xref: /openbmc/linux/fs/libfs.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/mount.h>
11 #include <linux/vfs.h>
12 #include <linux/quotaops.h>
13 #include <linux/mutex.h>
14 #include <linux/namei.h>
15 #include <linux/exportfs.h>
16 #include <linux/writeback.h>
17 #include <linux/buffer_head.h> /* sync_mapping_buffers */
18 
19 #include <asm/uaccess.h>
20 
21 #include "internal.h"
22 
23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
24 		   struct kstat *stat)
25 {
26 	struct inode *inode = d_inode(dentry);
27 	generic_fillattr(inode, stat);
28 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
29 	return 0;
30 }
31 EXPORT_SYMBOL(simple_getattr);
32 
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
34 {
35 	buf->f_type = dentry->d_sb->s_magic;
36 	buf->f_bsize = PAGE_CACHE_SIZE;
37 	buf->f_namelen = NAME_MAX;
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_statfs);
41 
42 /*
43  * Retaining negative dentries for an in-memory filesystem just wastes
44  * memory and lookup time: arrange for them to be deleted immediately.
45  */
46 int always_delete_dentry(const struct dentry *dentry)
47 {
48 	return 1;
49 }
50 EXPORT_SYMBOL(always_delete_dentry);
51 
52 const struct dentry_operations simple_dentry_operations = {
53 	.d_delete = always_delete_dentry,
54 };
55 EXPORT_SYMBOL(simple_dentry_operations);
56 
57 /*
58  * Lookup the data. This is trivial - if the dentry didn't already
59  * exist, we know it is negative.  Set d_op to delete negative dentries.
60  */
61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
62 {
63 	if (dentry->d_name.len > NAME_MAX)
64 		return ERR_PTR(-ENAMETOOLONG);
65 	if (!dentry->d_sb->s_d_op)
66 		d_set_d_op(dentry, &simple_dentry_operations);
67 	d_add(dentry, NULL);
68 	return NULL;
69 }
70 EXPORT_SYMBOL(simple_lookup);
71 
72 int dcache_dir_open(struct inode *inode, struct file *file)
73 {
74 	static struct qstr cursor_name = QSTR_INIT(".", 1);
75 
76 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
77 
78 	return file->private_data ? 0 : -ENOMEM;
79 }
80 EXPORT_SYMBOL(dcache_dir_open);
81 
82 int dcache_dir_close(struct inode *inode, struct file *file)
83 {
84 	dput(file->private_data);
85 	return 0;
86 }
87 EXPORT_SYMBOL(dcache_dir_close);
88 
89 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
90 {
91 	struct dentry *dentry = file->f_path.dentry;
92 	mutex_lock(&d_inode(dentry)->i_mutex);
93 	switch (whence) {
94 		case 1:
95 			offset += file->f_pos;
96 		case 0:
97 			if (offset >= 0)
98 				break;
99 		default:
100 			mutex_unlock(&d_inode(dentry)->i_mutex);
101 			return -EINVAL;
102 	}
103 	if (offset != file->f_pos) {
104 		file->f_pos = offset;
105 		if (file->f_pos >= 2) {
106 			struct list_head *p;
107 			struct dentry *cursor = file->private_data;
108 			loff_t n = file->f_pos - 2;
109 
110 			spin_lock(&dentry->d_lock);
111 			/* d_lock not required for cursor */
112 			list_del(&cursor->d_child);
113 			p = dentry->d_subdirs.next;
114 			while (n && p != &dentry->d_subdirs) {
115 				struct dentry *next;
116 				next = list_entry(p, struct dentry, d_child);
117 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
118 				if (simple_positive(next))
119 					n--;
120 				spin_unlock(&next->d_lock);
121 				p = p->next;
122 			}
123 			list_add_tail(&cursor->d_child, p);
124 			spin_unlock(&dentry->d_lock);
125 		}
126 	}
127 	mutex_unlock(&d_inode(dentry)->i_mutex);
128 	return offset;
129 }
130 EXPORT_SYMBOL(dcache_dir_lseek);
131 
132 /* Relationship between i_mode and the DT_xxx types */
133 static inline unsigned char dt_type(struct inode *inode)
134 {
135 	return (inode->i_mode >> 12) & 15;
136 }
137 
138 /*
139  * Directory is locked and all positive dentries in it are safe, since
140  * for ramfs-type trees they can't go away without unlink() or rmdir(),
141  * both impossible due to the lock on directory.
