1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/writeback.h> 19 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 20 #include <linux/fs_context.h> 21 #include <linux/pseudo_fs.h> 22 #include <linux/fsnotify.h> 23 #include <linux/unicode.h> 24 #include <linux/fscrypt.h> 25 26 #include <linux/uaccess.h> 27 28 #include "internal.h" 29 30 int simple_getattr(struct user_namespace *mnt_userns, const struct path *path, 31 struct kstat *stat, u32 request_mask, 32 unsigned int query_flags) 33 { 34 struct inode *inode = d_inode(path->dentry); 35 generic_fillattr(&init_user_ns, inode, stat); 36 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 37 return 0; 38 } 39 EXPORT_SYMBOL(simple_getattr); 40 41 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 42 { 43 buf->f_type = dentry->d_sb->s_magic; 44 buf->f_bsize = PAGE_SIZE; 45 buf->f_namelen = NAME_MAX; 46 return 0; 47 } 48 EXPORT_SYMBOL(simple_statfs); 49 50 /* 51 * Retaining negative dentries for an in-memory filesystem just wastes 52 * memory and lookup time: arrange for them to be deleted immediately. 53 */ 54 int always_delete_dentry(const struct dentry *dentry) 55 { 56 return 1; 57 } 58 EXPORT_SYMBOL(always_delete_dentry); 59 60 const struct dentry_operations simple_dentry_operations = { 61 .d_delete = always_delete_dentry, 62 }; 63 EXPORT_SYMBOL(simple_dentry_operations); 64 65 /* 66 * Lookup the data. This is trivial - if the dentry didn't already 67 * exist, we know it is negative. Set d_op to delete negative dentries. 68 */ 69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 70 { 71 if (dentry->d_name.len > NAME_MAX) 72 return ERR_PTR(-ENAMETOOLONG); 73 if (!dentry->d_sb->s_d_op) 74 d_set_d_op(dentry, &simple_dentry_operations); 75 d_add(dentry, NULL); 76 return NULL; 77 } 78 EXPORT_SYMBOL(simple_lookup); 79 80 int dcache_dir_open(struct inode *inode, struct file *file) 81 { 82 file->private_data = d_alloc_cursor(file->f_path.dentry); 83 84 return file->private_data ? 0 : -ENOMEM; 85 } 86 EXPORT_SYMBOL(dcache_dir_open); 87 88 int dcache_dir_close(struct inode *inode, struct file *file) 89 { 90 dput(file->private_data); 91 return 0; 92 } 93 EXPORT_SYMBOL(dcache_dir_close); 94 95 /* parent is locked at least shared */ 96 /* 97 * Returns an element of siblings' list. 98 * We are looking for <count>th positive after <p>; if 99 * found, dentry is grabbed and returned to caller. 100 * If no such element exists, NULL is returned. 101 */ 102 static struct dentry *scan_positives(struct dentry *cursor, 103 struct list_head *p, 104 loff_t count, 105 struct dentry *last) 106 { 107 struct dentry *dentry = cursor->d_parent, *found = NULL; 108 109 spin_lock(&dentry->d_lock); 110 while ((p = p->next) != &dentry->d_subdirs) { 111 struct dentry *d = list_entry(p, struct dentry, d_child); 112 // we must at least skip cursors, to avoid livelocks 113 if (d->d_flags & DCACHE_DENTRY_CURSOR) 114 continue; 115 if (simple_positive(d) && !--count) { 116 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 117 if (simple_positive(d)) 118 found = dget_dlock(d); 119 spin_unlock(&d->d_lock); 120 if (likely(found)) 121 break; 122 count = 1; 123 } 124 if (need_resched()) { 125 list_move(&cursor->d_child, p); 126 p = &cursor->d_child; 127 spin_unlock(&dentry->d_lock); 128 cond_resched(); 129 spin_lock(&dentry->d_lock); 130 } 131 } 132 spin_unlock(&dentry->d_lock); 133 dput(last); 134 return found; 135 } 136 137 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 138 { 139 struct dentry *dentry = file->f_path.dentry; 140 switch (whence) { 141 case 1: 142 offset += file->f_pos; 143 fallthrough; 144 case 0: 145 if (offset >= 0) 146 break; 147 fallthrough; 148 default: 149 return -EINVAL; 150 } 151 if (offset != file->f_pos) { 