1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/export.h> 8 #include <linux/pagemap.h> 9 #include <linux/slab.h> 10 #include <linux/cred.h> 11 #include <linux/mount.h> 12 #include <linux/vfs.h> 13 #include <linux/quotaops.h> 14 #include <linux/mutex.h> 15 #include <linux/namei.h> 16 #include <linux/exportfs.h> 17 #include <linux/writeback.h> 18 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 19 20 #include <linux/uaccess.h> 21 22 #include "internal.h" 23 24 int simple_getattr(const struct path *path, struct kstat *stat, 25 u32 request_mask, unsigned int query_flags) 26 { 27 struct inode *inode = d_inode(path->dentry); 28 generic_fillattr(inode, stat); 29 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 30 return 0; 31 } 32 EXPORT_SYMBOL(simple_getattr); 33 34 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 35 { 36 buf->f_type = dentry->d_sb->s_magic; 37 buf->f_bsize = PAGE_SIZE; 38 buf->f_namelen = NAME_MAX; 39 return 0; 40 } 41 EXPORT_SYMBOL(simple_statfs); 42 43 /* 44 * Retaining negative dentries for an in-memory filesystem just wastes 45 * memory and lookup time: arrange for them to be deleted immediately. 46 */ 47 int always_delete_dentry(const struct dentry *dentry) 48 { 49 return 1; 50 } 51 EXPORT_SYMBOL(always_delete_dentry); 52 53 const struct dentry_operations simple_dentry_operations = { 54 .d_delete = always_delete_dentry, 55 }; 56 EXPORT_SYMBOL(simple_dentry_operations); 57 58 /* 59 * Lookup the data. This is trivial - if the dentry didn't already 60 * exist, we know it is negative. Set d_op to delete negative dentries. 61 */ 62 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 63 { 64 if (dentry->d_name.len > NAME_MAX) 65 return ERR_PTR(-ENAMETOOLONG); 66 if (!dentry->d_sb->s_d_op) 67 d_set_d_op(dentry, &simple_dentry_operations); 68 d_add(dentry, NULL); 69 return NULL; 70 } 71 EXPORT_SYMBOL(simple_lookup); 72 73 int dcache_dir_open(struct inode *inode, struct file *file) 74 { 75 file->private_data = d_alloc_cursor(file->f_path.dentry); 76 77 return file->private_data ? 0 : -ENOMEM; 78 } 79 EXPORT_SYMBOL(dcache_dir_open); 80 81 int dcache_dir_close(struct inode *inode, struct file *file) 82 { 83 dput(file->private_data); 84 return 0; 85 } 86 EXPORT_SYMBOL(dcache_dir_close); 87 88 /* parent is locked at least shared */ 89 static struct dentry *next_positive(struct dentry *parent, 90 struct list_head *from, 91 int count) 92 { 93 unsigned *seq = &parent->d_inode->i_dir_seq, n; 94 struct dentry *res; 95 struct list_head *p; 96 bool skipped; 97 int i; 98 99 retry: 100 i = count; 101 skipped = false; 102 n = smp_load_acquire(seq) & ~1; 103 res = NULL; 104 rcu_read_lock(); 105 for (p = from->next; p != &parent->d_subdirs; p = p->next) { 106 struct dentry *d = list_entry(p, struct dentry, d_child); 107 if (!simple_positive(d)) { 108 skipped = true; 109 } else if (!--i) { 110 res = d; 111 break; 112 } 113 } 114 rcu_read_unlock(); 115 if (skipped) { 116 smp_rmb(); 117 if (unlikely(*seq != n)) 118 goto retry; 119 } 120 return res; 121 } 122 123 static void move_cursor(struct dentry *cursor, struct list_head *after) 124 { 125 struct dentry *parent = cursor->d_parent; 126 unsigned n, *seq = &parent->d_inode->i_dir_seq; 127 spin_lock(&parent->d_lock); 128 for (;;) { 129 n = *seq; 130 if (!(n & 1) && cmpxchg(seq, n, n + 1) == n) 131 break; 132 cpu_relax(); 133 } 134 __list_del(cursor->d_child.prev, cursor->d_child.next); 135 if (after) 136 list_add(&cursor->d_child, after); 137 else 138 list_add_tail(&cursor->d_child, &parent->d_subdirs); 139 smp_store_release(seq, n + 2); 140 spin_unlock(&parent->d_lock); 141 } 142 143 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 144 { 145 struct dentry *dentry = file->f_path.dentry; 146 switch (whence) { 147 case 1: 148 offset += file->f_pos; 149 /* fall through */ 150 case 0: 151 if (offset >= 0) 152 break; 153 /* fall through */ 154 default: 155 return -EINVAL; 156 } 157 if (offset != file->f_pos) { 158 file->f_pos = offset; 159 if (file->f_pos >= 2) { 160 struct dentry *cursor = file->private_data; 161 struct dentry *to; 162 loff_t n = file->f_pos - 2; 163 164 inode_lock_shared(dentry->d_inode); 165 to = next_positive(dentry, &dentry->d_subdirs, n); 166 move_cursor(cursor, to ? &to->d_child : NULL); 167 inode_unlock_shared(dentry->d_inode); 168 } 169 } 170 return offset; 171 } 172 EXPORT_SYMBOL(dcache_dir_lseek); 173 174 /* Relationship between i_mode and the DT_xxx types */ 175 static inline unsigned char dt_type(struct inode *inode) 176 { 177 return (inode->i_mode >> 12) & 15; 178 } 179 180 /* 181 * Directory is locked and all positive dentries in it are safe, since 182 * for ramfs-type trees they can't go away without unlink() or rmdir(), 183 * both impossible due to the lock on directory. 