1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/pagemap.h> 8 #include <linux/slab.h> 9 #include <linux/mount.h> 10 #include <linux/vfs.h> 11 #include <linux/quotaops.h> 12 #include <linux/mutex.h> 13 #include <linux/exportfs.h> 14 #include <linux/writeback.h> 15 #include <linux/buffer_head.h> 16 17 #include <asm/uaccess.h> 18 19 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 20 struct kstat *stat) 21 { 22 struct inode *inode = dentry->d_inode; 23 generic_fillattr(inode, stat); 24 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9); 25 return 0; 26 } 27 28 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 29 { 30 buf->f_type = dentry->d_sb->s_magic; 31 buf->f_bsize = PAGE_CACHE_SIZE; 32 buf->f_namelen = NAME_MAX; 33 return 0; 34 } 35 36 /* 37 * Retaining negative dentries for an in-memory filesystem just wastes 38 * memory and lookup time: arrange for them to be deleted immediately. 39 */ 40 static int simple_delete_dentry(struct dentry *dentry) 41 { 42 return 1; 43 } 44 45 /* 46 * Lookup the data. This is trivial - if the dentry didn't already 47 * exist, we know it is negative. Set d_op to delete negative dentries. 48 */ 49 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 50 { 51 static const struct dentry_operations simple_dentry_operations = { 52 .d_delete = simple_delete_dentry, 53 }; 54 55 if (dentry->d_name.len > NAME_MAX) 56 return ERR_PTR(-ENAMETOOLONG); 57 dentry->d_op = &simple_dentry_operations; 58 d_add(dentry, NULL); 59 return NULL; 60 } 61 62 int dcache_dir_open(struct inode *inode, struct file *file) 63 { 64 static struct qstr cursor_name = {.len = 1, .name = "."}; 65 66 file->private_data = d_alloc(file->f_path.dentry, &cursor_name); 67 68 return file->private_data ? 0 : -ENOMEM; 69 } 70 71 int dcache_dir_close(struct inode *inode, struct file *file) 72 { 73 dput(file->private_data); 74 return 0; 75 } 76 77 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin) 78 { 79 mutex_lock(&file->f_path.dentry->d_inode->i_mutex); 80 switch (origin) { 81 case 1: 82 offset += file->f_pos; 83 case 0: 84 if (offset >= 0) 85 break; 86 default: 87 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 88 return -EINVAL; 89 } 90 if (offset != file->f_pos) { 91 file->f_pos = offset; 92 if (file->f_pos >= 2) { 93 struct list_head *p; 94 struct dentry *cursor = file->private_data; 95 loff_t n = file->f_pos - 2; 96 97 spin_lock(&dcache_lock); 98 list_del(&cursor->d_u.d_child); 99 p = file->f_path.dentry->d_subdirs.next; 100 while (n && p != &file->f_path.dentry->d_subdirs) { 101 struct dentry *next; 102 next = list_entry(p, struct dentry, d_u.d_child); 103 if (!d_unhashed(next) && next->d_inode) 104 n--; 105 p = p->next; 106 } 107 list_add_tail(&cursor->d_u.d_child, p); 108 spin_unlock(&dcache_lock); 109 } 110 } 111 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 112 return offset; 113 } 114 115 /* Relationship between i_mode and the DT_xxx types */ 116 static inline unsigned char dt_type(struct inode *inode) 117 { 118 return (inode->i_mode >> 12) & 15; 119 } 120 121 /* 122 * Directory is locked and all positive dentries in it are safe, since 123 * for ramfs-type trees they can't go away without unlink() or rmdir(), 124 * both impossible due to the lock on directory. 