xref: /openbmc/linux/fs/libfs.c (revision c4ee0af3)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/export.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/namei.h>
14 #include <linux/exportfs.h>
15 #include <linux/writeback.h>
16 #include <linux/buffer_head.h> /* sync_mapping_buffers */
17 
18 #include <asm/uaccess.h>
19 
20 #include "internal.h"
21 
22 static inline int simple_positive(struct dentry *dentry)
23 {
24 	return dentry->d_inode && !d_unhashed(dentry);
25 }
26 
27 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
28 		   struct kstat *stat)
29 {
30 	struct inode *inode = dentry->d_inode;
31 	generic_fillattr(inode, stat);
32 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
33 	return 0;
34 }
35 EXPORT_SYMBOL(simple_getattr);
36 
37 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
38 {
39 	buf->f_type = dentry->d_sb->s_magic;
40 	buf->f_bsize = PAGE_CACHE_SIZE;
41 	buf->f_namelen = NAME_MAX;
42 	return 0;
43 }
44 EXPORT_SYMBOL(simple_statfs);
45 
46 /*
47  * Retaining negative dentries for an in-memory filesystem just wastes
48  * memory and lookup time: arrange for them to be deleted immediately.
49  */
50 int always_delete_dentry(const struct dentry *dentry)
51 {
52 	return 1;
53 }
54 EXPORT_SYMBOL(always_delete_dentry);
55 
56 const struct dentry_operations simple_dentry_operations = {
57 	.d_delete = always_delete_dentry,
58 };
59 EXPORT_SYMBOL(simple_dentry_operations);
60 
61 /*
62  * Lookup the data. This is trivial - if the dentry didn't already
63  * exist, we know it is negative.  Set d_op to delete negative dentries.
64  */
65 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
66 {
67 	if (dentry->d_name.len > NAME_MAX)
68 		return ERR_PTR(-ENAMETOOLONG);
69 	if (!dentry->d_sb->s_d_op)
70 		d_set_d_op(dentry, &simple_dentry_operations);
71 	d_add(dentry, NULL);
72 	return NULL;
73 }
74 EXPORT_SYMBOL(simple_lookup);
75 
76 int dcache_dir_open(struct inode *inode, struct file *file)
77 {
78 	static struct qstr cursor_name = QSTR_INIT(".", 1);
79 
80 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
81 
82 	return file->private_data ? 0 : -ENOMEM;
83 }
84 EXPORT_SYMBOL(dcache_dir_open);
85 
86 int dcache_dir_close(struct inode *inode, struct file *file)
87 {
88 	dput(file->private_data);
89 	return 0;
90 }
91 EXPORT_SYMBOL(dcache_dir_close);
92 
93 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
94 {
95 	struct dentry *dentry = file->f_path.dentry;
96 	mutex_lock(&dentry->d_inode->i_mutex);
97 	switch (whence) {
98 		case 1:
99 			offset += file->f_pos;
100 		case 0:
101 			if (offset >= 0)
102 				break;
103 		default:
104 			mutex_unlock(&dentry->d_inode->i_mutex);
105 			return -EINVAL;
106 	}
107 	if (offset != file->f_pos) {
108 		file->f_pos = offset;
109 		if (file->f_pos >= 2) {
110 			struct list_head *p;
111 			struct dentry *cursor = file->private_data;
112 			loff_t n = file->f_pos - 2;
113 
114 			spin_lock(&dentry->d_lock);
115 			/* d_lock not required for cursor */
116 			list_del(&cursor->d_u.d_child);
117 			p = dentry->d_subdirs.next;
118 			while (n && p != &dentry->d_subdirs) {
119 				struct dentry *next;
120 				next = list_entry(p, struct dentry, d_u.d_child);
121 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
122 				if (simple_positive(next))
123 					n--;
124 				spin_unlock(&next->d_lock);
125 				p = p->next;
126 			}
127 			list_add_tail(&cursor->d_u.d_child, p);
128 			spin_unlock(&dentry->d_lock);
129 		}
130 	}
131 	mutex_unlock(&dentry->d_inode->i_mutex);
132 	return offset;
133 }
134 EXPORT_SYMBOL(dcache_dir_lseek);
135 
136 /* Relationship between i_mode and the DT_xxx types */
137 static inline unsigned char dt_type(struct inode *inode)
138 {
139 	return (inode->i_mode >> 12) & 15;
140 }
141 
142 /*
143  * Directory is locked and all positive dentries in it are safe, since
144  * for ramfs-type trees they can't go away without unlink() or rmdir(),
145  * both impossible due to the lock on directory.