142  */
143 
144 int dcache_readdir(struct file *file, struct dir_context *ctx)
145 {
146 	struct dentry *dentry = file->f_path.dentry;
147 	struct dentry *cursor = file->private_data;
148 	struct list_head *p, *q = &cursor->d_child;
149 
150 	if (!dir_emit_dots(file, ctx))
151 		return 0;
152 	spin_lock(&dentry->d_lock);
153 	if (ctx->pos == 2)
154 		list_move(q, &dentry->d_subdirs);
155 
156 	for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
157 		struct dentry *next = list_entry(p, struct dentry, d_child);
158 		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
159 		if (!simple_positive(next)) {
160 			spin_unlock(&next->d_lock);
161 			continue;
162 		}
163 
164 		spin_unlock(&next->d_lock);
165 		spin_unlock(&dentry->d_lock);
166 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
167 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
168 			return 0;
169 		spin_lock(&dentry->d_lock);
170 		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
171 		/* next is still alive */
172 		list_move(q, p);
173 		spin_unlock(&next->d_lock);
174 		p = q;
175 		ctx->pos++;
176 	}
177 	spin_unlock(&dentry->d_lock);
178 	return 0;
179 }
180 EXPORT_SYMBOL(dcache_readdir);
181 
182 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
183 {
184 	return -EISDIR;
185 }
186 EXPORT_SYMBOL(generic_read_dir);
187 
188 const struct file_operations simple_dir_operations = {
189 	.open		= dcache_dir_open,
190 	.release	= dcache_dir_close,
191 	.llseek		= dcache_dir_lseek,
192 	.read		= generic_read_dir,
193 	.iterate	= dcache_readdir,
194 	.fsync		= noop_fsync,
195 };
196 EXPORT_SYMBOL(simple_dir_operations);
197 
198 const struct inode_operations simple_dir_inode_operations = {
199 	.lookup		= simple_lookup,
200 };
201 EXPORT_SYMBOL(simple_dir_inode_operations);
202 
203 static const struct super_operations simple_super_operations = {
204 	.statfs		= simple_statfs,
205 };
206 
207 /*
208  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
209  * will never be mountable)
210  */
211 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
212 	const struct super_operations *ops,
213 	const struct dentry_operations *dops, unsigned long magic)
214 {
215 	struct super_block *s;
216 	struct dentry *dentry;
217 	struct inode *root;
218 	struct qstr d_name = QSTR_INIT(name, strlen(name));
219 
220 	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
221 	if (IS_ERR(s))
222 		return ERR_CAST(s);
223 
224 	s->s_maxbytes = MAX_LFS_FILESIZE;
225 	s->s_blocksize = PAGE_SIZE;
226 	s->s_blocksize_bits = PAGE_SHIFT;
227 	s->s_magic = magic;
228 	s->s_op = ops ? ops : &simple_super_operations;
229 	s->s_time_gran = 1;
230 	root = new_inode(s);
231 	if (!root)
232 		goto Enomem;
233 	/*
234 	 * since this is the first inode, make it number 1. New inodes created
235 	 * after this must take care not to collide with it (by passing
236 	 * max_reserved of 1 to iunique).
237 	 */
238 	root->i_ino = 1;
239 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
240 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
241 	dentry = __d_alloc(s, &d_name);
242 	if (!dentry) {
243 		iput(root);
244 		goto Enomem;
245 	}
246 	d_instantiate(dentry, root);
247 	s->s_root = dentry;
248 	s->s_d_op = dops;
249 	s->s_flags |= MS_ACTIVE;
250 	return dget(s->s_root);
251 
252 Enomem:
253 	deactivate_locked_super(s);
254 	return ERR_PTR(-ENOMEM);
255 }
256 EXPORT_SYMBOL(mount_pseudo);
257 
258 int simple_open(struct inode *inode, struct file *file)
259 {
260 	if (inode->i_private)
261 		file->private_data = inode->i_private;
262 	return 0;
263 }
264 EXPORT_SYMBOL(simple_open);
265 
266 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
267 {
268 	struct inode *inode = d_inode(old_dentry);
269 
270 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
271 	inc_nlink(inode);
272 	ihold(inode);
273 	dget(dentry);
274 	d_instantiate(dentry, inode);
275 	return 0;
276 }
277 EXPORT_SYMBOL(simple_link);
278 
279 int simple_empty(struct dentry *dentry)
280 {
281 	struct dentry *child;
282 	int ret = 0;
283 
284 	spin_lock(&dentry->d_lock);
285 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
286 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
287 		if (simple_positive(child)) {
288 			spin_unlock(&child->d_lock);
289 			goto out;
290 		}
291 		spin_unlock(&child->d_lock);
292 	}
293 	ret = 1;
294 out:
295 	spin_unlock(&dentry->d_lock);
296 	return ret;
297 }
298 EXPORT_SYMBOL(simple_empty);
299 
300 int simple_unlink(struct inode *dir, struct dentry *dentry)
301 {
302 	struct inode *inode = d_inode(dentry);
303 
