xref: /openbmc/linux/fs/libfs.c (revision d0bd7f2a)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/mount.h>
11 #include <linux/vfs.h>
12 #include <linux/quotaops.h>
13 #include <linux/mutex.h>
14 #include <linux/namei.h>
15 #include <linux/exportfs.h>
16 #include <linux/writeback.h>
17 #include <linux/buffer_head.h> /* sync_mapping_buffers */
18 
19 #include <asm/uaccess.h>
20 
21 #include "internal.h"
22 
23 static inline int simple_positive(struct dentry *dentry)
24 {
25 	return d_really_is_positive(dentry) && !d_unhashed(dentry);
26 }
27 
28 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
29 		   struct kstat *stat)
30 {
31 	struct inode *inode = d_inode(dentry);
32 	generic_fillattr(inode, stat);
33 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
34 	return 0;
35 }
36 EXPORT_SYMBOL(simple_getattr);
37 
38 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
39 {
40 	buf->f_type = dentry->d_sb->s_magic;
41 	buf->f_bsize = PAGE_CACHE_SIZE;
42 	buf->f_namelen = NAME_MAX;
43 	return 0;
44 }
45 EXPORT_SYMBOL(simple_statfs);
46 
47 /*
48  * Retaining negative dentries for an in-memory filesystem just wastes
49  * memory and lookup time: arrange for them to be deleted immediately.
50  */
51 int always_delete_dentry(const struct dentry *dentry)
52 {
53 	return 1;
54 }
55 EXPORT_SYMBOL(always_delete_dentry);
56 
57 const struct dentry_operations simple_dentry_operations = {
58 	.d_delete = always_delete_dentry,
59 };
60 EXPORT_SYMBOL(simple_dentry_operations);
61 
62 /*
63  * Lookup the data. This is trivial - if the dentry didn't already
64  * exist, we know it is negative.  Set d_op to delete negative dentries.
65  */
66 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
67 {
68 	if (dentry->d_name.len > NAME_MAX)
69 		return ERR_PTR(-ENAMETOOLONG);
70 	if (!dentry->d_sb->s_d_op)
71 		d_set_d_op(dentry, &simple_dentry_operations);
72 	d_add(dentry, NULL);
73 	return NULL;
74 }
75 EXPORT_SYMBOL(simple_lookup);
76 
77 int dcache_dir_open(struct inode *inode, struct file *file)
78 {
79 	static struct qstr cursor_name = QSTR_INIT(".", 1);
80 
81 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
82 
83 	return file->private_data ? 0 : -ENOMEM;
84 }
85 EXPORT_SYMBOL(dcache_dir_open);
86 
87 int dcache_dir_close(struct inode *inode, struct file *file)
88 {
89 	dput(file->private_data);
90 	return 0;
91 }
92 EXPORT_SYMBOL(dcache_dir_close);
93 
94 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
95 {
96 	struct dentry *dentry = file->f_path.dentry;
97 	mutex_lock(&d_inode(dentry)->i_mutex);
98 	switch (whence) {
99 		case 1:
100 			offset += file->f_pos;
101 		case 0:
102 			if (offset >= 0)
103 				break;
104 		default:
105 			mutex_unlock(&d_inode(dentry)->i_mutex);
106 			return -EINVAL;
107 	}
108 	if (offset != file->f_pos) {
109 		file->f_pos = offset;
110 		if (file->f_pos >= 2) {
111 			struct list_head *p;
112 			struct dentry *cursor = file->private_data;
113 			loff_t n = file->f_pos - 2;
114 
115 			spin_lock(&dentry->d_lock);
116 			/* d_lock not required for cursor */
117 			list_del(&cursor->d_child);
118 			p = dentry->d_subdirs.next;
119 			while (n && p != &dentry->d_subdirs) {
120 				struct dentry *next;
121 				next = list_entry(p, struct dentry, d_child);
122 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
123 				if (simple_positive(next))
124 					n--;
125 				spin_unlock(&next->d_lock);
126 				p = p->next;
127 			}
128 			list_add_tail(&cursor->d_child, p);
129 			spin_unlock(&dentry->d_lock);
130 		}
131 	}
132 	mutex_unlock(&d_inode(dentry)->i_mutex);
133 	return offset;
134 }
135 EXPORT_SYMBOL(dcache_dir_lseek);
136 
137 /* Relationship between i_mode and the DT_xxx types */
138 static inline unsigned char dt_type(struct inode *inode)
139 {
140 	return (inode->i_mode >> 12) & 15;
141 }
142 
143 /*
144  * Directory is locked and all positive dentries in it are safe, since
145  * for ramfs-type trees they can't go away without unlink() or rmdir(),
146  * both impossible due to the lock on directory.