184 */ 185 186 int dcache_readdir(struct file *file, struct dir_context *ctx) 187 { 188 struct dentry *dentry = file->f_path.dentry; 189 struct dentry *cursor = file->private_data; 190 struct list_head *p = &cursor->d_child; 191 struct dentry *next; 192 bool moved = false; 193 194 if (!dir_emit_dots(file, ctx)) 195 return 0; 196 197 if (ctx->pos == 2) 198 p = &dentry->d_subdirs; 199 while ((next = next_positive(dentry, p, 1)) != NULL) { 200 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 201 d_inode(next)->i_ino, dt_type(d_inode(next)))) 202 break; 203 moved = true; 204 p = &next->d_child; 205 ctx->pos++; 206 } 207 if (moved) 208 move_cursor(cursor, p); 209 return 0; 210 } 211 EXPORT_SYMBOL(dcache_readdir); 212 213 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 214 { 215 return -EISDIR; 216 } 217 EXPORT_SYMBOL(generic_read_dir); 218 219 const struct file_operations simple_dir_operations = { 220 .open = dcache_dir_open, 221 .release = dcache_dir_close, 222 .llseek = dcache_dir_lseek, 223 .read = generic_read_dir, 224 .iterate_shared = dcache_readdir, 225 .fsync = noop_fsync, 226 }; 227 EXPORT_SYMBOL(simple_dir_operations); 228 229 const struct inode_operations simple_dir_inode_operations = { 230 .lookup = simple_lookup, 231 }; 232 EXPORT_SYMBOL(simple_dir_inode_operations); 233 234 static const struct super_operations simple_super_operations = { 235 .statfs = simple_statfs, 236 }; 237 238 /* 239 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 240 * will never be mountable) 241 */ 242 struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name, 243 const struct super_operations *ops, const struct xattr_handler **xattr, 244 const struct dentry_operations *dops, unsigned long magic) 245 { 246 struct super_block *s; 247 struct dentry *dentry; 248 struct inode *root; 249 struct qstr d_name = QSTR_INIT(name, strlen(name)); 250 251 s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER, 252 &init_user_ns, NULL); 253 if (IS_ERR(s)) 254 return ERR_CAST(s); 255 256 s->s_maxbytes = MAX_LFS_FILESIZE; 257 s->s_blocksize = PAGE_SIZE; 258 s->s_blocksize_bits = PAGE_SHIFT; 259 s->s_magic = magic; 260 s->s_op = ops ? ops : &simple_super_operations; 261 s->s_xattr = xattr; 262 s->s_time_gran = 1; 263 root = new_inode(s); 264 if (!root) 265 goto Enomem; 266 /* 267 * since this is the first inode, make it number 1. New inodes created 268 * after this must take care not to collide with it (by passing 269 * max_reserved of 1 to iunique). 270 */ 271 root->i_ino = 1; 272 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 273 root->i_atime = root->i_mtime = root->i_ctime = current_time(root); 274 dentry = __d_alloc(s, &d_name); 275 if (!dentry) { 276 iput(root); 277 goto Enomem; 278 } 279 d_instantiate(dentry, root); 280 s->s_root = dentry; 281 s->s_d_op = dops; 282 s->s_flags |= SB_ACTIVE; 283 return dget(s->s_root); 284 285 Enomem: 286 deactivate_locked_super(s); 287 return ERR_PTR(-ENOMEM); 288 } 289 EXPORT_SYMBOL(mount_pseudo_xattr); 290 291 int simple_open(struct inode *inode, struct file *file) 292 { 293 if (inode->i_private) 294 file->private_data = inode->i_private; 295 return 0; 296 } 297 EXPORT_SYMBOL(simple_open); 298 299 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 300 { 301 struct inode *inode = d_inode(old_dentry); 302 303 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 304 inc_nlink(inode); 305 ihold(inode); 306 dget(dentry); 307 d_instantiate(dentry, inode); 308 return 0; 309 } 310 EXPORT_SYMBOL(simple_link); 311 312 int simple_empty(struct dentry *dentry) 313 { 314 struct dentry *child; 315 int ret = 0; 316 317 spin_lock(&dentry->d_lock); 318 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 319 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 320 if (simple_positive(child)) { 321 spin_unlock(&child->d_lock); 322 goto out; 323 } 324 spin_unlock(&child->d_lock); 325 } 326 ret = 1; 327 out: 328 spin_unlock(&dentry->d_lock); 329 return ret; 330 } 331 EXPORT_SYMBOL(simple_empty); 332 333 int simple_unlink(struct inode *dir, struct dentry *dentry) 334 { 335 struct inode *inode = d_inode(dentry); 336 337 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 338 drop_nlink(inode); 339 dput(dentry); 340 return 0; 341 } 342 EXPORT_SYMBOL(simple_unlink); 