304 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
305 	drop_nlink(inode);
306 	dput(dentry);
307 	return 0;
308 }
309 EXPORT_SYMBOL(simple_unlink);
310 
311 int simple_rmdir(struct inode *dir, struct dentry *dentry)
312 {
313 	if (!simple_empty(dentry))
314 		return -ENOTEMPTY;
315 
316 	drop_nlink(d_inode(dentry));
317 	simple_unlink(dir, dentry);
318 	drop_nlink(dir);
319 	return 0;
320 }
321 EXPORT_SYMBOL(simple_rmdir);
322 
323 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
324 		struct inode *new_dir, struct dentry *new_dentry)
325 {
326 	struct inode *inode = d_inode(old_dentry);
327 	int they_are_dirs = d_is_dir(old_dentry);
328 
329 	if (!simple_empty(new_dentry))
330 		return -ENOTEMPTY;
331 
332 	if (d_really_is_positive(new_dentry)) {
333 		simple_unlink(new_dir, new_dentry);
334 		if (they_are_dirs) {
335 			drop_nlink(d_inode(new_dentry));
336 			drop_nlink(old_dir);
337 		}
338 	} else if (they_are_dirs) {
339 		drop_nlink(old_dir);
340 		inc_nlink(new_dir);
341 	}
342 
343 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
344 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
345 
346 	return 0;
347 }
348 EXPORT_SYMBOL(simple_rename);
349 
350 /**
351  * simple_setattr - setattr for simple filesystem
352  * @dentry: dentry
353  * @iattr: iattr structure
354  *
355  * Returns 0 on success, -error on failure.
356  *
357  * simple_setattr is a simple ->setattr implementation without a proper
358  * implementation of size changes.
359  *
360  * It can either be used for in-memory filesystems or special files
361  * on simple regular filesystems.  Anything that needs to change on-disk
362  * or wire state on size changes needs its own setattr method.
363  */
364 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
365 {
366 	struct inode *inode = d_inode(dentry);
367 	int error;
368 
369 	error = inode_change_ok(inode, iattr);
370 	if (error)
371 		return error;
372 
373 	if (iattr->ia_valid & ATTR_SIZE)
374 		truncate_setsize(inode, iattr->ia_size);
375 	setattr_copy(inode, iattr);
376 	mark_inode_dirty(inode);
377 	return 0;
378 }
379 EXPORT_SYMBOL(simple_setattr);
380 
381 int simple_readpage(struct file *file, struct page *page)
382 {
383 	clear_highpage(page);
384 	flush_dcache_page(page);
385 	SetPageUptodate(page);
386 	unlock_page(page);
387 	return 0;
388 }
389 EXPORT_SYMBOL(simple_readpage);
390 
391 int simple_write_begin(struct file *file, struct address_space *mapping,
392 			loff_t pos, unsigned len, unsigned flags,
393 			struct page **pagep, void **fsdata)
394 {
395 	struct page *page;
396 	pgoff_t index;
397 
398 	index = pos >> PAGE_CACHE_SHIFT;
399 
400 	page = grab_cache_page_write_begin(mapping, index, flags);
401 	if (!page)
402 		return -ENOMEM;
403 
404 	*pagep = page;
405 
406 	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
407 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
408 
409 		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
410 	}
411 	return 0;
412 }
413 EXPORT_SYMBOL(simple_write_begin);
414 
415 /**
416  * simple_write_end - .write_end helper for non-block-device FSes
417  * @available: See .write_end of address_space_operations
418  * @file: 		"
419  * @mapping: 		"
420  * @pos: 		"
421  * @len: 		"
422  * @copied: 		"
423  * @page: 		"
424  * @fsdata: 		"
425  *
426  * simple_write_end does the minimum needed for updating a page after writing is
427  * done. It has the same API signature as the .write_end of
428  * address_space_operations vector. So it can just be set onto .write_end for
429  * FSes that don't need any other processing. i_mutex is assumed to be held.
430  * Block based filesystems should use generic_write_end().
431  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
432  * is not called, so a filesystem that actually does store data in .write_inode
433  * should extend on what's done here with a call to mark_inode_dirty() in the
434  * case that i_size has changed.
435  */
436 int simple_write_end(struct file *file, struct address_space *mapping,
437 			loff_t pos, unsigned len, unsigned copied,
438 			struct page *page, void *fsdata)
439 {
440 	struct inode *inode = page->mapping->host;
441 	loff_t last_pos = pos + copied;
442 
443 	/* zero the stale part of the page if we did a short copy */
444 	if (copied < len) {
445 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
446 
447 		zero_user(page, from + copied, len - copied);
448 	}
449 
450 	if (!PageUptodate(page))
451 		SetPageUptodate(page);
452 	/*
453 	 * No need to use i_size_read() here, the i_size
454 	 * cannot change under us because we hold the i_mutex.