147  */
148 
149 int dcache_readdir(struct file *file, struct dir_context *ctx)
150 {
151 	struct dentry *dentry = file->f_path.dentry;
152 	struct dentry *cursor = file->private_data;
153 	struct list_head *p, *q = &cursor->d_child;
154 
155 	if (!dir_emit_dots(file, ctx))
156 		return 0;
157 	spin_lock(&dentry->d_lock);
158 	if (ctx->pos == 2)
159 		list_move(q, &dentry->d_subdirs);
160 
161 	for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
162 		struct dentry *next = list_entry(p, struct dentry, d_child);
163 		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
164 		if (!simple_positive(next)) {
165 			spin_unlock(&next->d_lock);
166 			continue;
167 		}
168 
169 		spin_unlock(&next->d_lock);
170 		spin_unlock(&dentry->d_lock);
171 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
172 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
173 			return 0;
174 		spin_lock(&dentry->d_lock);
175 		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
176 		/* next is still alive */
177 		list_move(q, p);
178 		spin_unlock(&next->d_lock);
179 		p = q;
180 		ctx->pos++;
181 	}
182 	spin_unlock(&dentry->d_lock);
183 	return 0;
184 }
185 EXPORT_SYMBOL(dcache_readdir);
186 
187 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
188 {
189 	return -EISDIR;
190 }
191 EXPORT_SYMBOL(generic_read_dir);
192 
193 const struct file_operations simple_dir_operations = {
194 	.open		= dcache_dir_open,
195 	.release	= dcache_dir_close,
196 	.llseek		= dcache_dir_lseek,
197 	.read		= generic_read_dir,
198 	.iterate	= dcache_readdir,
199 	.fsync		= noop_fsync,
200 };
201 EXPORT_SYMBOL(simple_dir_operations);
202 
203 const struct inode_operations simple_dir_inode_operations = {
204 	.lookup		= simple_lookup,
205 };
206 EXPORT_SYMBOL(simple_dir_inode_operations);
207 
208 static const struct super_operations simple_super_operations = {
209 	.statfs		= simple_statfs,
210 };
211 
212 /*
213  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
214  * will never be mountable)
215  */
216 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
217 	const struct super_operations *ops,
218 	const struct dentry_operations *dops, unsigned long magic)
219 {
220 	struct super_block *s;
221 	struct dentry *dentry;
222 	struct inode *root;
223 	struct qstr d_name = QSTR_INIT(name, strlen(name));
224 
225 	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
226 	if (IS_ERR(s))
227 		return ERR_CAST(s);
228 
229 	s->s_maxbytes = MAX_LFS_FILESIZE;
230 	s->s_blocksize = PAGE_SIZE;
231 	s->s_blocksize_bits = PAGE_SHIFT;
232 	s->s_magic = magic;
233 	s->s_op = ops ? ops : &simple_super_operations;
234 	s->s_time_gran = 1;
235 	root = new_inode(s);
236 	if (!root)
237 		goto Enomem;
238 	/*
239 	 * since this is the first inode, make it number 1. New inodes created
240 	 * after this must take care not to collide with it (by passing
241 	 * max_reserved of 1 to iunique).