343 344 int simple_rmdir(struct inode *dir, struct dentry *dentry) 345 { 346 if (!simple_empty(dentry)) 347 return -ENOTEMPTY; 348 349 drop_nlink(d_inode(dentry)); 350 simple_unlink(dir, dentry); 351 drop_nlink(dir); 352 return 0; 353 } 354 EXPORT_SYMBOL(simple_rmdir); 355 356 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 357 struct inode *new_dir, struct dentry *new_dentry, 358 unsigned int flags) 359 { 360 struct inode *inode = d_inode(old_dentry); 361 int they_are_dirs = d_is_dir(old_dentry); 362 363 if (flags & ~RENAME_NOREPLACE) 364 return -EINVAL; 365 366 if (!simple_empty(new_dentry)) 367 return -ENOTEMPTY; 368 369 if (d_really_is_positive(new_dentry)) { 370 simple_unlink(new_dir, new_dentry); 371 if (they_are_dirs) { 372 drop_nlink(d_inode(new_dentry)); 373 drop_nlink(old_dir); 374 } 375 } else if (they_are_dirs) { 376 drop_nlink(old_dir); 377 inc_nlink(new_dir); 378 } 379 380 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 381 new_dir->i_mtime = inode->i_ctime = current_time(old_dir); 382 383 return 0; 384 } 385 EXPORT_SYMBOL(simple_rename); 386 387 /** 388 * simple_setattr - setattr for simple filesystem 389 * @dentry: dentry 390 * @iattr: iattr structure 391 * 392 * Returns 0 on success, -error on failure. 393 * 394 * simple_setattr is a simple ->setattr implementation without a proper 395 * implementation of size changes. 396 * 397 * It can either be used for in-memory filesystems or special files 398 * on simple regular filesystems. Anything that needs to change on-disk 399 * or wire state on size changes needs its own setattr method. 400 */ 401 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 402 { 403 struct inode *inode = d_inode(dentry); 404 int error; 405 406 error = setattr_prepare(dentry, iattr); 407 if (error) 408 return error; 409 410 if (iattr->ia_valid & ATTR_SIZE) 411 truncate_setsize(inode, iattr->ia_size); 412 setattr_copy(inode, iattr); 413 mark_inode_dirty(inode); 414 return 0; 415 } 416 EXPORT_SYMBOL(simple_setattr); 417 418 int simple_readpage(struct file *file, struct page *page) 419 { 420 clear_highpage(page); 421 flush_dcache_page(page); 422 SetPageUptodate(page); 423 unlock_page(page); 424 return 0; 425 } 426 EXPORT_SYMBOL(simple_readpage); 427 428 int simple_write_begin(struct file *file, struct address_space *mapping, 429 loff_t pos, unsigned len, unsigned flags, 430 struct page **pagep, void **fsdata) 431 { 432 struct page *page; 433 pgoff_t index; 434 435 index = pos >> PAGE_SHIFT; 436 437 page = grab_cache_page_write_begin(mapping, index, flags); 438 if (!page) 439 return -ENOMEM; 440 441 *pagep = page; 442 443 if (!PageUptodate(page) && (len != PAGE_SIZE)) { 444 unsigned from = pos & (PAGE_SIZE - 1); 445 446 zero_user_segments(page, 0, from, from + len, PAGE_SIZE); 447 } 448 return 0; 449 } 450 EXPORT_SYMBOL(simple_write_begin); 451 452 /** 453 * simple_write_end - .write_end helper for non-block-device FSes 454 * @available: See .write_end of address_space_operations 455 * @file: " 456 * @mapping: " 457 * @pos: " 458 * @len: " 459 * @copied: " 460 * @page: " 461 * @fsdata: " 462 * 463 * simple_write_end does the minimum needed for updating a page after writing is 464 * done. It has the same API signature as the .write_end of 465 * address_space_operations vector. So it can just be set onto .write_end for 466 * FSes that don't need any other processing. i_mutex is assumed to be held. 467 * Block based filesystems should use generic_write_end(). 468 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 469 * is not called, so a filesystem that actually does store data in .write_inode 470 * should extend on what's done here with a call to mark_inode_dirty() in the 471 * case that i_size has changed. 472 * 473 * Use *ONLY* with simple_readpage() 474 */ 475 int simple_write_end(struct file *file, struct address_space *mapping, 476 loff_t pos, unsigned len, unsigned copied, 477 struct page *page, void *fsdata) 478 { 479 struct inode *inode = page->mapping->host; 480 loff_t last_pos = pos + copied; 481 482 /* zero the stale part of the page if we did a short copy */ 483 if (!PageUptodate(page)) { 484 if (copied < len) { 485 unsigned from = pos & (PAGE_SIZE - 1); 486 487 zero_user(page, from + copied, len - copied); 488 } 489 SetPageUptodate(page); 490 } 491 /* 492 * No need to use i_size_read() here, the i_size 493 * cannot change under us because we hold the i_mutex. 