455 	 */
456 	if (last_pos > inode->i_size)
457 		i_size_write(inode, last_pos);
458 
459 	set_page_dirty(page);
460 	unlock_page(page);
461 	page_cache_release(page);
462 
463 	return copied;
464 }
465 EXPORT_SYMBOL(simple_write_end);
466 
467 /*
468  * the inodes created here are not hashed. If you use iunique to generate
469  * unique inode values later for this filesystem, then you must take care
470  * to pass it an appropriate max_reserved value to avoid collisions.
471  */
472 int simple_fill_super(struct super_block *s, unsigned long magic,
473 		      struct tree_descr *files)
474 {
475 	struct inode *inode;
476 	struct dentry *root;
477 	struct dentry *dentry;
478 	int i;
479 
480 	s->s_blocksize = PAGE_CACHE_SIZE;
481 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
482 	s->s_magic = magic;
483 	s->s_op = &simple_super_operations;
484 	s->s_time_gran = 1;
485 
486 	inode = new_inode(s);
487 	if (!inode)
488 		return -ENOMEM;
489 	/*
490 	 * because the root inode is 1, the files array must not contain an
491 	 * entry at index 1
492 	 */
493 	inode->i_ino = 1;
494 	inode->i_mode = S_IFDIR | 0755;
495 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
496 	inode->i_op = &simple_dir_inode_operations;
497 	inode->i_fop = &simple_dir_operations;
498 	set_nlink(inode, 2);
499 	root = d_make_root(inode);
500 	if (!root)
501 		return -ENOMEM;
502 	for (i = 0; !files->name || files->name[0]; i++, files++) {
503 		if (!files->name)
504 			continue;
505 
506 		/* warn if it tries to conflict with the root inode */
507 		if (unlikely(i == 1))
508 			printk(KERN_WARNING "%s: %s passed in a files array"
509 				"with an index of 1!\n", __func__,
510 				s->s_type->name);
511 
512 		dentry = d_alloc_name(root, files->name);
513 		if (!dentry)
514 			goto out;
515 		inode = new_inode(s);
516 		if (!inode) {
517 			dput(dentry);
518 			goto out;
519 		}
520 		inode->i_mode = S_IFREG | files->mode;
521 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
522 		inode->i_fop = files->ops;
523 		inode->i_ino = i;
524 		d_add(dentry, inode);
525 	}
526 	s->s_root = root;
527 	return 0;
528 out:
529 	d_genocide(root);
530 	shrink_dcache_parent(root);
531 	dput(root);
532 	return -ENOMEM;
533 }
534 EXPORT_SYMBOL(simple_fill_super);
535 
536 static DEFINE_SPINLOCK(pin_fs_lock);
537 
538 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
539 {
540 	struct vfsmount *mnt = NULL;
541 	spin_lock(&pin_fs_lock);
542 	if (unlikely(!*mount)) {
543 		spin_unlock(&pin_fs_lock);
544 		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
545 		if (IS_ERR(mnt))
546 			return PTR_ERR(mnt);
547 		spin_lock(&pin_fs_lock);
548 		if (!*mount)
549 			*mount = mnt;
550 	}
551 	mntget(*mount);
552 	++*count;
553 	spin_unlock(&pin_fs_lock);
554 	mntput(mnt);
555 	return 0;
556 }
557 EXPORT_SYMBOL(simple_pin_fs);
558 
559 void simple_release_fs(struct vfsmount **mount, int *count)
560 {
561 	struct vfsmount *mnt;
562 	spin_lock(&pin_fs_lock);
563 	mnt = *mount;
564 	if (!--*count)
565 		*mount = NULL;
566 	spin_unlock(&pin_fs_lock);
567 	mntput(mnt);
568 }
569 EXPORT_SYMBOL(simple_release_fs);
570 
571 /**
572  * simple_read_from_buffer - copy data from the buffer to user space
573  * @to: the user space buffer to read to
574  * @count: the maximum number of bytes to read
575  * @ppos: the current position in the buffer
576  * @from: the buffer to read from
577  * @available: the size of the buffer
578  *
579  * The simple_read_from_buffer() function reads up to @count bytes from the
580  * buffer @from at offset @ppos into the user space address starting at @to.
581  *
582  * On success, the number of bytes read is returned and the offset @ppos is
583  * advanced by this number, or negative value is returned on error.