242 	 */
243 	root->i_ino = 1;
244 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
245 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
246 	dentry = __d_alloc(s, &d_name);
247 	if (!dentry) {
248 		iput(root);
249 		goto Enomem;
250 	}
251 	d_instantiate(dentry, root);
252 	s->s_root = dentry;
253 	s->s_d_op = dops;
254 	s->s_flags |= MS_ACTIVE;
255 	return dget(s->s_root);
256 
257 Enomem:
258 	deactivate_locked_super(s);
259 	return ERR_PTR(-ENOMEM);
260 }
261 EXPORT_SYMBOL(mount_pseudo);
262 
263 int simple_open(struct inode *inode, struct file *file)
264 {
265 	if (inode->i_private)
266 		file->private_data = inode->i_private;
267 	return 0;
268 }
269 EXPORT_SYMBOL(simple_open);
270 
271 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
272 {
273 	struct inode *inode = d_inode(old_dentry);
274 
275 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
276 	inc_nlink(inode);
277 	ihold(inode);
278 	dget(dentry);
279 	d_instantiate(dentry, inode);
280 	return 0;
281 }
282 EXPORT_SYMBOL(simple_link);
283 
284 int simple_empty(struct dentry *dentry)
285 {
286 	struct dentry *child;
287 	int ret = 0;
288 
289 	spin_lock(&dentry->d_lock);
290 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
291 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
292 		if (simple_positive(child)) {
293 			spin_unlock(&child->d_lock);
294 			goto out;
295 		}
296 		spin_unlock(&child->d_lock);
297 	}
298 	ret = 1;
299 out:
300 	spin_unlock(&dentry->d_lock);
301 	return ret;
302 }
303 EXPORT_SYMBOL(simple_empty);
304 
305 int simple_unlink(struct inode *dir, struct dentry *dentry)
306 {
307 	struct inode *inode = d_inode(dentry);
308 
309 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
310 	drop_nlink(inode);
311 	dput(dentry);
312 	return 0;
313 }
314 EXPORT_SYMBOL(simple_unlink);
315 
316 int simple_rmdir(struct inode *dir, struct dentry *dentry)
317 {
318 	if (!simple_empty(dentry))
319 		return -ENOTEMPTY;
320 
321 	drop_nlink(d_inode(dentry));
322 	simple_unlink(dir, dentry);
323 	drop_nlink(dir);
324 	return 0;
325 }
326 EXPORT_SYMBOL(simple_rmdir);
327 
328 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
329 		struct inode *new_dir, struct dentry *new_dentry)
330 {
331 	struct inode *inode = d_inode(old_dentry);
332 	int they_are_dirs = d_is_dir(old_dentry);
333 
334 	if (!simple_empty(new_dentry))
335 		return -ENOTEMPTY;
336 
337 	if (d_really_is_positive(new_dentry)) {
338 		simple_unlink(new_dir, new_dentry);
339 		if (they_are_dirs) {
340 			drop_nlink(d_inode(new_dentry));
341 			drop_nlink(old_dir);
342 		}
343 	} else if (they_are_dirs) {
344 		drop_nlink(old_dir);
345 		inc_nlink(new_dir);
346 	}
347 
348 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
349 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
350 
351 	return 0;
352 }
353 EXPORT_SYMBOL(simple_rename);
354 
355 /**
356  * simple_setattr - setattr for simple filesystem
357  * @dentry: dentry
358  * @iattr: iattr structure
359  *
360  * Returns 0 on success, -error on failure.
361  *
362  * simple_setattr is a simple ->setattr implementation without a proper
363  * implementation of size changes.
364  *
365  * It can either be used for in-memory filesystems or special files
366  * on simple regular filesystems.  Anything that needs to change on-disk
367  * or wire state on size changes needs its own setattr method.
368  */
369 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
370 {
371 	struct inode *inode = d_inode(dentry);
372 	int error;
373 
374 	error = inode_change_ok(inode, iattr);
375 	if (error)
376 		return error;
377 
378 	if (iattr->ia_valid & ATTR_SIZE)
379 		truncate_setsize(inode, iattr->ia_size);
380 	setattr_copy(inode, iattr);
381 	mark_inode_dirty(inode);
382 	return 0;
383 }
384 EXPORT_SYMBOL(simple_setattr);
385 
386 int simple_readpage(struct file *file, struct page *page)
387 {
388 	clear_highpage(page);
389 	flush_dcache_page(page);
390 	SetPageUptodate(page);
391 	unlock_page(page);
392 	return 0;
393 }
394 EXPORT_SYMBOL(simple_readpage);
395 
396 int simple_write_begin(struct file *file, struct address_space *mapping,
397 			loff_t pos, unsigned len, unsigned flags,
398 			struct page **pagep, void **fsdata)
399 {
400 	struct page *page;
401 	pgoff_t index;
402 
403 	index = pos >> PAGE_CACHE_SHIFT;
404 
405 	page = grab_cache_page_write_begin(mapping, index, flags);
406 	if (!page)
407 		return -ENOMEM;
408 
409 	*pagep = page;
410 
411 	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
412 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
413 
414 		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
415 	}
416 	return 0;
417 }
418 EXPORT_SYMBOL(simple_write_begin);
419 
420 /**
421  * simple_write_end - .write_end helper for non-block-device FSes
422  * @available: See .write_end of address_space_operations
423  * @file: 		"
424  * @mapping: 		"
425  * @pos: 		"
426  * @len: 		"
427  * @copied: 		"
428  * @page: 		"
429  * @fsdata: 		"
430  *
431  * simple_write_end does the minimum needed for updating a page after writing is
432  * done. It has the same API signature as the .write_end of
433  * address_space_operations vector. So it can just be set onto .write_end for
434  * FSes that don't need any other processing. i_mutex is assumed to be held.
