set);
951 EXPORT_SYMBOL(simple_transaction_get);
952 EXPORT_SYMBOL(simple_transaction_read);
953 EXPORT_SYMBOL(simple_transaction_release);
954 EXPORT_SYMBOL_GPL(simple_attr_open);
955 EXPORT_SYMBOL_GPL(simple_attr_release);
956 EXPORT_SYMBOL_GPL(simple_attr_read);
957 EXPORT_SYMBOL_GPL(simple_attr_write);
958