584  **/
585 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
586 				const void *from, size_t available)
587 {
588 	loff_t pos = *ppos;
589 	size_t ret;
590 
591 	if (pos < 0)
592 		return -EINVAL;
593 	if (pos >= available || !count)
594 		return 0;
595 	if (count > available - pos)
596 		count = available - pos;
597 	ret = copy_to_user(to, from + pos, count);
598 	if (ret == count)
599 		return -EFAULT;
600 	count -= ret;
601 	*ppos = pos + count;
602 	return count;
603 }
604 EXPORT_SYMBOL(simple_read_from_buffer);
605 
606 /**
607  * simple_write_to_buffer - copy data from user space to the buffer
608  * @to: the buffer to write to
609  * @available: the size of the buffer
610  * @ppos: the current position in the buffer
611  * @from: the user space buffer to read from
612  * @count: the maximum number of bytes to read
613  *
614  * The simple_write_to_buffer() function reads up to @count bytes from the user
615  * space address starting at @from into the buffer @to at offset @ppos.
616  *
617  * On success, the number of bytes written is returned and the offset @ppos is
618  * advanced by this number, or negative value is returned on error.
619  **/
620 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
621 		const void __user *from, size_t count)
622 {
623 	loff_t pos = *ppos;
624 	size_t res;
625 
626 	if (pos < 0)
627 		return -EINVAL;
628 	if (pos >= available || !count)
629 		return 0;
630 	if (count > available - pos)
631 		count = available - pos;
632 	res = copy_from_user(to + pos, from, count);
633 	if (res == count)
634 		return -EFAULT;
635 	count -= res;
636 	*ppos = pos + count;
637 	return count;
638 }
639 EXPORT_SYMBOL(simple_write_to_buffer);
640 
641 /**
642  * memory_read_from_buffer - copy data from the buffer
643  * @to: the kernel space buffer to read to
644  * @count: the maximum number of bytes to read
645  * @ppos: the current position in the buffer
646  * @from: the buffer to read from
647  * @available: the size of the buffer
648  *
649  * The memory_read_from_buffer() function reads up to @count bytes from the
650  * buffer @from at offset @ppos into the kernel space address starting at @to.
651  *
652  * On success, the number of bytes read is returned and the offset @ppos is
653  * advanced by this number, or negative value is returned on error.
654  **/
655 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
656 				const void *from, size_t available)
657 {
658 	loff_t pos = *ppos;
659 
660 	if (pos < 0)
661 		return -EINVAL;
662 	if (pos >= available)
663 		return 0;
664 	if (count > available - pos)
665 		count = available - pos;
666 	memcpy(to, from + pos, count);
667 	*ppos = pos + count;
668 
669 	return count;
670 }
671 EXPORT_SYMBOL(memory_read_from_buffer);
672 
673 /*
674  * Transaction based IO.
675  * The file expects a single write which triggers the transaction, and then
676  * possibly a read which collects the result - which is stored in a
677  * file-local buffer.
678  */
679 
680 void simple_transaction_set(struct file *file, size_t n)
681 {
682 	struct simple_transaction_argresp *ar = file->private_data;
683 
684 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
685 
686 	/*
687 	 * The barrier ensures that ar->size will really remain zero until
688 	 * ar->data is ready for reading.
689 	 */
690 	smp_mb();
691 	ar->size = n;
692 }
693 EXPORT_SYMBOL(simple_transaction_set);
694 
695 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
696 {
697 	struct simple_transaction_argresp *ar;
698 	static DEFINE_SPINLOCK(simple_transaction_lock);
699 
700 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
701 		return ERR_PTR(-EFBIG);
702 
703 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
704 	if (!ar)
705 		return ERR_PTR(-ENOMEM);
706 
707 	spin_lock(&simple_transaction_lock);
708 
709 	/* only one write allowed per open */
710 	if (file->private_data) {
711 		spin_unlock(&simple_transaction_lock);
712 		free_page((unsigned long)ar);
713 		return ERR_PTR(-EBUSY);
714 	}
715 
716 	file->private_data = ar;
717 
718 	spin_unlock(&simple_transaction_lock);
719 
720 	if (copy_from_user(ar->data, buf, size))
721 		return ERR_PTR(-EFAULT);
722 
723 	return ar->data;
724 }
725 EXPORT_SYMBOL(simple_transaction_get);
726 
727 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
728 {
729 	struct simple_transaction_argresp *ar = file->private_data;
730 
731 	if (!ar)
732 		return 0;
733 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
734 }
735 EXPORT_SYMBOL(simple_transaction_read);
736 
737 int simple_transaction_release(struct inode *inode, struct file *file)
738 {
739 	free_page((unsigned long)file->private_data);
740 	return 0;
741 }
742 EXPORT_SYMBOL(simple_transaction_release);