146  */
147 
148 int dcache_readdir(struct file *file, struct dir_context *ctx)
149 {
150 	struct dentry *dentry = file->f_path.dentry;
151 	struct dentry *cursor = file->private_data;
152 	struct list_head *p, *q = &cursor->d_u.d_child;
153 
154 	if (!dir_emit_dots(file, ctx))
155 		return 0;
156 	spin_lock(&dentry->d_lock);
157 	if (ctx->pos == 2)
158 		list_move(q, &dentry->d_subdirs);
159 
160 	for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
161 		struct dentry *next = list_entry(p, struct dentry, d_u.d_child);
162 		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
163 		if (!simple_positive(next)) {
164 			spin_unlock(&next->d_lock);
165 			continue;
166 		}
167 
168 		spin_unlock(&next->d_lock);
169 		spin_unlock(&dentry->d_lock);
170 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
171 			      next->d_inode->i_ino, dt_type(next->d_inode)))
172 			return 0;
173 		spin_lock(&dentry->d_lock);
174 		spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
175 		/* next is still alive */
176 		list_move(q, p);
177 		spin_unlock(&next->d_lock);
178 		p = q;
179 		ctx->pos++;
180 	}
181 	spin_unlock(&dentry->d_lock);
182 	return 0;
183 }
184 EXPORT_SYMBOL(dcache_readdir);
185 
186 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
187 {
188 	return -EISDIR;
189 }
190 EXPORT_SYMBOL(generic_read_dir);
191 
192 const struct file_operations simple_dir_operations = {
193 	.open		= dcache_dir_open,
194 	.release	= dcache_dir_close,
195 	.llseek		= dcache_dir_lseek,
196 	.read		= generic_read_dir,
197 	.iterate	= dcache_readdir,
198 	.fsync		= noop_fsync,
199 };
200 EXPORT_SYMBOL(simple_dir_operations);
201 
202 const struct inode_operations simple_dir_inode_operations = {
203 	.lookup		= simple_lookup,
204 };
205 EXPORT_SYMBOL(simple_dir_inode_operations);
206 
207 static const struct super_operations simple_super_operations = {
208 	.statfs		= simple_statfs,
209 };
210 
211 /*
212  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
213  * will never be mountable)
214  */
215 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
216 	const struct super_operations *ops,
217 	const struct dentry_operations *dops, unsigned long magic)
218 {
219 	struct super_block *s;
220 	struct dentry *dentry;
221 	struct inode *root;
222 	struct qstr d_name = QSTR_INIT(name, strlen(name));
223 
224 	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
225 	if (IS_ERR(s))
226 		return ERR_CAST(s);
227 
228 	s->s_maxbytes = MAX_LFS_FILESIZE;
229 	s->s_blocksize = PAGE_SIZE;
230 	s->s_blocksize_bits = PAGE_SHIFT;
231 	s->s_magic = magic;
232 	s->s_op = ops ? ops : &simple_super_operations;
233 	s->s_time_gran = 1;
234 	root = new_inode(s);
235 	if (!root)
236 		goto Enomem;
237 	/*
238 	 * since this is the first inode, make it number 1. New inodes created
239 	 * after this must take care not to collide with it (by passing
240 	 * max_reserved of 1 to iunique).