494 */ 495 if (last_pos > inode->i_size) 496 i_size_write(inode, last_pos); 497 498 set_page_dirty(page); 499 unlock_page(page); 500 put_page(page); 501 502 return copied; 503 } 504 EXPORT_SYMBOL(simple_write_end); 505 506 /* 507 * the inodes created here are not hashed. If you use iunique to generate 508 * unique inode values later for this filesystem, then you must take care 509 * to pass it an appropriate max_reserved value to avoid collisions. 510 */ 511 int simple_fill_super(struct super_block *s, unsigned long magic, 512 const struct tree_descr *files) 513 { 514 struct inode *inode; 515 struct dentry *root; 516 struct dentry *dentry; 517 int i; 518 519 s->s_blocksize = PAGE_SIZE; 520 s->s_blocksize_bits = PAGE_SHIFT; 521 s->s_magic = magic; 522 s->s_op = &simple_super_operations; 523 s->s_time_gran = 1; 524 525 inode = new_inode(s); 526 if (!inode) 527 return -ENOMEM; 528 /* 529 * because the root inode is 1, the files array must not contain an 530 * entry at index 1 531 */ 532 inode->i_ino = 1; 533 inode->i_mode = S_IFDIR | 0755; 534 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 535 inode->i_op = &simple_dir_inode_operations; 536 inode->i_fop = &simple_dir_operations; 537 set_nlink(inode, 2); 538 root = d_make_root(inode); 539 if (!root) 540 return -ENOMEM; 541 for (i = 0; !files->name || files->name[0]; i++, files++) { 542 if (!files->name) 543 continue; 544 545 /* warn if it tries to conflict with the root inode */ 546 if (unlikely(i == 1)) 547 printk(KERN_WARNING "%s: %s passed in a files array" 548 "with an index of 1!\n", __func__, 549 s->s_type->name); 550 551 dentry = d_alloc_name(root, files->name); 552 if (!dentry) 553 goto out; 554 inode = new_inode(s); 555 if (!inode) { 556 dput(dentry); 557 goto out; 558 } 559 inode->i_mode = S_IFREG | files->mode; 560 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 561 inode->i_fop = files->ops; 562 inode->i_ino = i; 563 d_add(dentry, inode); 564 } 565 s->s_root = root; 566 return 0; 567 out: 568 d_genocide(root); 569 shrink_dcache_parent(root); 570 dput(root); 571 return -ENOMEM; 572 } 573 EXPORT_SYMBOL(simple_fill_super); 574 575 static DEFINE_SPINLOCK(pin_fs_lock); 576 577 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 578 { 579 struct vfsmount *mnt = NULL; 580 spin_lock(&pin_fs_lock); 581 if (unlikely(!*mount)) { 582 spin_unlock(&pin_fs_lock); 583 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 584 if (IS_ERR(mnt)) 585 return PTR_ERR(mnt); 586 spin_lock(&pin_fs_lock); 587 if (!*mount) 588 *mount = mnt; 589 } 590 mntget(*mount); 591 ++*count; 592 spin_unlock(&pin_fs_lock); 593 mntput(mnt); 594 return 0; 595 } 596 EXPORT_SYMBOL(simple_pin_fs); 597 598 void simple_release_fs(struct vfsmount **mount, int *count) 599 { 600 struct vfsmount *mnt; 601 spin_lock(&pin_fs_lock); 602 mnt = *mount; 603 if (!--*count) 604 *mount = NULL; 605 spin_unlock(&pin_fs_lock); 606 mntput(mnt); 607 } 608 EXPORT_SYMBOL(simple_release_fs); 609 610 /** 611 * simple_read_from_buffer - copy data from the buffer to user space 612 * @to: the user space buffer to read to 613 * @count: the maximum number of bytes to read 614 * @ppos: the current position in the buffer 615 * @from: the buffer to read from 616 * @available: the size of the buffer 617 * 618 * The simple_read_from_buffer() function reads up to @count bytes from the 619 * buffer @from at offset @ppos into the user space address starting at @to. 620 * 621 * On success, the number of bytes read is returned and the offset @ppos is 622 * advanced by this number, or negative value is returned on error. 623 **/ 624 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 625 const void *from, size_t available) 626 { 627 loff_t pos = *ppos; 628 size_t ret; 629 630 if (pos < 0) 631 return -EINVAL; 632 if (pos >= available || !count) 633 return 0; 634 if (count > available - pos) 635 count = available - pos; 636 ret = copy_to_user(to, from + pos, count); 637 if (ret == count) 638 return -EFAULT; 639 count -= ret; 640 *ppos = pos + count; 641 return count; 642 } 643 EXPORT_SYMBOL(simple_read_from_buffer); 644 645 /** 646 * simple_write_to_buffer - copy data from user space to the buffer 647 * @to: the buffer to write to 648 * @available: the size of the buffer 649 * @ppos: the current position in the buffer 650 * @from: the user space buffer to read from 651 * @count: the maximum number of bytes to read 652 * 653 * The simple_write_to_buffer() function reads up to @count bytes from the user 654 * space address starting at @from into the buffer @to at offset @ppos. 655 * 656 * On success, the number of bytes written is returned and the offset @ppos is 657 * advanced by this number, or negative value is returned on error. 