743 
744 /* Simple attribute files */
745 
746 struct simple_attr {
747 	int (*get)(void *, u64 *);
748 	int (*set)(void *, u64);
749 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
750 	char set_buf[24];
751 	void *data;
752 	const char *fmt;	/* format for read operation */
753 	struct mutex mutex;	/* protects access to these buffers */
754 };
755 
756 /* simple_attr_open is called by an actual attribute open file operation
757  * to set the attribute specific access operations. */
758 int simple_attr_open(struct inode *inode, struct file *file,
759 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
760 		     const char *fmt)
761 {
762 	struct simple_attr *attr;
763 
764 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
765 	if (!attr)
766 		return -ENOMEM;
767 
768 	attr->get = get;
769 	attr->set = set;
770 	attr->data = inode->i_private;
771 	attr->fmt = fmt;
772 	mutex_init(&attr->mutex);
773 
774 	file->private_data = attr;
775 
776 	return nonseekable_open(inode, file);
777 }
778 EXPORT_SYMBOL_GPL(simple_attr_open);
779 
780 int simple_attr_release(struct inode *inode, struct file *file)
781 {
782 	kfree(file->private_data);
783 	return 0;
784 }
785 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
786 
787 /* read from the buffer that is filled with the get function */
788 ssize_t simple_attr_read(struct file *file, char __user *buf,
789 			 size_t len, loff_t *ppos)
790 {
791 	struct simple_attr *attr;
792 	size_t size;
793 	ssize_t ret;
794 
795 	attr = file->private_data;
796 
797 	if (!attr->get)
798 		return -EACCES;
799 
800 	ret = mutex_lock_interruptible(&attr->mutex);
801 	if (ret)
802 		return ret;
803 
804 	if (*ppos) {		/* continued read */
805 		size = strlen(attr->get_buf);
806 	} else {		/* first read */
807 		u64 val;
808 		ret = attr->get(attr->data, &val);
809 		if (ret)
810 			goto out;
811 
812 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
813 				 attr->fmt, (unsigned long long)val);
814 	}
815 
816 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
817 out:
818 	mutex_unlock(&attr->mutex);
819 	return ret;
820 }
821 EXPORT_SYMBOL_GPL(simple_attr_read);
822 
823 /* interpret the buffer as a number to call the set function with */
824 ssize_t simple_attr_write(struct file *file, const char __user *buf,
825 			  size_t len, loff_t *ppos)
826 {
827 	struct simple_attr *attr;
828 	u64 val;
829 	size_t size;
830 	ssize_t ret;
831 
832 	attr = file->private_data;
833 	if (!attr->set)
834 		return -EACCES;
835 
836 	ret = mutex_lock_interruptible(&attr->mutex);
837 	if (ret)
838 		return ret;
839 
840 	ret = -EFAULT;
841 	size = min(sizeof(attr->set_buf) - 1, len);
842 	if (copy_from_user(attr->set_buf, buf, size))
843 		goto out;
844 
845 	attr->set_buf[size] = '\0';
846 	val = simple_strtoll(attr->set_buf, NULL, 0);
847 	ret = attr->set(attr->data, val);
848 	if (ret == 0)
849 		ret = len; /* on success, claim we got the whole input */
850 out:
851 	mutex_unlock(&attr->mutex);
852 	return ret;
853 }
854 EXPORT_SYMBOL_GPL(simple_attr_write);
855 
856 /**
857  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
858  * @sb:		filesystem to do the file handle conversion on
859  * @fid:	file handle to convert
860  * @fh_len:	length of the file handle in bytes
861  * @fh_type:	type of file handle
862  * @get_inode:	filesystem callback to retrieve inode
863  *
864  * This function decodes @fid as long as it has one of the well-known
865  * Linux filehandle types and calls @get_inode on it to retrieve the
866  * inode for the object specified in the file handle.
867  */
868 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
869 		int fh_len, int fh_type, struct inode *(*get_inode)
870 			(struct super_block *sb, u64 ino, u32 gen))
871 {
872 	struct inode *inode = NULL;
873 
874 	if (fh_len < 2)
875 		return NULL;
876 
877 	switch (fh_type) {
878 	case FILEID_INO32_GEN:
879 	case FILEID_INO32_GEN_PARENT:
880 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
881 		break;
882 	}
883 
884 	return d_obtain_alias(inode);
885 }
886 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
887 
888 /**
889  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
890  * @sb:		filesystem to do the file handle conversion on
891  * @fid:	file handle to convert
892  * @fh_len:	length of the file handle in bytes
893  * @fh_type:	type of file handle
894  * @get_inode:	filesystem callback to retrieve inode
895  *
896  * This function decodes @fid as long as it has one of the well-known
897  * Linux filehandle types and calls @get_inode on it to retrieve the
898  * inode for the _parent_ object specified in the file handle if it
899  * is specified in the file handle, or NULL otherwise.