241 	 */
242 	root->i_ino = 1;
243 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
244 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
245 	dentry = __d_alloc(s, &d_name);
246 	if (!dentry) {
247 		iput(root);
248 		goto Enomem;
249 	}
250 	d_instantiate(dentry, root);
251 	s->s_root = dentry;
252 	s->s_d_op = dops;
253 	s->s_flags |= MS_ACTIVE;
254 	return dget(s->s_root);
255 
256 Enomem:
257 	deactivate_locked_super(s);
258 	return ERR_PTR(-ENOMEM);
259 }
260 EXPORT_SYMBOL(mount_pseudo);
261 
262 int simple_open(struct inode *inode, struct file *file)
263 {
264 	if (inode->i_private)
265 		file->private_data = inode->i_private;
266 	return 0;
267 }
268 EXPORT_SYMBOL(simple_open);
269 
270 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
271 {
272 	struct inode *inode = old_dentry->d_inode;
273 
274 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
275 	inc_nlink(inode);
276 	ihold(inode);
277 	dget(dentry);
278 	d_instantiate(dentry, inode);
279 	return 0;
280 }
281 EXPORT_SYMBOL(simple_link);
282 
283 int simple_empty(struct dentry *dentry)
284 {
285 	struct dentry *child;
286 	int ret = 0;
287 
288 	spin_lock(&dentry->d_lock);
289 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
290 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
291 		if (simple_positive(child)) {
292 			spin_unlock(&child->d_lock);
293 			goto out;
294 		}
295 		spin_unlock(&child->d_lock);
296 	}
297 	ret = 1;
298 out:
299 	spin_unlock(&dentry->d_lock);
300 	return ret;
301 }
302 EXPORT_SYMBOL(simple_empty);
303 
304 int simple_unlink(struct inode *dir, struct dentry *dentry)
305 {
306 	struct inode *inode = dentry->d_inode;
307 
308 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
309 	drop_nlink(inode);
310 	dput(dentry);
311 	return 0;
312 }
313 EXPORT_SYMBOL(simple_unlink);
314 
315 int simple_rmdir(struct inode *dir, struct dentry *dentry)
316 {
317 	if (!simple_empty(dentry))
318 		return -ENOTEMPTY;
319 
320 	drop_nlink(dentry->d_inode);
321 	simple_unlink(dir, dentry);
322 	drop_nlink(dir);
323 	return 0;
324 }
325 EXPORT_SYMBOL(simple_rmdir);
326 
327 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
328 		struct inode *new_dir, struct dentry *new_dentry)
329 {
330 	struct inode *inode = old_dentry->d_inode;
331 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
332 
333 	if (!simple_empty(new_dentry))
334 		return -ENOTEMPTY;
335 
336 	if (new_dentry->d_inode) {
337 		simple_unlink(new_dir, new_dentry);
338 		if (they_are_dirs) {
339 			drop_nlink(new_dentry->d_inode);
340 			drop_nlink(old_dir);
341 		}
342 	} else if (they_are_dirs) {
343 		drop_nlink(old_dir);
344 		inc_nlink(new_dir);
345 	}
346 
347 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
348 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
349 
350 	return 0;
351 }
352 EXPORT_SYMBOL(simple_rename);
353 
354 /**
355  * simple_setattr - setattr for simple filesystem
356  * @dentry: dentry
357  * @iattr: iattr structure
358  *
359  * Returns 0 on success, -error on failure.
360  *
361  * simple_setattr is a simple ->setattr implementation without a proper
362  * implementation of size changes.
363  *
364  * It can either be used for in-memory filesystems or special files
365  * on simple regular filesystems.  Anything that needs to change on-disk
366  * or wire state on size changes needs its own setattr method.