125 */ 126 127 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir) 128 { 129 struct dentry *dentry = filp->f_path.dentry; 130 struct dentry *cursor = filp->private_data; 131 struct list_head *p, *q = &cursor->d_u.d_child; 132 ino_t ino; 133 int i = filp->f_pos; 134 135 switch (i) { 136 case 0: 137 ino = dentry->d_inode->i_ino; 138 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 139 break; 140 filp->f_pos++; 141 i++; 142 /* fallthrough */ 143 case 1: 144 ino = parent_ino(dentry); 145 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 146 break; 147 filp->f_pos++; 148 i++; 149 /* fallthrough */ 150 default: 151 spin_lock(&dcache_lock); 152 if (filp->f_pos == 2) 153 list_move(q, &dentry->d_subdirs); 154 155 for (p=q->next; p != &dentry->d_subdirs; p=p->next) { 156 struct dentry *next; 157 next = list_entry(p, struct dentry, d_u.d_child); 158 if (d_unhashed(next) || !next->d_inode) 159 continue; 160 161 spin_unlock(&dcache_lock); 162 if (filldir(dirent, next->d_name.name, 163 next->d_name.len, filp->f_pos, 164 next->d_inode->i_ino, 165 dt_type(next->d_inode)) < 0) 166 return 0; 167 spin_lock(&dcache_lock); 168 /* next is still alive */ 169 list_move(q, p); 170 p = q; 171 filp->f_pos++; 172 } 173 spin_unlock(&dcache_lock); 174 } 175 return 0; 176 } 177 178 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 179 { 180 return -EISDIR; 181 } 182 183 const struct file_operations simple_dir_operations = { 184 .open = dcache_dir_open, 185 .release = dcache_dir_close, 186 .llseek = dcache_dir_lseek, 187 .read = generic_read_dir, 188 .readdir = dcache_readdir, 189 .fsync = noop_fsync, 190 }; 191 192 const struct inode_operations simple_dir_inode_operations = { 193 .lookup = simple_lookup, 194 }; 195 196 static const struct super_operations simple_super_operations = { 197 .statfs = simple_statfs, 198 }; 199 200 /* 201 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 202 * will never be mountable) 203 */ 204 int get_sb_pseudo(struct file_system_type *fs_type, char *name, 205 const struct super_operations *ops, unsigned long magic, 206 struct vfsmount *mnt) 207 { 208 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 209 struct dentry *dentry; 210 struct inode *root; 211 struct qstr d_name = {.name = name, .len = strlen(name)}; 212 213 if (IS_ERR(s)) 214 return PTR_ERR(s); 215 216 s->s_flags = MS_NOUSER; 217 s->s_maxbytes = MAX_LFS_FILESIZE; 218 s->s_blocksize = PAGE_SIZE; 219 s->s_blocksize_bits = PAGE_SHIFT; 220 s->s_magic = magic; 221 s->s_op = ops ? ops : &simple_super_operations; 222 s->s_time_gran = 1; 223 root = new_inode(s); 224 if (!root) 225 goto Enomem; 226 /* 227 * since this is the first inode, make it number 1. New inodes created 228 * after this must take care not to collide with it (by passing 229 * max_reserved of 1 to iunique). 230 */ 231 root->i_ino = 1; 232 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 233 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 234 dentry = d_alloc(NULL, &d_name); 235 if (!dentry) { 236 iput(root); 237 goto Enomem; 238 } 239 dentry->d_sb = s; 240 dentry->d_parent = dentry; 241 d_instantiate(dentry, root); 242 s->s_root = dentry; 243 s->s_flags |= MS_ACTIVE; 244 simple_set_mnt(mnt, s); 245 return 0; 246 247 Enomem: 248 deactivate_locked_super(s); 249 return -ENOMEM; 250 } 251 252 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 253 { 254 struct inode *inode = old_dentry->d_inode; 255 256 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 257 inc_nlink(inode); 258 atomic_inc(&inode->i_count); 259 dget(dentry); 260 d_instantiate(dentry, inode); 261 return 0; 262 } 263 264 static inline int simple_positive(struct dentry *dentry) 265 { 266 return dentry->d_inode && !d_unhashed(dentry); 267 } 268 269 int simple_empty(struct dentry *dentry) 270 { 271 struct dentry *child; 272 int ret = 0; 273 274 spin_lock(&dcache_lock); 275 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) 276 if (simple_positive(child)) 277 goto out; 278 ret = 1; 279 out: 280 spin_unlock(&dcache_lock); 281 return ret; 282 } 283 284 int simple_unlink(struct inode *dir, struct dentry *dentry) 285 { 286 struct inode *inode = dentry->d_inode; 287 288 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 289 drop_nlink(inode); 290 dput(dentry); 291 return 0; 292 } 293 294 int simple_rmdir(struct inode *dir, struct dentry *dentry) 295 { 296 if (!simple_empty(dentry)) 