152 struct dentry *cursor = file->private_data; 153 struct dentry *to = NULL; 154 155 inode_lock_shared(dentry->d_inode); 156 157 if (offset > 2) 158 to = scan_positives(cursor, &dentry->d_subdirs, 159 offset - 2, NULL); 160 spin_lock(&dentry->d_lock); 161 if (to) 162 list_move(&cursor->d_child, &to->d_child); 163 else 164 list_del_init(&cursor->d_child); 165 spin_unlock(&dentry->d_lock); 166 dput(to); 167 168 file->f_pos = offset; 169 170 inode_unlock_shared(dentry->d_inode); 171 } 172 return offset; 173 } 174 EXPORT_SYMBOL(dcache_dir_lseek); 175 176 /* Relationship between i_mode and the DT_xxx types */ 177 static inline unsigned char dt_type(struct inode *inode) 178 { 179 return (inode->i_mode >> 12) & 15; 180 } 181 182 /* 183 * Directory is locked and all positive dentries in it are safe, since 184 * for ramfs-type trees they can't go away without unlink() or rmdir(), 185 * both impossible due to the lock on directory. 186 */ 187 188 int dcache_readdir(struct file *file, struct dir_context *ctx) 189 { 190 struct dentry *dentry = file->f_path.dentry; 191 struct dentry *cursor = file->private_data; 192 struct list_head *anchor = &dentry->d_subdirs; 193 struct dentry *next = NULL; 194 struct list_head *p; 195 196 if (!dir_emit_dots(file, ctx)) 197 return 0; 198 199 if (ctx->pos == 2) 200 p = anchor; 201 else if (!list_empty(&cursor->d_child)) 202 p = &cursor->d_child; 203 else 204 return 0; 205 206 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 207 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 208 d_inode(next)->i_ino, dt_type(d_inode(next)))) 209 break; 210 ctx->pos++; 211 p = &next->d_child; 212 } 213 spin_lock(&dentry->d_lock); 214 if (next) 215 list_move_tail(&cursor->d_child, &next->d_child); 216 else 217 list_del_init(&cursor->d_child); 218 spin_unlock(&dentry->d_lock); 219 dput(next); 220 221 return 0; 222 } 223 EXPORT_SYMBOL(dcache_readdir); 224 225 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 226 { 227 return -EISDIR; 228 } 229 EXPORT_SYMBOL(generic_read_dir); 230 231 const struct file_operations simple_dir_operations = { 232 .open = dcache_dir_open, 233 .release = dcache_dir_close, 234 .llseek = dcache_dir_lseek, 235 .read = generic_read_dir, 236 .iterate_shared = dcache_readdir, 237 .fsync = noop_fsync, 238 }; 239 EXPORT_SYMBOL(simple_dir_operations); 240 241 const struct inode_operations simple_dir_inode_operations = { 242 .lookup = simple_lookup, 243 }; 244 EXPORT_SYMBOL(simple_dir_inode_operations); 245 246 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 247 { 248 struct dentry *child = NULL; 249 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs; 250 251 spin_lock(&parent->d_lock); 252 while ((p = p->next) != &parent->d_subdirs) { 253 struct dentry *d = container_of(p, struct dentry, d_child); 254 if (simple_positive(d)) { 255 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 256 if (simple_positive(d)) 257 child = dget_dlock(d); 258 spin_unlock(&d->d_lock); 259 if (likely(child)) 260 break; 261 } 262 } 263 spin_unlock(&parent->d_lock); 264 dput(prev); 265 return child; 266 } 267 268 void simple_recursive_removal(struct dentry *dentry, 269 void (*callback)(struct dentry *)) 270 { 271 struct dentry *this = dget(dentry); 272 while (true) { 273 struct dentry *victim = NULL, *child; 274 struct inode *inode = this->d_inode; 275 276 inode_lock(inode); 277 if (d_is_dir(this)) 278 inode->i_flags |= S_DEAD; 279 while ((child = find_next_child(this, victim)) == NULL) { 280 // kill and ascend 281 // update metadata while it's still locked 282 inode->i_ctime = current_time(inode); 283 clear_nlink(inode); 284 inode_unlock(inode); 285 victim = this; 286 this = this->d_parent; 287 inode = this->d_inode; 288 inode_lock(inode); 