435  * Block based filesystems should use generic_write_end().
436  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
437  * is not called, so a filesystem that actually does store data in .write_inode
438  * should extend on what's done here with a call to mark_inode_dirty() in the
439  * case that i_size has changed.
440  */
441 int simple_write_end(struct file *file, struct address_space *mapping,
442 			loff_t pos, unsigned len, unsigned copied,
443 			struct page *page, void *fsdata)
444 {
445 	struct inode *inode = page->mapping->host;
446 	loff_t last_pos = pos + copied;
447 
448 	/* zero the stale part of the page if we did a short copy */
449 	if (copied < len) {
450 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
451 
452 		zero_user(page, from + copied, len - copied);
453 	}
454 
455 	if (!PageUptodate(page))
456 		SetPageUptodate(page);
457 	/*
458 	 * No need to use i_size_read() here, the i_size
459 	 * cannot change under us because we hold the i_mutex.
460 	 */
461 	if (last_pos > inode->i_size)
462 		i_size_write(inode, last_pos);
463 
464 	set_page_dirty(page);
465 	unlock_page(page);
466 	page_cache_release(page);
467 
468 	return copied;
469 }
470 EXPORT_SYMBOL(simple_write_end);
471 
472 /*
473  * the inodes created here are not hashed. If you use iunique to generate
474  * unique inode values later for this filesystem, then you must take care
475  * to pass it an appropriate max_reserved value to avoid collisions.
476  */
477 int simple_fill_super(struct super_block *s, unsigned long magic,
478 		      struct tree_descr *files)
479 {
480 	struct inode *inode;
481 	struct dentry *root;
482 	struct dentry *dentry;
483 	int i;
484 
485 	s->s_blocksize = PAGE_CACHE_SIZE;
486 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
487 	s->s_magic = magic;
488 	s->s_op = &simple_super_operations;
489 	s->s_time_gran = 1;
490 
491 	inode = new_inode(s);
492 	if (!inode)
493 		return -ENOMEM;
494 	/*
495 	 * because the root inode is 1, the files array must not contain an
496 	 * entry at index 1
497 	 */
498 	inode->i_ino = 1;
499 	inode->i_mode = S_IFDIR | 0755;
500 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
501 	inode->i_op = &simple_dir_inode_operations;
502 	inode->i_fop = &simple_dir_operations;
503 	set_nlink(inode, 2);
504 	root = d_make_root(inode);
505 	if (!root)
506 		return -ENOMEM;
507 	for (i = 0; !files->name || files->name[0]; i++, files++) {
508 		if (!files->name)
509 			continue;
510 
511 		/* warn if it tries to conflict with the root inode */
512 		if (unlikely(i == 1))
513 			printk(KERN_WARNING "%s: %s passed in a files array"
514 				"with an index of 1!\n", __func__,
515 				s->s_type->name);
516 
517 		dentry = d_alloc_name(root, files->name);
518 		if (!dentry)
519 			goto out;
520 		inode = new_inode(s);
521 		if (!inode) {
522 			dput(dentry);
523 			goto out;
524 		}
525 		inode->i_mode = S_IFREG | files->mode;
526 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
527 		inode->i_fop = files->ops;
528 		inode->i_ino = i;
529 		d_add(dentry, inode);
530 	}
531 	s->s_root = root;
532 	return 0;
533 out:
534 	d_genocide(root);
535 	shrink_dcache_parent(root);
536 	dput(root);
537 	return -ENOMEM;
538 }
539 EXPORT_SYMBOL(simple_fill_super);
540 
541 static DEFINE_SPINLOCK(pin_fs_lock);
542 
543 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
544 {
545 	struct vfsmount *mnt = NULL;
546 	spin_lock(&pin_fs_lock);
547 	if (unlikely(!*mount)) {
548 		spin_unlock(&pin_fs_lock);
549 		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
550 		if (IS_ERR(mnt))
551 			return PTR_ERR(mnt);
552 		spin_lock(&pin_fs_lock);
553 		if (!*mount)
554 			*mount = mnt;
555 	}
556 	mntget(*mount);
557 	++*count;
558 	spin_unlock(&pin_fs_lock);
559 	mntput(mnt);