297 return -ENOTEMPTY; 298 299 drop_nlink(dentry->d_inode); 300 simple_unlink(dir, dentry); 301 drop_nlink(dir); 302 return 0; 303 } 304 305 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 306 struct inode *new_dir, struct dentry *new_dentry) 307 { 308 struct inode *inode = old_dentry->d_inode; 309 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode); 310 311 if (!simple_empty(new_dentry)) 312 return -ENOTEMPTY; 313 314 if (new_dentry->d_inode) { 315 simple_unlink(new_dir, new_dentry); 316 if (they_are_dirs) 317 drop_nlink(old_dir); 318 } else if (they_are_dirs) { 319 drop_nlink(old_dir); 320 inc_nlink(new_dir); 321 } 322 323 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 324 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 325 326 return 0; 327 } 328 329 /** 330 * simple_setattr - setattr for simple filesystem 331 * @dentry: dentry 332 * @iattr: iattr structure 333 * 334 * Returns 0 on success, -error on failure. 335 * 336 * simple_setattr is a simple ->setattr implementation without a proper 337 * implementation of size changes. 338 * 339 * It can either be used for in-memory filesystems or special files 340 * on simple regular filesystems. Anything that needs to change on-disk 341 * or wire state on size changes needs its own setattr method. 342 */ 343 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 344 { 345 struct inode *inode = dentry->d_inode; 346 int error; 347 348 WARN_ON_ONCE(inode->i_op->truncate); 349 350 error = inode_change_ok(inode, iattr); 351 if (error) 352 return error; 353 354 if (iattr->ia_valid & ATTR_SIZE) 355 truncate_setsize(inode, iattr->ia_size); 356 setattr_copy(inode, iattr); 357 mark_inode_dirty(inode); 358 return 0; 359 } 360 EXPORT_SYMBOL(simple_setattr); 361 362 int simple_readpage(struct file *file, struct page *page) 363 { 364 clear_highpage(page); 365 flush_dcache_page(page); 366 SetPageUptodate(page); 367 unlock_page(page); 368 return 0; 369 } 370 371 int simple_write_begin(struct file *file, struct address_space *mapping, 372 loff_t pos, unsigned len, unsigned flags, 373 struct page **pagep, void **fsdata) 374 { 375 struct page *page; 376 pgoff_t index; 377 378 index = pos >> PAGE_CACHE_SHIFT; 379 380 page = grab_cache_page_write_begin(mapping, index, flags); 381 if (!page) 382 return -ENOMEM; 383 384 *pagep = page; 385 386 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) { 387 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 388 389 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE); 390 } 391 return 0; 392 } 393 394 /** 395 * simple_write_end - .write_end helper for non-block-device FSes 396 * @available: See .write_end of address_space_operations 397 * @file: " 398 * @mapping: " 399 * @pos: " 400 * @len: " 401 * @copied: " 402 * @page: " 403 * @fsdata: " 404 * 405 * simple_write_end does the minimum needed for updating a page after writing is 406 * done. It has the same API signature as the .write_end of 407 * address_space_operations vector. So it can just be set onto .write_end for 408 * FSes that don't need any other processing. i_mutex is assumed to be held. 409 * Block based filesystems should use generic_write_end(). 410 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 411 * is not called, so a filesystem that actually does store data in .write_inode 412 * should extend on what's done here with a call to mark_inode_dirty() in the 413 * case that i_size has changed. 414 */ 415 int simple_write_end(struct file *file, struct address_space *mapping, 416 loff_t pos, unsigned len, unsigned copied, 417 struct page *page, void *fsdata) 418 { 419 struct inode *inode = page->mapping->host; 420 loff_t last_pos = pos + copied; 421 422 /* zero the stale part of the page if we did a short copy */ 423 if (copied < len) { 424 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 425 426 zero_user(page, from + copied, len - copied); 427 } 428 429 if (!PageUptodate(page)) 430 SetPageUptodate(page); 431 /* 432 * No need to use i_size_read() here, the i_size 433 * cannot change under us because we hold the i_mutex. 