900  */
901 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
902 		int fh_len, int fh_type, struct inode *(*get_inode)
903 			(struct super_block *sb, u64 ino, u32 gen))
904 {
905 	struct inode *inode = NULL;
906 
907 	if (fh_len <= 2)
908 		return NULL;
909 
910 	switch (fh_type) {
911 	case FILEID_INO32_GEN_PARENT:
912 		inode = get_inode(sb, fid->i32.parent_ino,
913 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
914 		break;
915 	}
916 
917 	return d_obtain_alias(inode);
918 }
919 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
920 
921 /**
922  * __generic_file_fsync - generic fsync implementation for simple filesystems
923  *
924  * @file:	file to synchronize
925  * @start:	start offset in bytes
926  * @end:	end offset in bytes (inclusive)
927  * @datasync:	only synchronize essential metadata if true
928  *
929  * This is a generic implementation of the fsync method for simple
930  * filesystems which track all non-inode metadata in the buffers list
931  * hanging off the address_space structure.
932  */
933 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
934 				 int datasync)
935 {
936 	struct inode *inode = file->f_mapping->host;
937 	int err;
938 	int ret;
939 
940 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
941 	if (err)
942 		return err;
943 
944 	mutex_lock(&inode->i_mutex);
945 	ret = sync_mapping_buffers(inode->i_mapping);
946 	if (!(inode->i_state & I_DIRTY_ALL))
947 		goto out;
948 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
949 		goto out;
950 
951 	err = sync_inode_metadata(inode, 1);
952 	if (ret == 0)
953 		ret = err;
954 
955 out:
956 	mutex_unlock(&inode->i_mutex);
957 	return ret;
958 }
959 EXPORT_SYMBOL(__generic_file_fsync);
960 
961 /**
962  * generic_file_fsync - generic fsync implementation for simple filesystems
963  *			with flush
964  * @file:	file to synchronize
965  * @start:	start offset in bytes
966  * @end:	end offset in bytes (inclusive)
967  * @datasync:	only synchronize essential metadata if true
968  *
969  */
970 
971 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
972 		       int datasync)
973 {
974 	struct inode *inode = file->f_mapping->host;
975 	int err;
976 
977 	err = __generic_file_fsync(file, start, end, datasync);
978 	if (err)
979 		return err;
980 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
981 }
982 EXPORT_SYMBOL(generic_file_fsync);
983 
984 /**
985  * generic_check_addressable - Check addressability of file system
986  * @blocksize_bits:	log of file system block size
987  * @num_blocks:		number of blocks in file system
988  *
989  * Determine whether a file system with @num_blocks blocks (and a
990  * block size of 2**@blocksize_bits) is addressable by the sector_t
991  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
992  */
993 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
994 {
995 	u64 last_fs_block = num_blocks - 1;
996 	u64 last_fs_page =
997 		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
998 
999 	if (unlikely(num_blocks == 0))
1000 		return 0;
1001 
1002 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
1003 		return -EINVAL;
1004 
1005 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1006 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1007 		return -EFBIG;
1008 	}
1009 	return 0;
1010 }
1011 EXPORT_SYMBOL(generic_check_addressable);
1012 
1013 /*
1014  * No-op implementation of ->fsync for in-memory filesystems.
1015  */
1016 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1017 {
1018 	return 0;
1019 }
1020 EXPORT_SYMBOL(noop_fsync);
1021 
1022 void kfree_put_link(struct inode *unused, void *cookie)
1023 {
1024 	kfree(cookie);
1025 }
1026 EXPORT_SYMBOL(kfree_put_link);
1027 
1028 void free_page_put_link(struct inode *unused, void *cookie)
1029 {
1030 	free_page((unsigned long) cookie);
1031 }
1032 EXPORT_SYMBOL(free_page_put_link);
1033 
1034 /*
1035  * nop .set_page_dirty method so that people can use .page_mkwrite on
1036  * anon inodes.
1037  */
1038 static int anon_set_page_dirty(struct page *page)
1039 {
1040 	return 0;
1041 };
1042 
1043 /*
1044  * A single inode exists for all anon_inode files. Contrary to pipes,
1045  * anon_inode inodes have no associated per-instance data, so we need
1046  * only allocate one of them.
1047  */
1048 struct inode *alloc_anon_inode(struct super_block *s)
1049 {
1050 	static const struct address_space_operations anon_aops = {
1051 		.set_page_dirty = anon_set_page_dirty,
1052 	};
1053 	struct inode *inode = new_inode_pseudo(s);
1054 
1055 	if (!inode)
1056 		return ERR_PTR(-ENOMEM);
1057 
1058 	inode->i_ino = get_next_ino();
1059 	inode->i_mapping->a_ops = &anon_aops;
1060 
1061 	/*
1062 	 * Mark the inode dirty from the very beginning,
1063 	 * that way it will never be moved to the dirty
1064 	 * list because mark_inode_dirty() will think
1065 	 * that it already _is_ on the dirty list.