289 if (simple_positive(victim)) { 290 d_invalidate(victim); // avoid lost mounts 291 if (d_is_dir(victim)) 292 fsnotify_rmdir(inode, victim); 293 else 294 fsnotify_unlink(inode, victim); 295 if (callback) 296 callback(victim); 297 dput(victim); // unpin it 298 } 299 if (victim == dentry) { 300 inode->i_ctime = inode->i_mtime = 301 current_time(inode); 302 if (d_is_dir(dentry)) 303 drop_nlink(inode); 304 inode_unlock(inode); 305 dput(dentry); 306 return; 307 } 308 } 309 inode_unlock(inode); 310 this = child; 311 } 312 } 313 EXPORT_SYMBOL(simple_recursive_removal); 314 315 static const struct super_operations simple_super_operations = { 316 .statfs = simple_statfs, 317 }; 318 319 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 320 { 321 struct pseudo_fs_context *ctx = fc->fs_private; 322 struct inode *root; 323 324 s->s_maxbytes = MAX_LFS_FILESIZE; 325 s->s_blocksize = PAGE_SIZE; 326 s->s_blocksize_bits = PAGE_SHIFT; 327 s->s_magic = ctx->magic; 328 s->s_op = ctx->ops ?: &simple_super_operations; 329 s->s_xattr = ctx->xattr; 330 s->s_time_gran = 1; 331 root = new_inode(s); 332 if (!root) 333 return -ENOMEM; 334 335 /* 336 * since this is the first inode, make it number 1. New inodes created 337 * after this must take care not to collide with it (by passing 338 * max_reserved of 1 to iunique). 339 */ 340 root->i_ino = 1; 341 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 342 root->i_atime = root->i_mtime = root->i_ctime = current_time(root); 343 s->s_root = d_make_root(root); 344 if (!s->s_root) 345 return -ENOMEM; 346 s->s_d_op = ctx->dops; 347 return 0; 348 } 349 350 static int pseudo_fs_get_tree(struct fs_context *fc) 351 { 352 return get_tree_nodev(fc, pseudo_fs_fill_super); 353 } 354 355 static void pseudo_fs_free(struct fs_context *fc) 356 { 357 kfree(fc->fs_private); 358 } 359 360 static const struct fs_context_operations pseudo_fs_context_ops = { 361 .free = pseudo_fs_free, 362 .get_tree = pseudo_fs_get_tree, 363 }; 364 365 /* 366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 367 * will never be mountable) 368 */ 369 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 370 unsigned long magic) 371 { 372 struct pseudo_fs_context *ctx; 373 374 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 375 if (likely(ctx)) { 376 ctx->magic = magic; 377 fc->fs_private = ctx; 378 fc->ops = &pseudo_fs_context_ops; 379 fc->sb_flags |= SB_NOUSER; 380 fc->global = true; 381 } 382 return ctx; 383 } 384 EXPORT_SYMBOL(init_pseudo); 385 386 int simple_open(struct inode *inode, struct file *file) 387 { 388 if (inode->i_private) 389 file->private_data = inode->i_private; 390 return 0; 391 } 392 EXPORT_SYMBOL(simple_open); 393 394 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 395 { 396 struct inode *inode = d_inode(old_dentry); 397 398 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 399 inc_nlink(inode); 400 ihold(inode); 401 dget(dentry); 402 d_instantiate(dentry, inode); 403 return 0; 404 } 405 EXPORT_SYMBOL(simple_link); 406 407 int simple_empty(struct dentry *dentry) 408 { 409 struct dentry *child; 410 int ret = 0; 411 412 spin_lock(&dentry->d_lock); 413 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 414 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 415 if (simple_positive(child)) { 416 spin_unlock(&child->d_lock); 417 goto out; 418 } 419 spin_unlock(&child->d_lock); 420 } 421 ret = 1; 422 out: 423 spin_unlock(&dentry->d_lock); 424 return ret; 425 } 426 EXPORT_SYMBOL(simple_empty); 427 428 int simple_unlink(struct inode *dir, struct dentry *dentry) 429 { 430 struct inode *inode = d_inode(dentry); 431 432 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 433 drop_nlink(inode); 434 dput(dentry); 435 return 0; 436 } 437 