658 **/ 659 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 660 const void __user *from, size_t count) 661 { 662 loff_t pos = *ppos; 663 size_t res; 664 665 if (pos < 0) 666 return -EINVAL; 667 if (pos >= available || !count) 668 return 0; 669 if (count > available - pos) 670 count = available - pos; 671 res = copy_from_user(to + pos, from, count); 672 if (res == count) 673 return -EFAULT; 674 count -= res; 675 *ppos = pos + count; 676 return count; 677 } 678 EXPORT_SYMBOL(simple_write_to_buffer); 679 680 /** 681 * memory_read_from_buffer - copy data from the buffer 682 * @to: the kernel space buffer to read to 683 * @count: the maximum number of bytes to read 684 * @ppos: the current position in the buffer 685 * @from: the buffer to read from 686 * @available: the size of the buffer 687 * 688 * The memory_read_from_buffer() function reads up to @count bytes from the 689 * buffer @from at offset @ppos into the kernel space address starting at @to. 690 * 691 * On success, the number of bytes read is returned and the offset @ppos is 692 * advanced by this number, or negative value is returned on error. 693 **/ 694 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 695 const void *from, size_t available) 696 { 697 loff_t pos = *ppos; 698 699 if (pos < 0) 700 return -EINVAL; 701 if (pos >= available) 702 return 0; 703 if (count > available - pos) 704 count = available - pos; 705 memcpy(to, from + pos, count); 706 *ppos = pos + count; 707 708 return count; 709 } 710 EXPORT_SYMBOL(memory_read_from_buffer); 711 712 /* 713 * Transaction based IO. 714 * The file expects a single write which triggers the transaction, and then 715 * possibly a read which collects the result - which is stored in a 716 * file-local buffer. 717 */ 718 719 void simple_transaction_set(struct file *file, size_t n) 720 { 721 struct simple_transaction_argresp *ar = file->private_data; 722 723 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 724 725 /* 726 * The barrier ensures that ar->size will really remain zero until 727 * ar->data is ready for reading. 728 */ 729 smp_mb(); 730 ar->size = n; 731 } 732 EXPORT_SYMBOL(simple_transaction_set); 733 734 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 735 { 736 struct simple_transaction_argresp *ar; 737 static DEFINE_SPINLOCK(simple_transaction_lock); 738 739 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 740 return ERR_PTR(-EFBIG); 741 742 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 743 if (!ar) 744 return ERR_PTR(-ENOMEM); 745 746 spin_lock(&simple_transaction_lock); 747 748 /* only one write allowed per open */ 749 if (file->private_data) { 750 spin_unlock(&simple_transaction_lock); 751 free_page((unsigned long)ar); 752 return ERR_PTR(-EBUSY); 753 } 754 755 file->private_data = ar; 756 757 spin_unlock(&simple_transaction_lock); 758 759 if (copy_from_user(ar->data, buf, size)) 760 return ERR_PTR(-EFAULT); 761 762 return ar->data; 763 } 764 EXPORT_SYMBOL(simple_transaction_get); 765 766 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 767 { 768 struct simple_transaction_argresp *ar = file->private_data; 769 770 if (!ar) 771 return 0; 772 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 773 } 774 EXPORT_SYMBOL(simple_transaction_read); 775 776 int simple_transaction_release(struct inode *inode, struct file *file) 777 { 778 free_page((unsigned long)file->private_data); 779 return 0; 780 } 781 EXPORT_SYMBOL(simple_transaction_release); 782 783 /* Simple attribute files */ 784 785 struct simple_attr { 786 int (*get)(void *, u64 *); 787 int (*set)(void *, u64); 788 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 789 char set_buf[24]; 790 void *data; 791 const char *fmt; /* format for read operation */ 792 struct mutex mutex; /* protects access to these buffers */ 793 }; 794 795 /* simple_attr_open is called by an actual attribute open file operation 796 * to set the attribute specific access operations. */ 797 int simple_attr_open(struct inode *inode, struct file *file, 798 int (*get)(void *, u64 *), int (*set)(void *, u64), 799 const char *fmt) 800 { 801 struct simple_attr *attr; 802 803 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 804 if (!attr) 805 return -ENOMEM; 806 807 attr->get = get; 808 attr->set = set; 809 attr->data = inode->i_private; 810 attr->fmt = fmt; 811 mutex_init(&attr->mutex); 812 813 file->private_data = attr; 814 815 return nonseekable_open(inode, file); 