560 	return 0;
561 }
562 EXPORT_SYMBOL(simple_pin_fs);
563 
564 void simple_release_fs(struct vfsmount **mount, int *count)
565 {
566 	struct vfsmount *mnt;
567 	spin_lock(&pin_fs_lock);
568 	mnt = *mount;
569 	if (!--*count)
570 		*mount = NULL;
571 	spin_unlock(&pin_fs_lock);
572 	mntput(mnt);
573 }
574 EXPORT_SYMBOL(simple_release_fs);
575 
576 /**
577  * simple_read_from_buffer - copy data from the buffer to user space
578  * @to: the user space buffer to read to
579  * @count: the maximum number of bytes to read
580  * @ppos: the current position in the buffer
581  * @from: the buffer to read from
582  * @available: the size of the buffer
583  *
584  * The simple_read_from_buffer() function reads up to @count bytes from the
585  * buffer @from at offset @ppos into the user space address starting at @to.
586  *
587  * On success, the number of bytes read is returned and the offset @ppos is
588  * advanced by this number, or negative value is returned on error.
589  **/
590 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
591 				const void *from, size_t available)
592 {
593 	loff_t pos = *ppos;
594 	size_t ret;
595 
596 	if (pos < 0)
597 		return -EINVAL;
598 	if (pos >= available || !count)
599 		return 0;
600 	if (count > available - pos)
601 		count = available - pos;
602 	ret = copy_to_user(to, from + pos, count);
603 	if (ret == count)
604 		return -EFAULT;
605 	count -= ret;
606 	*ppos = pos + count;
607 	return count;
608 }
609 EXPORT_SYMBOL(simple_read_from_buffer);
610 
611 /**
612  * simple_write_to_buffer - copy data from user space to the buffer
613  * @to: the buffer to write to
614  * @available: the size of the buffer
615  * @ppos: the current position in the buffer
616  * @from: the user space buffer to read from
617  * @count: the maximum number of bytes to read
618  *
619  * The simple_write_to_buffer() function reads up to @count bytes from the user
620  * space address starting at @from into the buffer @to at offset @ppos.
621  *
622  * On success, the number of bytes written is returned and the offset @ppos is
623  * advanced by this number, or negative value is returned on error.
624  **/
625 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
626 		const void __user *from, size_t count)
627 {
628 	loff_t pos = *ppos;
629 	size_t res;
630 
631 	if (pos < 0)
632 		return -EINVAL;
633 	if (pos >= available || !count)
634 		return 0;
635 	if (count > available - pos)
636 		count = available - pos;
637 	res = copy_from_user(to + pos, from, count);
638 	if (res == count)
639 		return -EFAULT;
640 	count -= res;
641 	*ppos = pos + count;
642 	return count;
643 }
644 EXPORT_SYMBOL(simple_write_to_buffer);
645 
646 /**
647  * memory_read_from_buffer - copy data from the buffer
648  * @to: the kernel space buffer to read to
649  * @count: the maximum number of bytes to read
650  * @ppos: the current position in the buffer
651  * @from: the buffer to read from
652  * @available: the size of the buffer
653  *
654  * The memory_read_from_buffer() function reads up to @count bytes from the
655  * buffer @from at offset @ppos into the kernel space address starting at @to.
656  *
657  * On success, the number of bytes read is returned and the offset @ppos is
658  * advanced by this number, or negative value is returned on error.
659  **/
660 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
661 				const void *from, size_t available)
662 {
663 	loff_t pos = *ppos;
664 
665 	if (pos < 0)
666 		return -EINVAL;
667 	if (pos >= available)
668 		return 0;
669 	if (count > available - pos)
670 		count = available - pos;
671 	memcpy(to, from + pos, count);
672 	*ppos = pos + count;
673 
674 	return count;
675 }
676 EXPORT_SYMBOL(memory_read_from_buffer);
677 
678 /*
679  * Transaction based IO.