EXPORT_SYMBOL(simple_unlink); 438 439 int simple_rmdir(struct inode *dir, struct dentry *dentry) 440 { 441 if (!simple_empty(dentry)) 442 return -ENOTEMPTY; 443 444 drop_nlink(d_inode(dentry)); 445 simple_unlink(dir, dentry); 446 drop_nlink(dir); 447 return 0; 448 } 449 EXPORT_SYMBOL(simple_rmdir); 450 451 int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir, 452 struct dentry *old_dentry, struct inode *new_dir, 453 struct dentry *new_dentry, unsigned int flags) 454 { 455 struct inode *inode = d_inode(old_dentry); 456 int they_are_dirs = d_is_dir(old_dentry); 457 458 if (flags & ~RENAME_NOREPLACE) 459 return -EINVAL; 460 461 if (!simple_empty(new_dentry)) 462 return -ENOTEMPTY; 463 464 if (d_really_is_positive(new_dentry)) { 465 simple_unlink(new_dir, new_dentry); 466 if (they_are_dirs) { 467 drop_nlink(d_inode(new_dentry)); 468 drop_nlink(old_dir); 469 } 470 } else if (they_are_dirs) { 471 drop_nlink(old_dir); 472 inc_nlink(new_dir); 473 } 474 475 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 476 new_dir->i_mtime = inode->i_ctime = current_time(old_dir); 477 478 return 0; 479 } 480 EXPORT_SYMBOL(simple_rename); 481 482 /** 483 * simple_setattr - setattr for simple filesystem 484 * @dentry: dentry 485 * @iattr: iattr structure 486 * 487 * Returns 0 on success, -error on failure. 488 * 489 * simple_setattr is a simple ->setattr implementation without a proper 490 * implementation of size changes. 491 * 492 * It can either be used for in-memory filesystems or special files 493 * on simple regular filesystems. Anything that needs to change on-disk 494 * or wire state on size changes needs its own setattr method. 495 */ 496 int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 497 struct iattr *iattr) 498 { 499 struct inode *inode = d_inode(dentry); 500 int error; 501 502 error = setattr_prepare(mnt_userns, dentry, iattr); 503 if (error) 504 return error; 505 506 if (iattr->ia_valid & ATTR_SIZE) 507 truncate_setsize(inode, iattr->ia_size); 508 setattr_copy(mnt_userns, inode, iattr); 509 mark_inode_dirty(inode); 510 return 0; 511 } 512 EXPORT_SYMBOL(simple_setattr); 513 514 int simple_readpage(struct file *file, struct page *page) 515 { 516 clear_highpage(page); 517 flush_dcache_page(page); 518 SetPageUptodate(page); 519 unlock_page(page); 520 return 0; 521 } 522 EXPORT_SYMBOL(simple_readpage); 523 524 int simple_write_begin(struct file *file, struct address_space *mapping, 525 loff_t pos, unsigned len, unsigned flags, 526 struct page **pagep, void **fsdata) 527 { 528 struct page *page; 529 pgoff_t index; 530 531 index = pos >> PAGE_SHIFT; 532 533 page = grab_cache_page_write_begin(mapping, index, flags); 534 if (!page) 535 return -ENOMEM; 536 537 *pagep = page; 538 539 if (!PageUptodate(page) && (len != PAGE_SIZE)) { 540 unsigned from = pos & (PAGE_SIZE - 1); 541 542 zero_user_segments(page, 0, from, from + len, PAGE_SIZE); 543 } 544 return 0; 545 } 546 EXPORT_SYMBOL(simple_write_begin); 547 548 /** 549 * simple_write_end - .write_end helper for non-block-device FSes 550 * @file: See .write_end of address_space_operations 551 * @mapping: " 552 * @pos: " 553 * @len: " 554 * @copied: " 555 * @page: " 556 * @fsdata: " 557 * 558 * simple_write_end does the minimum needed for updating a page after writing is 559 * done. It has the same API signature as the .write_end of 560 * address_space_operations vector. So it can just be set onto .write_end for 561 * FSes that don't need any other processing. i_mutex is assumed to be held. 562 * Block based filesystems should use generic_write_end(). 563 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 564 * is not called, so a filesystem that actually does store data in .write_inode 565 * should extend on what's done here with a call to mark_inode_dirty() in the 566 * case that i_size has changed. 