367  */
368 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
369 {
370 	struct inode *inode = dentry->d_inode;
371 	int error;
372 
373 	error = inode_change_ok(inode, iattr);
374 	if (error)
375 		return error;
376 
377 	if (iattr->ia_valid & ATTR_SIZE)
378 		truncate_setsize(inode, iattr->ia_size);
379 	setattr_copy(inode, iattr);
380 	mark_inode_dirty(inode);
381 	return 0;
382 }
383 EXPORT_SYMBOL(simple_setattr);
384 
385 int simple_readpage(struct file *file, struct page *page)
386 {
387 	clear_highpage(page);
388 	flush_dcache_page(page);
389 	SetPageUptodate(page);
390 	unlock_page(page);
391 	return 0;
392 }
393 EXPORT_SYMBOL(simple_readpage);
394 
395 int simple_write_begin(struct file *file, struct address_space *mapping,
396 			loff_t pos, unsigned len, unsigned flags,
397 			struct page **pagep, void **fsdata)
398 {
399 	struct page *page;
400 	pgoff_t index;
401 
402 	index = pos >> PAGE_CACHE_SHIFT;
403 
404 	page = grab_cache_page_write_begin(mapping, index, flags);
405 	if (!page)
406 		return -ENOMEM;
407 
408 	*pagep = page;
409 
410 	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
411 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
412 
413 		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
414 	}
415 	return 0;
416 }
417 EXPORT_SYMBOL(simple_write_begin);
418 
419 /**
420  * simple_write_end - .write_end helper for non-block-device FSes
421  * @available: See .write_end of address_space_operations
422  * @file: 		"
423  * @mapping: 		"
424  * @pos: 		"
425  * @len: 		"
426  * @copied: 		"
427  * @page: 		"
428  * @fsdata: 		"
429  *
430  * simple_write_end does the minimum needed for updating a page after writing is
431  * done. It has the same API signature as the .write_end of
432  * address_space_operations vector. So it can just be set onto .write_end for
433  * FSes that don't need any other processing. i_mutex is assumed to be held.
434  * Block based filesystems should use generic_write_end().
435  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
436  * is not called, so a filesystem that actually does store data in .write_inode
437  * should extend on what's done here with a call to mark_inode_dirty() in the
438  * case that i_size has changed.
439  */
440 int simple_write_end(struct file *file, struct address_space *mapping,
441 			loff_t pos, unsigned len, unsigned copied,
442 			struct page *page, void *fsdata)
443 {
444 	struct inode *inode = page->mapping->host;
445 	loff_t last_pos = pos + copied;
446 
447 	/* zero the stale part of the page if we did a short copy */
448 	if (copied < len) {
449 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
450 
451 		zero_user(page, from + copied, len - copied);
452 	}
453 
454 	if (!PageUptodate(page))
455 		SetPageUptodate(page);
456 	/*
457 	 * No need to use i_size_read() here, the i_size
458 	 * cannot change under us because we hold the i_mutex.
459 	 */
460 	if (last_pos > inode->i_size)
461 		i_size_write(inode, last_pos);
462 
463 	set_page_dirty(page);
464 	unlock_page(page);
465 	page_cache_release(page);
466 
467 	return copied;
468 }
469 EXPORT_SYMBOL(simple_write_end);
470 
471 /*
472  * the inodes created here are not hashed. If you use iunique to generate
473  * unique inode values later for this filesystem, then you must take care
474  * to pass it an appropriate max_reserved value to avoid collisions.
475  */
476 int simple_fill_super(struct super_block *s, unsigned long magic,
477 		      struct tree_descr *files)
478 {
479 	struct inode *inode;
480 	struct dentry *root;
481 	struct dentry *dentry;
482 	int i;
483 
484 	s->s_blocksize = PAGE_CACHE_SIZE;
485 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
486 	s->s_magic = magic;
487 	s->s_op = &simple_super_operations;
488 	s->s_time_gran = 1;
489 
490 	inode = new_inode(s);
491 	if (!inode)
492 		return -ENOMEM;
493 	/*
494 	 * because the root inode is 1, the files array must not contain an
495 	 * entry at index 1
496 	 */
497 	inode->i_ino = 1;
498 	inode->i_mode = S_IFDIR | 0755;
499 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
500 	inode->i_op = &simple_dir_inode_operations;
501 	inode->i_fop = &simple_dir_operations;
502 	set_nlink(inode, 2);
503 	root = d_make_root(inode);
504 	if (!root)
505 		return -ENOMEM;
506 	for (i = 0; !files->name || files->name[0]; i++, files++) {
507 		if (!files->name)
508 			continue;
509 