680  * The file expects a single write which triggers the transaction, and then
681  * possibly a read which collects the result - which is stored in a
682  * file-local buffer.
683  */
684 
685 void simple_transaction_set(struct file *file, size_t n)
686 {
687 	struct simple_transaction_argresp *ar = file->private_data;
688 
689 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
690 
691 	/*
692 	 * The barrier ensures that ar->size will really remain zero until
693 	 * ar->data is ready for reading.
694 	 */
695 	smp_mb();
696 	ar->size = n;
697 }
698 EXPORT_SYMBOL(simple_transaction_set);
699 
700 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
701 {
702 	struct simple_transaction_argresp *ar;
703 	static DEFINE_SPINLOCK(simple_transaction_lock);
704 
705 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
706 		return ERR_PTR(-EFBIG);
707 
708 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
709 	if (!ar)
710 		return ERR_PTR(-ENOMEM);
711 
712 	spin_lock(&simple_transaction_lock);
713 
714 	/* only one write allowed per open */
715 	if (file->private_data) {
716 		spin_unlock(&simple_transaction_lock);
717 		free_page((unsigned long)ar);
718 		return ERR_PTR(-EBUSY);
719 	}
720 
721 	file->private_data = ar;
722 
723 	spin_unlock(&simple_transaction_lock);
724 
725 	if (copy_from_user(ar->data, buf, size))
726 		return ERR_PTR(-EFAULT);
727 
728 	return ar->data;
729 }
730 EXPORT_SYMBOL(simple_transaction_get);
731 
732 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
733 {
734 	struct simple_transaction_argresp *ar = file->private_data;
735 
736 	if (!ar)
737 		return 0;
738 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
739 }
740 EXPORT_SYMBOL(simple_transaction_read);
741 
742 int simple_transaction_release(struct inode *inode, struct file *file)
743 {
744 	free_page((unsigned long)file->private_data);
745 	return 0;
746 }
747 EXPORT_SYMBOL(simple_transaction_release);
748 
749 /* Simple attribute files */
750 
751 struct simple_attr {
752 	int (*get)(void *, u64 *);
753 	int (*set)(void *, u64);
754 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
755 	char set_buf[24];
756 	void *data;
757 	const char *fmt;	/* format for read operation */
758 	struct mutex mutex;	/* protects access to these buffers */
759 };
760 
761 /* simple_attr_open is called by an actual attribute open file operation
762  * to set the attribute specific access operations. */
763 int simple_attr_open(struct inode *inode, struct file *file,
764 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
765 		     const char *fmt)
766 {
767 	struct simple_attr *attr;
768 
769 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
770 	if (!attr)
771 		return -ENOMEM;
772 
773 	attr->get = get;
774 	attr->set = set;
775 	attr->data = inode->i_private;
776 	attr->fmt = fmt;
777 	mutex_init(&attr->mutex);
778 
779 	file->private_data = attr;
780 
781 	return nonseekable_open(inode, file);
782 }
783 EXPORT_SYMBOL_GPL(simple_attr_open);
784 
785 int simple_attr_release(struct inode *inode, struct file *file)
786 {
787 	kfree(file->private_data);
788 	return 0;
789 }
790 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
791 
792 /* read from the buffer that is filled with the get function */
793 ssize_t simple_attr_read(struct file *file, char __user *buf,
794 			 size_t len, loff_t *ppos)
795 {
796 	struct simple_attr *attr;
797 	size_t size;
798 	ssize_t ret;
799 
800 	attr = file->private_data;
801 
802 	if (!attr->get)
803 		return -EACCES;
804 
805 	ret = mutex_lock_interruptible(&attr->mutex);
806 	if (ret)
807 		return ret;
808 
809 	if (*ppos) {		/* continued read */
810 		size = strlen(attr->get_buf);
811 	} else {		/* first read */
812 		u64 val;
813 		ret = attr->get(attr->data, &val);
814 		if (ret)
815 			goto out;
816 
817 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