567 * 568 * Use *ONLY* with simple_readpage() 569 */ 570 int simple_write_end(struct file *file, struct address_space *mapping, 571 loff_t pos, unsigned len, unsigned copied, 572 struct page *page, void *fsdata) 573 { 574 struct inode *inode = page->mapping->host; 575 loff_t last_pos = pos + copied; 576 577 /* zero the stale part of the page if we did a short copy */ 578 if (!PageUptodate(page)) { 579 if (copied < len) { 580 unsigned from = pos & (PAGE_SIZE - 1); 581 582 zero_user(page, from + copied, len - copied); 583 } 584 SetPageUptodate(page); 585 } 586 /* 587 * No need to use i_size_read() here, the i_size 588 * cannot change under us because we hold the i_mutex. 589 */ 590 if (last_pos > inode->i_size) 591 i_size_write(inode, last_pos); 592 593 set_page_dirty(page); 594 unlock_page(page); 595 put_page(page); 596 597 return copied; 598 } 599 EXPORT_SYMBOL(simple_write_end); 600 601 /* 602 * the inodes created here are not hashed. If you use iunique to generate 603 * unique inode values later for this filesystem, then you must take care 604 * to pass it an appropriate max_reserved value to avoid collisions. 605 */ 606 int simple_fill_super(struct super_block *s, unsigned long magic, 607 const struct tree_descr *files) 608 { 609 struct inode *inode; 610 struct dentry *root; 611 struct dentry *dentry; 612 int i; 613 614 s->s_blocksize = PAGE_SIZE; 615 s->s_blocksize_bits = PAGE_SHIFT; 616 s->s_magic = magic; 617 s->s_op = &simple_super_operations; 618 s->s_time_gran = 1; 619 620 inode = new_inode(s); 621 if (!inode) 622 return -ENOMEM; 623 /* 624 * because the root inode is 1, the files array must not contain an 625 * entry at index 1 626 */ 627 inode->i_ino = 1; 628 inode->i_mode = S_IFDIR | 0755; 629 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 630 inode->i_op = &simple_dir_inode_operations; 631 inode->i_fop = &simple_dir_operations; 632 set_nlink(inode, 2); 633 root = d_make_root(inode); 634 if (!root) 635 return -ENOMEM; 636 for (i = 0; !files->name || files->name[0]; i++, files++) { 637 if (!files->name) 638 continue; 639 640 /* warn if it tries to conflict with the root inode */ 641 if (unlikely(i == 1)) 642 printk(KERN_WARNING "%s: %s passed in a files array" 643 "with an index of 1!\n", __func__, 644 s->s_type->name); 645 646 dentry = d_alloc_name(root, files->name); 647 if (!dentry) 648 goto out; 649 inode = new_inode(s); 650 if (!inode) { 651 dput(dentry); 652 goto out; 653 } 654 inode->i_mode = S_IFREG | files->mode; 655 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 656 inode->i_fop = files->ops; 657 inode->i_ino = i; 658 d_add(dentry, inode); 659 } 660 s->s_root = root; 661 return 0; 662 out: 663 d_genocide(root); 664 shrink_dcache_parent(root); 665 dput(root); 666 return -ENOMEM; 667 } 668 EXPORT_SYMBOL(simple_fill_super); 669 670 static DEFINE_SPINLOCK(pin_fs_lock); 671 672 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 673 { 674 struct vfsmount *mnt = NULL; 675 spin_lock(&pin_fs_lock); 676 if (unlikely(!*mount)) { 677 spin_unlock(&pin_fs_lock); 678 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 679 if (IS_ERR(mnt)) 680 return PTR_ERR(mnt); 681 spin_lock(&pin_fs_lock); 682 if (!*mount) 683 *mount = mnt; 684 } 685 mntget(*mount); 686 ++*count; 687 spin_unlock(&pin_fs_lock); 688 mntput(mnt); 689 return 0; 690 } 691 EXPORT_SYMBOL(simple_pin_fs); 692 693 void simple_release_fs(struct vfsmount **mount, int *count) 694 { 695 struct vfsmount *mnt; 696 spin_lock(&pin_fs_lock); 697 mnt = *mount; 698 if (!