1066 	 */
1067 	inode->i_state = I_DIRTY;
1068 	inode->i_mode = S_IRUSR | S_IWUSR;
1069 	inode->i_uid = current_fsuid();
1070 	inode->i_gid = current_fsgid();
1071 	inode->i_flags |= S_PRIVATE;
1072 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1073 	return inode;
1074 }
1075 EXPORT_SYMBOL(alloc_anon_inode);
1076 
1077 /**
1078  * simple_nosetlease - generic helper for prohibiting leases
1079  * @filp: file pointer
1080  * @arg: type of lease to obtain
1081  * @flp: new lease supplied for insertion
1082  * @priv: private data for lm_setup operation
1083  *
1084  * Generic helper for filesystems that do not wish to allow leases to be set.
1085  * All arguments are ignored and it just returns -EINVAL.
1086  */
1087 int
1088 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1089 		  void **priv)
1090 {
1091 	return -EINVAL;
1092 }
1093 EXPORT_SYMBOL(simple_nosetlease);
1094 
1095 const char *simple_follow_link(struct dentry *dentry, void **cookie)
1096 {
1097 	return d_inode(dentry)->i_link;
1098 }
1099 EXPORT_SYMBOL(simple_follow_link);
1100 
1101 const struct inode_operations simple_symlink_inode_operations = {
1102 	.follow_link = simple_follow_link,
1103 	.readlink = generic_readlink
1104 };
1105 EXPORT_SYMBOL(simple_symlink_inode_operations);
1106 
1107 /*
1108  * Operations for a permanently empty directory.
1109  */
1110 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1111 {
1112 	return ERR_PTR(-ENOENT);
1113 }
1114 
1115 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1116 				 struct kstat *stat)
1117 {
1118 	struct inode *inode = d_inode(dentry);
1119 	generic_fillattr(inode, stat);
1120 	return 0;
1121 }
1122 
1123 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1124 {
1125 	return -EPERM;
1126 }
1127 
1128 static int empty_dir_setxattr(struct dentry *dentry, const char *name,
1129 			      const void *value, size_t size, int flags)
1130 {
1131 	return -EOPNOTSUPP;
1132 }
1133 
1134 static ssize_t empty_dir_getxattr(struct dentry *dentry, const char *name,
1135 				  void *value, size_t size)
1136 {
1137 	return -EOPNOTSUPP;
1138 }
1139 
1140 static int empty_dir_removexattr(struct dentry *dentry, const char *name)
1141 {
1142 	return -EOPNOTSUPP;
1143 }
1144 
1145 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1146 {
1147 	return -EOPNOTSUPP;
1148 }
1149 
1150 static const struct inode_operations empty_dir_inode_operations = {
1151 	.lookup		= empty_dir_lookup,
1152 	.permission	= generic_permission,
1153 	.setattr	= empty_dir_setattr,
1154 	.getattr	= empty_dir_getattr,
1155 	.setxattr	= empty_dir_setxattr,
1156 	.getxattr	= empty_dir_getxattr,
1157 	.removexattr	= empty_dir_removexattr,
1158 	.listxattr	= empty_dir_listxattr,
1159 };
1160 
1161 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1162 {
1163 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1164 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1165 }
1166 
1167 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1168 {
1169 	dir_emit_dots(file, ctx);
1170 	return 0;
1171 }
1172 
1173 static const struct file_operations empty_dir_operations = {
1174 	.llseek		= empty_dir_llseek,
1175 	.read		= generic_read_dir,
1176 	.iterate	= empty_dir_readdir,
1177 	.fsync		= noop_fsync,
1178 };
1179 
1180 
1181 void make_empty_dir_inode(struct inode *inode)
1182 {
1183 	set_nlink(inode, 2);
1184 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1185 	inode->i_uid = GLOBAL_ROOT_UID;
1186 	inode->i_gid = GLOBAL_ROOT_GID;
1187 	inode->i_rdev = 0;
1188 	inode->i_size = 0;
1189 	inode->i_blkbits = PAGE_SHIFT;
1190 	inode->i_blocks = 0;
1191 
1192 	inode->i_op = &empty_dir_inode_operations;
1193 	inode->i_fop = &empty_dir_operations;
1194 }
1195 
1196 bool is_empty_dir_inode(struct inode *inode)
1197 {
1198 	return (inode->i_fop == &empty_dir_operations) &&
1199 		(inode->i_op == &empty_dir_inode_operations);
1200 }
1201