818 				 attr->fmt, (unsigned long long)val);
819 	}
820 
821 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
822 out:
823 	mutex_unlock(&attr->mutex);
824 	return ret;
825 }
826 EXPORT_SYMBOL_GPL(simple_attr_read);
827 
828 /* interpret the buffer as a number to call the set function with */
829 ssize_t simple_attr_write(struct file *file, const char __user *buf,
830 			  size_t len, loff_t *ppos)
831 {
832 	struct simple_attr *attr;
833 	u64 val;
834 	size_t size;
835 	ssize_t ret;
836 
837 	attr = file->private_data;
838 	if (!attr->set)
839 		return -EACCES;
840 
841 	ret = mutex_lock_interruptible(&attr->mutex);
842 	if (ret)
843 		return ret;
844 
845 	ret = -EFAULT;
846 	size = min(sizeof(attr->set_buf) - 1, len);
847 	if (copy_from_user(attr->set_buf, buf, size))
848 		goto out;
849 
850 	attr->set_buf[size] = '\0';
851 	val = simple_strtoll(attr->set_buf, NULL, 0);
852 	ret = attr->set(attr->data, val);
853 	if (ret == 0)
854 		ret = len; /* on success, claim we got the whole input */
855 out:
856 	mutex_unlock(&attr->mutex);
857 	return ret;
858 }
859 EXPORT_SYMBOL_GPL(simple_attr_write);
860 
861 /**
862  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
863  * @sb:		filesystem to do the file handle conversion on
864  * @fid:	file handle to convert
865  * @fh_len:	length of the file handle in bytes
866  * @fh_type:	type of file handle
867  * @get_inode:	filesystem callback to retrieve inode
868  *
869  * This function decodes @fid as long as it has one of the well-known
870  * Linux filehandle types and calls @get_inode on it to retrieve the
871  * inode for the object specified in the file handle.
872  */
873 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
874 		int fh_len, int fh_type, struct inode *(*get_inode)
875 			(struct super_block *sb, u64 ino, u32 gen))
876 {
877 	struct inode *inode = NULL;
878 
879 	if (fh_len < 2)
880 		return NULL;
881 
882 	switch (fh_type) {
883 	case FILEID_INO32_GEN:
884 	case FILEID_INO32_GEN_PARENT:
885 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
886 		break;
887 	}
888 
889 	return d_obtain_alias(inode);
890 }
891 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
892 
893 /**
894  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
895  * @sb:		filesystem to do the file handle conversion on
896  * @fid:	file handle to convert
897  * @fh_len:	length of the file handle in bytes
898  * @fh_type:	type of file handle
899  * @get_inode:	filesystem callback to retrieve inode
900  *
901  * This function decodes @fid as long as it has one of the well-known
902  * Linux filehandle types and calls @get_inode on it to retrieve the
903  * inode for the _parent_ object specified in the file handle if it
904  * is specified in the file handle, or NULL otherwise.
905  */
906 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
907 		int fh_len, int fh_type, struct inode *(*get_inode)
908 			(struct super_block *sb, u64 ino, u32 gen))
909 {
910 	struct inode *inode = NULL;
911 
912 	if (fh_len <= 2)
913 		return NULL;
914 
915 	switch (fh_type) {
916 	case FILEID_INO32_GEN_PARENT:
917 		inode = get_inode(sb, fid->i32.parent_ino,
918 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
919 		break;
920 	}
921 
922 	return d_obtain_alias(inode);
923 }
924 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
925 
926 /**
927  * __generic_file_fsync - generic fsync implementation for simple filesystems
928  *
929  * @file:	file to synchronize
930  * @start:	start offset in bytes
931  * @end:	end offset in bytes (inclusive)
932  * @datasync:	only synchronize essential metadata if true
933  *
934  * This is a generic implementation of the fsync method for simple
935  * filesystems which track all non-inode metadata in the buffers list
936  * hanging off the address_space structure.