434 */ 435 if (last_pos > inode->i_size) 436 i_size_write(inode, last_pos); 437 438 set_page_dirty(page); 439 unlock_page(page); 440 page_cache_release(page); 441 442 return copied; 443 } 444 445 /* 446 * the inodes created here are not hashed. If you use iunique to generate 447 * unique inode values later for this filesystem, then you must take care 448 * to pass it an appropriate max_reserved value to avoid collisions. 449 */ 450 int simple_fill_super(struct super_block *s, unsigned long magic, 451 struct tree_descr *files) 452 { 453 struct inode *inode; 454 struct dentry *root; 455 struct dentry *dentry; 456 int i; 457 458 s->s_blocksize = PAGE_CACHE_SIZE; 459 s->s_blocksize_bits = PAGE_CACHE_SHIFT; 460 s->s_magic = magic; 461 s->s_op = &simple_super_operations; 462 s->s_time_gran = 1; 463 464 inode = new_inode(s); 465 if (!inode) 466 return -ENOMEM; 467 /* 468 * because the root inode is 1, the files array must not contain an 469 * entry at index 1 470 */ 471 inode->i_ino = 1; 472 inode->i_mode = S_IFDIR | 0755; 473 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 474 inode->i_op = &simple_dir_inode_operations; 475 inode->i_fop = &simple_dir_operations; 476 inode->i_nlink = 2; 477 root = d_alloc_root(inode); 478 if (!root) { 479 iput(inode); 480 return -ENOMEM; 481 } 482 for (i = 0; !files->name || files->name[0]; i++, files++) { 483 if (!files->name) 484 continue; 485 486 /* warn if it tries to conflict with the root inode */ 487 if (unlikely(i == 1)) 488 printk(KERN_WARNING "%s: %s passed in a files array" 489 "with an index of 1!\n", __func__, 490 s->s_type->name); 491 492 dentry = d_alloc_name(root, files->name); 493 if (!dentry) 494 goto out; 495 inode = new_inode(s); 496 if (!inode) 497 goto out; 498 inode->i_mode = S_IFREG | files->mode; 499 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 500 inode->i_fop = files->ops; 501 inode->i_ino = i; 502 d_add(dentry, inode); 503 } 504 s->s_root = root; 505 return 0; 506 out: 507 d_genocide(root); 508 dput(root); 509 return -ENOMEM; 510 } 511 512 static DEFINE_SPINLOCK(pin_fs_lock); 513 514 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 515 { 516 struct vfsmount *mnt = NULL; 517 spin_lock(&pin_fs_lock); 518 if (unlikely(!*mount)) { 519 spin_unlock(&pin_fs_lock); 520 mnt = vfs_kern_mount(type, 0, type->name, NULL); 521 if (IS_ERR(mnt)) 522 return PTR_ERR(mnt); 523 spin_lock(&pin_fs_lock); 524 if (!*mount) 525 *mount = mnt; 526 } 527 mntget(*mount); 528 ++*count; 529 spin_unlock(&pin_fs_lock); 530 mntput(mnt); 531 return 0; 532 } 533 534 void simple_release_fs(struct vfsmount **mount, int *count) 535 { 536 struct vfsmount *mnt; 537 spin_lock(&pin_fs_lock); 538 mnt = *mount; 539 if (!--*count) 540 *mount = NULL; 541 spin_unlock(&pin_fs_lock); 542 mntput(mnt); 543 } 544 545 /** 546 * simple_read_from_buffer - copy data from the buffer to user space 547 * @to: the user space buffer to read to 548 * @count: the maximum number of bytes to read 549 * @ppos: the current position in the buffer 550 * @from: the buffer to read from 551 * @available: the size of the buffer 552 * 553 * The simple_read_from_buffer() function reads up to @count bytes from the 554 * buffer @from at offset @ppos into the user space address starting at @to. 555 * 556 * On success, the number of bytes read is returned and the offset @ppos is 557 * advanced by this number, or negative value is returned on error. 