510 		/* warn if it tries to conflict with the root inode */
511 		if (unlikely(i == 1))
512 			printk(KERN_WARNING "%s: %s passed in a files array"
513 				"with an index of 1!\n", __func__,
514 				s->s_type->name);
515 
516 		dentry = d_alloc_name(root, files->name);
517 		if (!dentry)
518 			goto out;
519 		inode = new_inode(s);
520 		if (!inode) {
521 			dput(dentry);
522 			goto out;
523 		}
524 		inode->i_mode = S_IFREG | files->mode;
525 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
526 		inode->i_fop = files->ops;
527 		inode->i_ino = i;
528 		d_add(dentry, inode);
529 	}
530 	s->s_root = root;
531 	return 0;
532 out:
533 	d_genocide(root);
534 	shrink_dcache_parent(root);
535 	dput(root);
536 	return -ENOMEM;
537 }
538 EXPORT_SYMBOL(simple_fill_super);
539 
540 static DEFINE_SPINLOCK(pin_fs_lock);
541 
542 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
543 {
544 	struct vfsmount *mnt = NULL;
545 	spin_lock(&pin_fs_lock);
546 	if (unlikely(!*mount)) {
547 		spin_unlock(&pin_fs_lock);
548 		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
549 		if (IS_ERR(mnt))
550 			return PTR_ERR(mnt);
551 		spin_lock(&pin_fs_lock);
552 		if (!*mount)
553 			*mount = mnt;
554 	}
555 	mntget(*mount);
556 	++*count;
557 	spin_unlock(&pin_fs_lock);
558 	mntput(mnt);
559 	return 0;
560 }
561 EXPORT_SYMBOL(simple_pin_fs);
562 
563 void simple_release_fs(struct vfsmount **mount, int *count)
564 {
565 	struct vfsmount *mnt;
566 	spin_lock(&pin_fs_lock);
567 	mnt = *mount;
568 	if (!--*count)
569 		*mount = NULL;
570 	spin_unlock(&pin_fs_lock);
571 	mntput(mnt);
572 }
573 EXPORT_SYMBOL(simple_release_fs);
574 
575 /**
576  * simple_read_from_buffer - copy data from the buffer to user space
577  * @to: the user space buffer to read to
578  * @count: the maximum number of bytes to read
579  * @ppos: the current position in the buffer
580  * @from: the buffer to read from
581  * @available: the size of the buffer
582  *
583  * The simple_read_from_buffer() function reads up to @count bytes from the
584  * buffer @from at offset @ppos into the user space address starting at @to.
585  *
586  * On success, the number of bytes read is returned and the offset @ppos is
587  * advanced by this number, or negative value is returned on error.
588  **/
589 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
590 				const void *from, size_t available)
591 {
592 	loff_t pos = *ppos;
593 	size_t ret;
594 
595 	if (pos < 0)
596 		return -EINVAL;
597 	if (pos >= available || !count)
598 		return 0;
599 	if (count > available - pos)
600 		count = available - pos;
601 	ret = copy_to_user(to, from + pos, count);
602 	if (ret == count)
603 		return -EFAULT;
604 	count -= ret;
605 	*ppos = pos + count;
606 	return count;
607 }
608 EXPORT_SYMBOL(simple_read_from_buffer);
609 
610 /**
611  * simple_write_to_buffer - copy data from user space to the buffer
612  * @to: the buffer to write to
613  * @available: the size of the buffer
614  * @ppos: the current position in the buffer
615  * @from: the user space buffer to read from
616  * @count: the maximum number of bytes to read
617  *
618  * The simple_write_to_buffer() function reads up to @count bytes from the user
619  * space address starting at @from into the buffer @to at offset @ppos.
620  *
621  * On success, the number of bytes written is returned and the offset @ppos is
622  * advanced by this number, or negative value is returned on error.
623  **/
624 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
625 		const void __user *from, size_t count)
626 {
627 	loff_t pos = *ppos;
628 	size_t res;
629 
630 	if (pos < 0)
631 		return -EINVAL;
632 	if (pos >= available || !count)
633 		return 0;
634 	if (count > available - pos)
635 		count = available - pos;
636 	res = copy_from_user(to + pos, from, count);
637 	if (res == count)
638 		return -EFAULT;
639 	count -= res;
640 	*ppos = pos + count;
641 	return count;
642 }
643 EXPORT_SYMBOL(simple_write_to_buffer);
644 
645 /**
646  * memory_read_from_buffer - copy data from the buffer
647  * @to: the kernel space buffer to read to
648  * @count: the maximum number of bytes to read
649  * @ppos: the current position in the buffer
650  * @from: the buffer to read from
651  * @available: the size of the buffer
652  *
653  * The memory_read_from_buffer() function reads up to @count bytes from the
654  * buffer @from at offset @ppos into the kernel space address starting at @to.