937  */
938 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
939 				 int datasync)
940 {
941 	struct inode *inode = file->f_mapping->host;
942 	int err;
943 	int ret;
944 
945 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
946 	if (err)
947 		return err;
948 
949 	mutex_lock(&inode->i_mutex);
950 	ret = sync_mapping_buffers(inode->i_mapping);
951 	if (!(inode->i_state & I_DIRTY_ALL))
952 		goto out;
953 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
954 		goto out;
955 
956 	err = sync_inode_metadata(inode, 1);
957 	if (ret == 0)
958 		ret = err;
959 
960 out:
961 	mutex_unlock(&inode->i_mutex);
962 	return ret;
963 }
964 EXPORT_SYMBOL(__generic_file_fsync);
965 
966 /**
967  * generic_file_fsync - generic fsync implementation for simple filesystems
968  *			with flush
969  * @file:	file to synchronize
970  * @start:	start offset in bytes
971  * @end:	end offset in bytes (inclusive)
972  * @datasync:	only synchronize essential metadata if true
973  *
974  */
975 
976 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
977 		       int datasync)
978 {
979 	struct inode *inode = file->f_mapping->host;
980 	int err;
981 
982 	err = __generic_file_fsync(file, start, end, datasync);
983 	if (err)
984 		return err;
985 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
986 }
987 EXPORT_SYMBOL(generic_file_fsync);
988 
989 /**
990  * generic_check_addressable - Check addressability of file system
991  * @blocksize_bits:	log of file system block size
992  * @num_blocks:		number of blocks in file system
993  *
994  * Determine whether a file system with @num_blocks blocks (and a
995  * block size of 2**@blocksize_bits) is addressable by the sector_t
996  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
997  */
998 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
999 {
1000 	u64 last_fs_block = num_blocks - 1;
1001 	u64 last_fs_page =
1002 		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
1003 
1004 	if (unlikely(num_blocks == 0))
1005 		return 0;
1006 
1007 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
1008 		return -EINVAL;
1009 
1010 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1011 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1012 		return -EFBIG;
1013 	}
1014 	return 0;
1015 }
1016 EXPORT_SYMBOL(generic_check_addressable);
1017 
1018 /*
1019  * No-op implementation of ->fsync for in-memory filesystems.
1020  */
1021 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1022 {
1023 	return 0;
1024 }
1025 EXPORT_SYMBOL(noop_fsync);
1026 
1027 void kfree_put_link(struct dentry *dentry, struct nameidata *nd,
1028 				void *cookie)
1029 {
1030 	char *s = nd_get_link(nd);
1031 	if (!IS_ERR(s))
1032 		kfree(s);
1033 }
1034 EXPORT_SYMBOL(kfree_put_link);
1035 
1036 /*
1037  * nop .set_page_dirty method so that people can use .page_mkwrite on
1038  * anon inodes.
1039  */
1040 static int anon_set_page_dirty(struct page *page)
1041 {
1042 	return 0;
1043 };
1044 
1045 /*
1046  * A single inode exists for all anon_inode files. Contrary to pipes,
1047  * anon_inode inodes have no associated per-instance data, so we need
1048  * only allocate one of them.
1049  */
1050 struct inode *alloc_anon_inode(struct super_block *s)
1051 {
1052 	static const struct address_space_operations anon_aops = {
1053 		.set_page_dirty = anon_set_page_dirty,
1054 	};
1055 	struct inode *inode = new_inode_pseudo(s);
1056 
1057 	if (!inode)
1058 		return ERR_PTR(-ENOMEM);
1059 
1060 	inode->i_ino = get_next_ino();
1061 	inode->i_mapping->a_ops = &anon_aops;
1062 
1063 	/*
1064 	 * Mark the inode dirty from the very beginning,
1065 	 * that way it will never be moved to the dirty
1066 	 * list because mark_inode_dirty() will think
1067 	 * that it already _is_ on the dirty list.
1068 	 */
1069 	inode->i_state = I_DIRTY;
1070 	inode->i_mode = S_IRUSR | S_IWUSR;
1071 	inode->i_uid = current_fsuid();
1072 	inode->i_gid = current_fsgid();
1073 	inode->i_flags |= S_PRIVATE;
1074 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1075 	return inode;
1076 }
1077 EXPORT_SYMBOL(alloc_anon_inode);
1078 
1079 /**
1080  * simple_nosetlease - generic helper for prohibiting leases
1081  * @filp: file pointer
1082  * @arg: type of lease to obtain
1083  * @flp: new lease supplied for insertion
1084  * @priv: private data for lm_setup operation
1085  *
1086  * Generic helper for filesystems that do not wish to allow leases to be set.
1087  * All arguments are ignored and it just returns -EINVAL.
1088  */
1089 int
1090 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1091 		  void **priv)
1092 {
1093 	return -EINVAL;
1094 }
1095 EXPORT_SYMBOL(simple_nosetlease);
1096