558 **/ 559 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 560 const void *from, size_t available) 561 { 562 loff_t pos = *ppos; 563 size_t ret; 564 565 if (pos < 0) 566 return -EINVAL; 567 if (pos >= available || !count) 568 return 0; 569 if (count > available - pos) 570 count = available - pos; 571 ret = copy_to_user(to, from + pos, count); 572 if (ret == count) 573 return -EFAULT; 574 count -= ret; 575 *ppos = pos + count; 576 return count; 577 } 578 579 /** 580 * simple_write_to_buffer - copy data from user space to the buffer 581 * @to: the buffer to write to 582 * @available: the size of the buffer 583 * @ppos: the current position in the buffer 584 * @from: the user space buffer to read from 585 * @count: the maximum number of bytes to read 586 * 587 * The simple_write_to_buffer() function reads up to @count bytes from the user 588 * space address starting at @from into the buffer @to at offset @ppos. 589 * 590 * On success, the number of bytes written is returned and the offset @ppos is 591 * advanced by this number, or negative value is returned on error. 592 **/ 593 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 594 const void __user *from, size_t count) 595 { 596 loff_t pos = *ppos; 597 size_t res; 598 599 if (pos < 0) 600 return -EINVAL; 601 if (pos >= available || !count) 602 return 0; 603 if (count > available - pos) 604 count = available - pos; 605 res = copy_from_user(to + pos, from, count); 606 if (res == count) 607 return -EFAULT; 608 count -= res; 609 *ppos = pos + count; 610 return count; 611 } 612 613 /** 614 * memory_read_from_buffer - copy data from the buffer 615 * @to: the kernel space buffer to read to 616 * @count: the maximum number of bytes to read 617 * @ppos: the current position in the buffer 618 * @from: the buffer to read from 619 * @available: the size of the buffer 620 * 621 * The memory_read_from_buffer() function reads up to @count bytes from the 622 * buffer @from at offset @ppos into the kernel space address starting at @to. 623 * 624 * On success, the number of bytes read is returned and the offset @ppos is 625 * advanced by this number, or negative value is returned on error. 626 **/ 627 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 628 const void *from, size_t available) 629 { 630 loff_t pos = *ppos; 631 632 if (pos < 0) 633 return -EINVAL; 634 if (pos >= available) 635 return 0; 636 if (count > available - pos) 637 count = available - pos; 638 memcpy(to, from + pos, count); 639 *ppos = pos + count; 640 641 return count; 642 } 643 644 /* 645 * Transaction based IO. 646 * The file expects a single write which triggers the transaction, and then 647 * possibly a read which collects the result - which is stored in a 648 * file-local buffer. 649 */ 650 651 void simple_transaction_set(struct file *file, size_t n) 652 { 653 struct simple_transaction_argresp *ar = file->private_data; 654 655 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 656 657 /* 658 * The barrier ensures that ar->size will really remain zero until 659 * ar->data is ready for reading. 660 */ 661 smp_mb(); 662 ar->size = n; 663 } 664 665 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 666 { 667 struct simple_transaction_argresp *ar; 668 static DEFINE_SPINLOCK(simple_transaction_lock); 669 670 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 671 return ERR_PTR(-EFBIG); 672 673 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 674 if (!ar) 675 return ERR_PTR(-ENOMEM); 676 677 spin_lock(&simple_transaction_lock); 678 679 /* only one write allowed per open */ 680 if (file->private_data) { 681 spin_unlock(&simple_transaction_lock); 682 free_page((unsigned long)ar); 683 return ERR_PTR(-EBUSY); 684 } 685 686 file->private_data = ar; 687 688 spin_unlock(&simple_transaction_lock); 689 690 if (copy_from_user(ar->data, buf, size)) 691 return ERR_PTR(-EFAULT); 692 693 return ar->data; 694 } 695 696 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 697 { 698 struct