655  *
656  * On success, the number of bytes read is returned and the offset @ppos is
657  * advanced by this number, or negative value is returned on error.
658  **/
659 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
660 				const void *from, size_t available)
661 {
662 	loff_t pos = *ppos;
663 
664 	if (pos < 0)
665 		return -EINVAL;
666 	if (pos >= available)
667 		return 0;
668 	if (count > available - pos)
669 		count = available - pos;
670 	memcpy(to, from + pos, count);
671 	*ppos = pos + count;
672 
673 	return count;
674 }
675 EXPORT_SYMBOL(memory_read_from_buffer);
676 
677 /*
678  * Transaction based IO.
679  * The file expects a single write which triggers the transaction, and then
680  * possibly a read which collects the result - which is stored in a
681  * file-local buffer.
682  */
683 
684 void simple_transaction_set(struct file *file, size_t n)
685 {
686 	struct simple_transaction_argresp *ar = file->private_data;
687 
688 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
689 
690 	/*
691 	 * The barrier ensures that ar->size will really remain zero until
692 	 * ar->data is ready for reading.
693 	 */
694 	smp_mb();
695 	ar->size = n;
696 }
697 EXPORT_SYMBOL(simple_transaction_set);
698 
699 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
700 {
701 	struct simple_transaction_argresp *ar;
702 	static DEFINE_SPINLOCK(simple_transaction_lock);
703 
704 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
705 		return ERR_PTR(-EFBIG);
706 
707 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
708 	if (!ar)
709 		return ERR_PTR(-ENOMEM);
710 
711 	spin_lock(&simple_transaction_lock);
712 
713 	/* only one write allowed per open */
714 	if (file->private_data) {
715 		spin_unlock(&simple_transaction_lock);
716 		free_page((unsigned long)ar);
717 		return ERR_PTR(-EBUSY);
718 	}
719 
720 	file->private_data = ar;
721 
722 	spin_unlock(&simple_transaction_lock);
723 
724 	if (copy_from_user(ar->data, buf, size))
725 		return ERR_PTR(-EFAULT);
726 
727 	return ar->data;
728 }
729 EXPORT_SYMBOL(simple_transaction_get);
730 
731 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
732 {
733 	struct simple_transaction_argresp *ar = file->private_data;
734 
735 	if (!ar)
736 		return 0;
737 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
738 }
739 EXPORT_SYMBOL(simple_transaction_read);
740 
741 int simple_transaction_release(struct inode *inode, struct file *file)
742 {
743 	free_page((unsigned long)file->private_data);
744 	return 0;
745 }
746 EXPORT_SYMBOL(simple_transaction_release);
747 
748 /* Simple attribute files */
749 
750 struct simple_attr {
751 	int (*get)(void *, u64 *);
752 	int (*set)(void *, u64);
753 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
754 	char set_buf[24];
755 	void *data;
756 	const char *fmt;	/* format for read operation */
757 	struct mutex mutex;	/* protects access to these buffers */
758 };
759 
760 /* simple_attr_open is called by an actual attribute open file operation
761  * to set the attribute specific access operations. */
762 int simple_attr_open(struct inode *inode, struct file *file,
763 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
764 		     const char *fmt)
765 {
766 	struct simple_attr *attr;
767 
768 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
769 	if (!attr)
770 		return -ENOMEM;
771 
772 	attr->get = get;
773 	attr->set = set;
774 	attr->data = inode->i_private;
775 	attr->fmt = fmt;
776 	mutex_init(&attr->mutex);
777 
778 	file->private_data = attr;
779 
780 	return nonseekable_open(inode, file);
781 }
782 EXPORT_SYMBOL_GPL(simple_attr_open);
783 