816 } 817 EXPORT_SYMBOL_GPL(simple_attr_open); 818 819 int simple_attr_release(struct inode *inode, struct file *file) 820 { 821 kfree(file->private_data); 822 return 0; 823 } 824 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 825 826 /* read from the buffer that is filled with the get function */ 827 ssize_t simple_attr_read(struct file *file, char __user *buf, 828 size_t len, loff_t *ppos) 829 { 830 struct simple_attr *attr; 831 size_t size; 832 ssize_t ret; 833 834 attr = file->private_data; 835 836 if (!attr->get) 837 return -EACCES; 838 839 ret = mutex_lock_interruptible(&attr->mutex); 840 if (ret) 841 return ret; 842 843 if (*ppos) { /* continued read */ 844 size = strlen(attr->get_buf); 845 } else { /* first read */ 846 u64 val; 847 ret = attr->get(attr->data, &val); 848 if (ret) 849 goto out; 850 851 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 852 attr->fmt, (unsigned long long)val); 853 } 854 855 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 856 out: 857 mutex_unlock(&attr->mutex); 858 return ret; 859 } 860 EXPORT_SYMBOL_GPL(simple_attr_read); 861 862 /* interpret the buffer as a number to call the set function with */ 863 ssize_t simple_attr_write(struct file *file, const char __user *buf, 864 size_t len, loff_t *ppos) 865 { 866 struct simple_attr *attr; 867 u64 val; 868 size_t size; 869 ssize_t ret; 870 871 attr = file->private_data; 872 if (!attr->set) 873 return -EACCES; 874 875 ret = mutex_lock_interruptible(&attr->mutex); 876 if (ret) 877 return ret; 878 879 ret = -EFAULT; 880 size = min(sizeof(attr->set_buf) - 1, len); 881 if (copy_from_user(attr->set_buf, buf, size)) 882 goto out; 883 884 attr->set_buf[size] = '\0'; 885 val = simple_strtoll(attr->set_buf, NULL, 0); 886 ret = attr->set(attr->data, val); 887 if (ret == 0) 888 ret = len; /* on success, claim we got the whole input */ 889 out: 890 mutex_unlock(&attr->mutex); 891 return ret; 892 } 893 EXPORT_SYMBOL_GPL(simple_attr_write); 894 895 /** 896 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 897 * @sb: filesystem to do the file handle conversion on 898 * @fid: file handle to convert 899 * @fh_len: length of the file handle in bytes 900 * @fh_type: type of file handle 901 * @get_inode: filesystem callback to retrieve inode 902 * 903 * This function decodes @fid as long as it has one of the well-known 904 * Linux filehandle types and calls @get_inode on it to retrieve the 905 * inode for the object specified in the file handle. 906 */ 907 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 908 int fh_len, int fh_type, struct inode *(*get_inode) 909 (struct super_block *sb, u64 ino, u32 gen)) 910 { 911 struct inode *inode = NULL; 912 913 if (fh_len < 2) 914 return NULL; 915 916 switch (fh_type) { 917 case FILEID_INO32_GEN: 918 case FILEID_INO32_GEN_PARENT: 919 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 920 break; 921 } 922 923 return d_obtain_alias(inode); 924 } 925 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 926 927 /** 928 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 929 * @sb: filesystem to do the file handle conversion on 930 * @fid: file handle to convert 931 * @fh_len: length of the file handle in bytes 932 * @fh_type: type of file handle 933 * @get_inode: filesystem callback to retrieve inode 934 * 935 * This function decodes @fid as long as it has one of the well-known 936 * Linux filehandle types and calls @get_inode on it to retrieve the 937 * inode for the _parent_ object specified in the file handle if it 938 * is specified in the file handle, or NULL otherwise. 939 */ 940 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 941 int fh_len, int fh_type, struct inode *(*get_inode) 942 (struct super_block *sb, u64 ino, u32 gen)) 943 { 944 struct inode *inode = NULL; 945 946 if (fh_len <= 2) 947 return NULL; 948 949 switch (fh_type) { 950 case FILEID_INO32_GEN_PARENT: 951 inode = get_inode(sb, fid->i32.parent_ino, 952 (fh_len > 3 ? fid->i32.parent_gen : 0)); 953 break; 954 } 955 956 return d_obtain_alias(inode); 957 } 958 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 959 960 /** 961 * __generic_file_fsync - generic fsync implementation for simple filesystems 962 * 963 * @file: file to synchronize 964 * @start: start offset in bytes 965 * @end: end offset in bytes (inclusive) 966 * @datasync: only synchronize essential metadata if true 967 * 968 * This is a generic implementation of the fsync method for simple 969 * filesystems which track all non-inode metadata in the buffers list 970 * hanging off the address_space structure. 