simple_transaction_argresp *ar = file->private_data; 699 700 if (!ar) 701 return 0; 702 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 703 } 704 705 int simple_transaction_release(struct inode *inode, struct file *file) 706 { 707 free_page((unsigned long)file->private_data); 708 return 0; 709 } 710 711 /* Simple attribute files */ 712 713 struct simple_attr { 714 int (*get)(void *, u64 *); 715 int (*set)(void *, u64); 716 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 717 char set_buf[24]; 718 void *data; 719 const char *fmt; /* format for read operation */ 720 struct mutex mutex; /* protects access to these buffers */ 721 }; 722 723 /* simple_attr_open is called by an actual attribute open file operation 724 * to set the attribute specific access operations. */ 725 int simple_attr_open(struct inode *inode, struct file *file, 726 int (*get)(void *, u64 *), int (*set)(void *, u64), 727 const char *fmt) 728 { 729 struct simple_attr *attr; 730 731 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 732 if (!attr) 733 return -ENOMEM; 734 735 attr->get = get; 736 attr->set = set; 737 attr->data = inode->i_private; 738 attr->fmt = fmt; 739 mutex_init(&attr->mutex); 740 741 file->private_data = attr; 742 743 return nonseekable_open(inode, file); 744 } 745 746 int simple_attr_release(struct inode *inode, struct file *file) 747 { 748 kfree(file->private_data); 749 return 0; 750 } 751 752 /* read from the buffer that is filled with the get function */ 753 ssize_t simple_attr_read(struct file *file, char __user *buf, 754 size_t len, loff_t *ppos) 755 { 756 struct simple_attr *attr; 757 size_t size; 758 ssize_t ret; 759 760 attr = file->private_data; 761 762 if (!attr->get) 763 return -EACCES; 764 765 ret = mutex_lock_interruptible(&attr->mutex); 766 if (ret) 767 return ret; 768 769 if (*ppos) { /* continued read */ 770 size = strlen(attr->get_buf); 771 } else { /* first read */ 772 u64 val; 773 ret = attr->get(attr->data, &val); 774 if (ret) 775 goto out; 776 777 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 778 attr->fmt, (unsigned long long)val); 779 } 780 781 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 782 out: 783 mutex_unlock(&attr->mutex); 784 return ret; 785 } 786 787 /* interpret the buffer as a number to call the set function with */ 788 ssize_t simple_attr_write(struct file *file, const char __user *buf, 789 size_t len, loff_t *ppos) 790 { 791 struct simple_attr *attr; 792 u64 val; 793 size_t size; 794 ssize_t ret; 795 796 attr = file->private_data; 797 if (!attr->set) 798 return -EACCES; 799 800 ret = mutex_lock_interruptible(&attr->mutex); 801 if (ret) 802 return ret; 803 804 ret = -EFAULT; 805 size = min(sizeof(attr->set_buf) - 1, len); 806 if (copy_from_user(attr->set_buf, buf, size)) 807 goto out; 808 809 attr->set_buf[size] = '\0'; 810 val = simple_strtol(attr->set_buf, NULL, 0); 811 ret = attr->set(attr->data, val); 812 if (ret == 0) 813 ret = len; /* on success, claim we got the whole input */ 814 out: 815 mutex_unlock(&attr->mutex); 816 return ret; 817 } 818 819 /** 820 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 821 * @sb: filesystem to do the file handle conversion on 822 * @fid: file handle to convert 823 * @fh_len: length of the file handle in bytes 824 * @fh_type: type of file handle 825 * @get_inode: filesystem callback to retrieve inode 826 * 827 * This function decodes @fid as long as it has one of the well-known 828 * Linux filehandle types and calls @get_inode on it to retrieve the 829 * inode for the object specified in the file handle. 