--*count) 699 *mount = NULL; 700 spin_unlock(&pin_fs_lock); 701 mntput(mnt); 702 } 703 EXPORT_SYMBOL(simple_release_fs); 704 705 /** 706 * simple_read_from_buffer - copy data from the buffer to user space 707 * @to: the user space buffer to read to 708 * @count: the maximum number of bytes to read 709 * @ppos: the current position in the buffer 710 * @from: the buffer to read from 711 * @available: the size of the buffer 712 * 713 * The simple_read_from_buffer() function reads up to @count bytes from the 714 * buffer @from at offset @ppos into the user space address starting at @to. 715 * 716 * On success, the number of bytes read is returned and the offset @ppos is 717 * advanced by this number, or negative value is returned on error. 718 **/ 719 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 720 const void *from, size_t available) 721 { 722 loff_t pos = *ppos; 723 size_t ret; 724 725 if (pos < 0) 726 return -EINVAL; 727 if (pos >= available || !count) 728 return 0; 729 if (count > available - pos) 730 count = available - pos; 731 ret = copy_to_user(to, from + pos, count); 732 if (ret == count) 733 return -EFAULT; 734 count -= ret; 735 *ppos = pos + count; 736 return count; 737 } 738 EXPORT_SYMBOL(simple_read_from_buffer); 739 740 /** 741 * simple_write_to_buffer - copy data from user space to the buffer 742 * @to: the buffer to write to 743 * @available: the size of the buffer 744 * @ppos: the current position in the buffer 745 * @from: the user space buffer to read from 746 * @count: the maximum number of bytes to read 747 * 748 * The simple_write_to_buffer() function reads up to @count bytes from the user 749 * space address starting at @from into the buffer @to at offset @ppos. 750 * 751 * On success, the number of bytes written is returned and the offset @ppos is 752 * advanced by this number, or negative value is returned on error. 753 **/ 754 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 755 const void __user *from, size_t count) 756 { 757 loff_t pos = *ppos; 758 size_t res; 759 760 if (pos < 0) 761 return -EINVAL; 762 if (pos >= available || !count) 763 return 0; 764 if (count > available - pos) 765 count = available - pos; 766 res = copy_from_user(to + pos, from, count); 767 if (res == count) 768 return -EFAULT; 769 count -= res; 770 *ppos = pos + count; 771 return count; 772 } 773 EXPORT_SYMBOL(simple_write_to_buffer); 774 775 /** 776 * memory_read_from_buffer - copy data from the buffer 777 * @to: the kernel space buffer to read to 778 * @count: the maximum number of bytes to read 779 * @ppos: the current position in the buffer 780 * @from: the buffer to read from 781 * @available: the size of the buffer 782 * 783 * The memory_read_from_buffer() function reads up to @count bytes from the 784 * buffer @from at offset @ppos into the kernel space address starting at @to. 785 * 786 * On success, the number of bytes read is returned and the offset @ppos is 787 * advanced by this number, or negative value is returned on error. 788 **/ 789 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 790 const void *from, size_t available) 791 { 792 loff_t pos = *ppos; 793 794 if (pos < 0) 795 return -EINVAL; 796 if (pos >= available) 797 return 0; 798 if (count > available - pos) 799 count = available - pos; 800 memcpy(to, from + pos, count); 801 *ppos = pos + count; 802 803 return count; 804 } 805 EXPORT_SYMBOL(memory_read_from_buffer); 806 807 /* 808 * Transaction based IO. 809 * The file expects a single write which triggers the transaction, and then 810 * possibly a read which collects the result - which is stored in a 811 * file-local buffer. 812 */ 813 814 void simple_transaction_set(struct file *file, size_t n) 815 { 816 struct simple_transaction_argresp *ar = file->private_data; 817 818 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 819 820 /* 821 * The barrier ensures that ar->size will really remain zero until 822 * ar->data is ready for reading. 