971 */ 972 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 973 int datasync) 974 { 975 struct inode *inode = file->f_mapping->host; 976 int err; 977 int ret; 978 979 err = file_write_and_wait_range(file, start, end); 980 if (err) 981 return err; 982 983 inode_lock(inode); 984 ret = sync_mapping_buffers(inode->i_mapping); 985 if (!(inode->i_state & I_DIRTY_ALL)) 986 goto out; 987 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 988 goto out; 989 990 err = sync_inode_metadata(inode, 1); 991 if (ret == 0) 992 ret = err; 993 994 out: 995 inode_unlock(inode); 996 /* check and advance again to catch errors after syncing out buffers */ 997 err = file_check_and_advance_wb_err(file); 998 if (ret == 0) 999 ret = err; 1000 return ret; 1001 } 1002 EXPORT_SYMBOL(__generic_file_fsync); 1003 1004 /** 1005 * generic_file_fsync - generic fsync implementation for simple filesystems 1006 * with flush 1007 * @file: file to synchronize 1008 * @start: start offset in bytes 1009 * @end: end offset in bytes (inclusive) 1010 * @datasync: only synchronize essential metadata if true 1011 * 1012 */ 1013 1014 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1015 int datasync) 1016 { 1017 struct inode *inode = file->f_mapping->host; 1018 int err; 1019 1020 err = __generic_file_fsync(file, start, end, datasync); 1021 if (err) 1022 return err; 1023 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 1024 } 1025 EXPORT_SYMBOL(generic_file_fsync); 1026 1027 /** 1028 * generic_check_addressable - Check addressability of file system 1029 * @blocksize_bits: log of file system block size 1030 * @num_blocks: number of blocks in file system 1031 * 1032 * Determine whether a file system with @num_blocks blocks (and a 1033 * block size of 2**@blocksize_bits) is addressable by the sector_t 1034 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1035 */ 1036 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1037 { 1038 u64 last_fs_block = num_blocks - 1; 1039 u64 last_fs_page = 1040 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1041 1042 if (unlikely(num_blocks == 0)) 1043 return 0; 1044 1045 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1046 return -EINVAL; 1047 1048 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1049 (last_fs_page > (pgoff_t)(~0ULL))) { 1050 return -EFBIG; 1051 } 1052 return 0; 1053 } 1054 EXPORT_SYMBOL(generic_check_addressable); 1055 1056 /* 1057 * No-op implementation of ->fsync for in-memory filesystems. 1058 */ 1059 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1060 { 1061 return 0; 1062 } 1063 EXPORT_SYMBOL(noop_fsync); 1064 1065 int noop_set_page_dirty(struct page *page) 1066 { 1067 /* 1068 * Unlike __set_page_dirty_no_writeback that handles dirty page 1069 * tracking in the page object, dax does all dirty tracking in 1070 * the inode address_space in response to mkwrite faults. In the 1071 * dax case we only need to worry about potentially dirty CPU 1072 * caches, not dirty page cache pages to write back. 1073 * 1074 * This callback is defined to prevent fallback to 1075 * __set_page_dirty_buffers() in set_page_dirty(). 1076 */ 1077 return 0; 1078 } 1079 EXPORT_SYMBOL_GPL(noop_set_page_dirty); 1080 1081 void noop_invalidatepage(struct page *page, unsigned int offset, 1082 unsigned int length) 1083 { 1084 /* 1085 * There is no page cache to invalidate in the dax case, however 1086 * we need this callback defined to prevent falling back to 1087 * block_invalidatepage() in do_invalidatepage(). 1088 */ 1089 } 1090 EXPORT_SYMBOL_GPL(noop_invalidatepage); 1091 1092 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1093 { 1094 /* 1095 * iomap based filesystems support direct I/O without need for 1096 * this callback. However, it still needs to be set in 1097 * inode->a_ops so that open/fcntl know that direct I/O is 1098 * generally supported. 1099 */ 1100 return -EINVAL; 1101 } 1102 EXPORT_SYMBOL_GPL(noop_direct_IO); 1103 1104 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1105 void kfree_link(void *p) 1106 { 1107 kfree(p); 1108 } 1109 EXPORT_SYMBOL(kfree_link); 1110 1111 /* 1112 * nop .set_page_dirty method so that people can use .page_mkwrite on 1113 * anon inodes. 