784 int simple_attr_release(struct inode *inode, struct file *file)
785 {
786 	kfree(file->private_data);
787 	return 0;
788 }
789 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
790 
791 /* read from the buffer that is filled with the get function */
792 ssize_t simple_attr_read(struct file *file, char __user *buf,
793 			 size_t len, loff_t *ppos)
794 {
795 	struct simple_attr *attr;
796 	size_t size;
797 	ssize_t ret;
798 
799 	attr = file->private_data;
800 
801 	if (!attr->get)
802 		return -EACCES;
803 
804 	ret = mutex_lock_interruptible(&attr->mutex);
805 	if (ret)
806 		return ret;
807 
808 	if (*ppos) {		/* continued read */
809 		size = strlen(attr->get_buf);
810 	} else {		/* first read */
811 		u64 val;
812 		ret = attr->get(attr->data, &val);
813 		if (ret)
814 			goto out;
815 
816 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
817 				 attr->fmt, (unsigned long long)val);
818 	}
819 
820 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
821 out:
822 	mutex_unlock(&attr->mutex);
823 	return ret;
824 }
825 EXPORT_SYMBOL_GPL(simple_attr_read);
826 
827 /* interpret the buffer as a number to call the set function with */
828 ssize_t simple_attr_write(struct file *file, const char __user *buf,
829 			  size_t len, loff_t *ppos)
830 {
831 	struct simple_attr *attr;
832 	u64 val;
833 	size_t size;
834 	ssize_t ret;
835 
836 	attr = file->private_data;
837 	if (!attr->set)
838 		return -EACCES;
839 
840 	ret = mutex_lock_interruptible(&attr->mutex);
841 	if (ret)
842 		return ret;
843 
844 	ret = -EFAULT;
845 	size = min(sizeof(attr->set_buf) - 1, len);
846 	if (copy_from_user(attr->set_buf, buf, size))
847 		goto out;
848 
849 	attr->set_buf[size] = '\0';
850 	val = simple_strtoll(attr->set_buf, NULL, 0);
851 	ret = attr->set(attr->data, val);
852 	if (ret == 0)
853 		ret = len; /* on success, claim we got the whole input */
854 out:
855 	mutex_unlock(&attr->mutex);
856 	return ret;
857 }
858 EXPORT_SYMBOL_GPL(simple_attr_write);
859 
860 /**
861  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
862  * @sb:		filesystem to do the file handle conversion on
863  * @fid:	file handle to convert
864  * @fh_len:	length of the file handle in bytes
865  * @fh_type:	type of file handle
866  * @get_inode:	filesystem callback to retrieve inode
867  *
868  * This function decodes @fid as long as it has one of the well-known
869  * Linux filehandle types and calls @get_inode on it to retrieve the
870  * inode for the object specified in the file handle.
871  */
872 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
873 		int fh_len, int fh_type, struct inode *(*get_inode)
874 			(struct super_block *sb, u64 ino, u32 gen))
875 {
876 	struct inode *inode = NULL;
877 
878 	if (fh_len < 2)
879 		return NULL;
880 
881 	switch (fh_type) {
882 	case FILEID_INO32_GEN:
883 	case FILEID_INO32_GEN_PARENT:
884 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
885 		break;
886 	}
887 
888 	return d_obtain_alias(inode);
889 }
890 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
891 
892 /**
893  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
894  * @sb:		filesystem to do the file handle conversion on
895  * @fid:	file handle to convert
896  * @fh_len:	length of the file handle in bytes
897  * @fh_type:	type of file handle
898  * @get_inode:	filesystem callback to retrieve inode
899  *
900  * This function decodes @fid as long as it has one of the well-known
901  * Linux filehandle types and calls @get_inode on it to retrieve the
902  * inode for the _parent_ object specified in the file handle if it
903  * is specified in the file handle, or NULL otherwise.