830 */ 831 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 832 int fh_len, int fh_type, struct inode *(*get_inode) 833 (struct super_block *sb, u64 ino, u32 gen)) 834 { 835 struct inode *inode = NULL; 836 837 if (fh_len < 2) 838 return NULL; 839 840 switch (fh_type) { 841 case FILEID_INO32_GEN: 842 case FILEID_INO32_GEN_PARENT: 843 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 844 break; 845 } 846 847 return d_obtain_alias(inode); 848 } 849 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 850 851 /** 852 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation 853 * @sb: filesystem to do the file handle conversion on 854 * @fid: file handle to convert 855 * @fh_len: length of the file handle in bytes 856 * @fh_type: type of file handle 857 * @get_inode: filesystem callback to retrieve inode 858 * 859 * This function decodes @fid as long as it has one of the well-known 860 * Linux filehandle types and calls @get_inode on it to retrieve the 861 * inode for the _parent_ object specified in the file handle if it 862 * is specified in the file handle, or NULL otherwise. 863 */ 864 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 865 int fh_len, int fh_type, struct inode *(*get_inode) 866 (struct super_block *sb, u64 ino, u32 gen)) 867 { 868 struct inode *inode = NULL; 869 870 if (fh_len <= 2) 871 return NULL; 872 873 switch (fh_type) { 874 case FILEID_INO32_GEN_PARENT: 875 inode = get_inode(sb, fid->i32.parent_ino, 876 (fh_len > 3 ? fid->i32.parent_gen : 0)); 877 break; 878 } 879 880 return d_obtain_alias(inode); 881 } 882 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 883 884 /** 885 * generic_file_fsync - generic fsync implementation for simple filesystems 886 * @file: file to synchronize 887 * @datasync: only synchronize essential metadata if true 888 * 889 * This is a generic implementation of the fsync method for simple 890 * filesystems which track all non-inode metadata in the buffers list 891 * hanging off the address_space structure. 892 */ 893 int generic_file_fsync(struct file *file, int datasync) 894 { 895 struct writeback_control wbc = { 896 .sync_mode = WB_SYNC_ALL, 897 .nr_to_write = 0, /* metadata-only; caller takes care of data */ 898 }; 899 struct inode *inode = file->f_mapping->host; 900 int err; 901 int ret; 902 903 ret = sync_mapping_buffers(inode->i_mapping); 904 if (!(inode->i_state & I_DIRTY)) 905 return ret; 906 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 907 return ret; 908 909 err = sync_inode(inode, &wbc); 910 if (ret == 0) 911 ret = err; 912 return ret; 913 } 914 EXPORT_SYMBOL(generic_file_fsync); 915 916 /* 917 * No-op implementation of ->fsync for in-memory filesystems. 918 */ 919 int noop_fsync(struct file *file, int datasync) 920 { 921 return 0; 922 } 923 924 EXPORT_SYMBOL(dcache_dir_close); 925 EXPORT_SYMBOL(dcache_dir_lseek); 926 EXPORT_SYMBOL(dcache_dir_open); 927 EXPORT_SYMBOL(dcache_readdir); 928 EXPORT_SYMBOL(generic_read_dir); 929 EXPORT_SYMBOL(get_sb_pseudo); 930 EXPORT_SYMBOL(simple_write_begin); 931 EXPORT_SYMBOL(simple_write_end); 932 EXPORT_SYMBOL(simple_dir_inode_operations); 933 EXPORT_SYMBOL(simple_dir_operations); 934 EXPORT_SYMBOL(simple_empty); 935 EXPORT_SYMBOL(simple_fill_super); 936 EXPORT_SYMBOL(simple_getattr); 937 EXPORT_SYMBOL(simple_link); 938 EXPORT_SYMBOL(simple_lookup); 939 EXPORT_SYMBOL(simple_pin_fs); 940 EXPORT_SYMBOL(simple_readpage); 941 EXPORT_SYMBOL(simple_release_fs); 942 EXPORT_SYMBOL(simple_rename); 943 EXPORT_SYMBOL(simple_rmdir); 944 EXPORT_SYMBOL(simple_statfs); 945 EXPORT_SYMBOL(noop_fsync); 946 EXPORT_SYMBOL(simple_unlink); 947 EXPORT_SYMBOL(simple_read_from_buffer); 948 EXPORT_SYMBOL(simple_write_to_buffer); 949 EXPORT_SYMBOL(memory_read_from_buffer); 950 EXPORT_SYMBOL(simple_transaction_set); 951 EXPORT_SYMBOL(simple_transaction_get); 952 EXPORT_SYMBOL(simple_transaction_read); 953 EXPORT_SYMBOL(simple_transaction_release); 954 EXPORT_SYMBOL_GPL(simple_attr_open); 955 EXPORT_SYMBOL_GPL(simple_attr_release); 956 EXPORT_SYMBOL_GPL(simple_attr_read); 957 EXPORT_SYMBOL_GPL(simple_attr_write); 958