1114 */ 1115 static int anon_set_page_dirty(struct page *page) 1116 { 1117 return 0; 1118 }; 1119 1120 /* 1121 * A single inode exists for all anon_inode files. Contrary to pipes, 1122 * anon_inode inodes have no associated per-instance data, so we need 1123 * only allocate one of them. 1124 */ 1125 struct inode *alloc_anon_inode(struct super_block *s) 1126 { 1127 static const struct address_space_operations anon_aops = { 1128 .set_page_dirty = anon_set_page_dirty, 1129 }; 1130 struct inode *inode = new_inode_pseudo(s); 1131 1132 if (!inode) 1133 return ERR_PTR(-ENOMEM); 1134 1135 inode->i_ino = get_next_ino(); 1136 inode->i_mapping->a_ops = &anon_aops; 1137 1138 /* 1139 * Mark the inode dirty from the very beginning, 1140 * that way it will never be moved to the dirty 1141 * list because mark_inode_dirty() will think 1142 * that it already _is_ on the dirty list. 1143 */ 1144 inode->i_state = I_DIRTY; 1145 inode->i_mode = S_IRUSR | S_IWUSR; 1146 inode->i_uid = current_fsuid(); 1147 inode->i_gid = current_fsgid(); 1148 inode->i_flags |= S_PRIVATE; 1149 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 1150 return inode; 1151 } 1152 EXPORT_SYMBOL(alloc_anon_inode); 1153 1154 /** 1155 * simple_nosetlease - generic helper for prohibiting leases 1156 * @filp: file pointer 1157 * @arg: type of lease to obtain 1158 * @flp: new lease supplied for insertion 1159 * @priv: private data for lm_setup operation 1160 * 1161 * Generic helper for filesystems that do not wish to allow leases to be set. 1162 * All arguments are ignored and it just returns -EINVAL. 1163 */ 1164 int 1165 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp, 1166 void **priv) 1167 { 1168 return -EINVAL; 1169 } 1170 EXPORT_SYMBOL(simple_nosetlease); 1171 1172 /** 1173 * simple_get_link - generic helper to get the target of "fast" symlinks 1174 * @dentry: not used here 1175 * @inode: the symlink inode 1176 * @done: not used here 1177 * 1178 * Generic helper for filesystems to use for symlink inodes where a pointer to 1179 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1180 * since as an optimization the path lookup code uses any non-NULL ->i_link 1181 * directly, without calling ->get_link(). But ->get_link() still must be set, 1182 * to mark the inode_operations as being for a symlink. 1183 * 1184 * Return: the symlink target 1185 */ 1186 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1187 struct delayed_call *done) 1188 { 1189 return inode->i_link; 1190 } 1191 EXPORT_SYMBOL(simple_get_link); 1192 1193 const struct inode_operations simple_symlink_inode_operations = { 1194 .get_link = simple_get_link, 1195 }; 1196 EXPORT_SYMBOL(simple_symlink_inode_operations); 1197 1198 /* 1199 * Operations for a permanently empty directory. 1200 */ 1201 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1202 { 1203 return ERR_PTR(-ENOENT); 1204 } 1205 1206 static int empty_dir_getattr(const struct path *path, struct kstat *stat, 1207 u32 request_mask, unsigned int query_flags) 1208 { 1209 struct inode *inode = d_inode(path->dentry); 1210 generic_fillattr(inode, stat); 1211 return 0; 1212 } 1213 1214 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr) 1215 { 1216 return -EPERM; 1217 } 1218 1219 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1220 { 1221 return -EOPNOTSUPP; 1222 } 1223 1224 static const struct inode_operations empty_dir_inode_operations = { 1225 .lookup = empty_dir_lookup, 1226 .permission = generic_permission, 1227 .setattr = empty_dir_setattr, 1228 .getattr = empty_dir_getattr, 1229 .listxattr = empty_dir_listxattr, 1230 }; 1231 1232 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1233 { 1234 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1235 return generic_file_llseek_size(file, offset, whence, 2, 2); 1236 } 1237 1238 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1239 { 1240 dir_emit_dots(file, ctx); 1241 return 0; 1242 } 1243 1244 static const struct file_operations empty_dir_operations = { 1245 .llseek = empty_dir_llseek, 1246 .read = generic_read_dir, 1247 .iterate_shared = empty_dir_readdir, 1248 .fsync = noop_fsync, 1249 }; 1250 1251 1252 void make_empty_dir_inode(struct inode *inode) 1253 { 1254 set_nlink(inode, 2); 1255 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1256 inode->i_uid = GLOBAL_ROOT_UID; 1257 inode->i_gid = GLOBAL_ROOT_GID; 1258 inode->i_rdev = 0; 1259 inode->i_size = 0; 1260 inode->i_blkbits = PAGE_SHIFT; 1261 inode->i_blocks = 0; 1262 1263 inode->i_op = &empty_dir_inode_operations; 1264 inode->i_opflags &= ~IOP_XATTR; 1265 inode->i_fop = &empty_dir_operations; 1266 } 1267 1268 bool is_empty_dir_inode(struct inode *inode) 1269 { 1270 return (inode->i_fop == &empty_dir_operations) && 1271 (inode->i_op == &empty_dir_inode_operations); 1272 } 1273