904  */
905 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
906 		int fh_len, int fh_type, struct inode *(*get_inode)
907 			(struct super_block *sb, u64 ino, u32 gen))
908 {
909 	struct inode *inode = NULL;
910 
911 	if (fh_len <= 2)
912 		return NULL;
913 
914 	switch (fh_type) {
915 	case FILEID_INO32_GEN_PARENT:
916 		inode = get_inode(sb, fid->i32.parent_ino,
917 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
918 		break;
919 	}
920 
921 	return d_obtain_alias(inode);
922 }
923 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
924 
925 /**
926  * generic_file_fsync - generic fsync implementation for simple filesystems
927  * @file:	file to synchronize
928  * @datasync:	only synchronize essential metadata if true
929  *
930  * This is a generic implementation of the fsync method for simple
931  * filesystems which track all non-inode metadata in the buffers list
932  * hanging off the address_space structure.
933  */
934 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
935 		       int datasync)
936 {
937 	struct inode *inode = file->f_mapping->host;
938 	int err;
939 	int ret;
940 
941 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
942 	if (err)
943 		return err;
944 
945 	mutex_lock(&inode->i_mutex);
946 	ret = sync_mapping_buffers(inode->i_mapping);
947 	if (!(inode->i_state & I_DIRTY))
948 		goto out;
949 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
950 		goto out;
951 
952 	err = sync_inode_metadata(inode, 1);
953 	if (ret == 0)
954 		ret = err;
955 out:
956 	mutex_unlock(&inode->i_mutex);
957 	return ret;
958 }
959 EXPORT_SYMBOL(generic_file_fsync);
960 
961 /**
962  * generic_check_addressable - Check addressability of file system
963  * @blocksize_bits:	log of file system block size
964  * @num_blocks:		number of blocks in file system
965  *
966  * Determine whether a file system with @num_blocks blocks (and a
967  * block size of 2**@blocksize_bits) is addressable by the sector_t
968  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
969  */
970 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
971 {
972 	u64 last_fs_block = num_blocks - 1;
973 	u64 last_fs_page =
974 		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
975 
976 	if (unlikely(num_blocks == 0))
977 		return 0;
978 
979 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
980 		return -EINVAL;
981 
982 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
983 	    (last_fs_page > (pgoff_t)(~0ULL))) {
984 		return -EFBIG;
985 	}
986 	return 0;
987 }
988 EXPORT_SYMBOL(generic_check_addressable);
989 
990 /*
991  * No-op implementation of ->fsync for in-memory filesystems.
992  */
993 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
994 {
995 	return 0;
996 }
997 EXPORT_SYMBOL(noop_fsync);
998 
999 void kfree_put_link(struct dentry *dentry, struct nameidata *nd,
1000 				void *cookie)
1001 {
1002 	char *s = nd_get_link(nd);
1003 	if (!IS_ERR(s))
1004 		kfree(s);
1005 }
1006 EXPORT_SYMBOL(kfree_put_link);
1007 
1008 /*
1009  * nop .set_page_dirty method so that people can use .page_mkwrite on
1010  * anon inodes.
1011  */
1012 static int anon_set_page_dirty(struct page *page)
1013 {
1014 	return 0;
1015 };
1016 
1017 /*
1018  * A single inode exists for all anon_inode files. Contrary to pipes,
1019  * anon_inode inodes have no associated per-instance data, so we need
1020  * only allocate one of them.
1021  */
1022 struct inode *alloc_anon_inode(struct super_block *s)
1023 {
1024 	static const struct address_space_operations anon_aops = {
1025 		.set_page_dirty = anon_set_page_dirty,
1026 	};
1027 	struct inode *inode = new_inode_pseudo(s);
1028 
1029 	if (!inode)
1030 		return ERR_PTR(-ENOMEM);
1031 
1032 	inode->i_ino = get_next_ino();
1033 	inode->i_mapping->a_ops = &anon_aops;
1034 
1035 	/*
1036 	 * Mark the inode dirty from the very beginning,
1037 	 * that way it will never be moved to the dirty
1038 	 * list because mark_inode_dirty() will think
1039 	 * that it already _is_ on the dirty list.
1040 	 */
1041 	inode->i_state = I_DIRTY;
1042 	inode->i_mode = S_IRUSR | S_IWUSR;
1043 	inode->i_uid = current_fsuid();
1044 	inode->i_gid = current_fsgid();
1045 	inode->i_flags |= S_PRIVATE;
1046 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1047 	return inode;
1048 }
1049 EXPORT_SYMBOL(alloc_anon_inode);
1050