823 */ 824 smp_mb(); 825 ar->size = n; 826 } 827 EXPORT_SYMBOL(simple_transaction_set); 828 829 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 830 { 831 struct simple_transaction_argresp *ar; 832 static DEFINE_SPINLOCK(simple_transaction_lock); 833 834 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 835 return ERR_PTR(-EFBIG); 836 837 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 838 if (!ar) 839 return ERR_PTR(-ENOMEM); 840 841 spin_lock(&simple_transaction_lock); 842 843 /* only one write allowed per open */ 844 if (file->private_data) { 845 spin_unlock(&simple_transaction_lock); 846 free_page((unsigned long)ar); 847 return ERR_PTR(-EBUSY); 848 } 849 850 file->private_data = ar; 851 852 spin_unlock(&simple_transaction_lock); 853 854 if (copy_from_user(ar->data, buf, size)) 855 return ERR_PTR(-EFAULT); 856 857 return ar->data; 858 } 859 EXPORT_SYMBOL(simple_transaction_get); 860 861 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 862 { 863 struct simple_transaction_argresp *ar = file->private_data; 864 865 if (!ar) 866 return 0; 867 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 868 } 869 EXPORT_SYMBOL(simple_transaction_read); 870 871 int simple_transaction_release(struct inode *inode, struct file *file) 872 { 873 free_page((unsigned long)file->private_data); 874 return 0; 875 } 876 EXPORT_SYMBOL(simple_transaction_release); 877 878 /* Simple attribute files */ 879 880 struct simple_attr { 881 int (*get)(void *, u64 *); 882 int (*set)(void *, u64); 883 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 884 char set_buf[24]; 885 void *data; 886 const char *fmt; /* format for read operation */ 887 struct mutex mutex; /* protects access to these buffers */ 888 }; 889 890 /* simple_attr_open is called by an actual attribute open file operation 891 * to set the attribute specific access operations. */ 892 int simple_attr_open(struct inode *inode, struct file *file, 893 int (*get)(void *, u64 *), int (*set)(void *, u64), 894 const char *fmt) 895 { 896 struct simple_attr *attr; 897 898 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 899 if (!attr) 900 return -ENOMEM; 901 902 attr->get = get; 903 attr->set = set; 904 attr->data = inode->i_private; 905 attr->fmt = fmt; 906 mutex_init(&attr->mutex); 907 908 file->private_data = attr; 909 910 return nonseekable_open(inode, file); 911 } 912 EXPORT_SYMBOL_GPL(simple_attr_open); 913 914 int simple_attr_release(struct inode *inode, struct file *file) 915 { 916 kfree(file->private_data); 917 return 0; 918 } 919 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 920 921 /* read from the buffer that is filled with the get function */ 922 ssize_t simple_attr_read(struct file *file, char __user *buf, 923 size_t len, loff_t *ppos) 924 { 925 struct simple_attr *attr; 926 size_t size; 927 ssize_t ret; 928 929 attr = file->private_data; 930 931 if (!attr->get) 932 return -EACCES; 933 934 ret = mutex_lock_interruptible(&attr->mutex); 935 if (ret) 936 return ret; 937 938 if (*ppos && attr->get_buf[0]) { 939 /* continued read */ 940 size = strlen(attr->get_buf); 941 } else { 942 /* first read */ 943 u64 val; 944 ret = attr->get(attr->data, &val); 945 if (ret) 946 goto out; 947 948 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 949 attr->fmt, (unsigned long long)val); 950 } 951 952 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 953 out: 954 mutex_unlock(&attr->mutex); 955 return ret; 956 } 957 EXPORT_SYMBOL_GPL(simple_attr_read); 958 959 /* interpret the buffer as a number to call the set function with */ 960 ssize_t simple_attr_write(struct file *file, const char __user *buf, 961 size_t len, loff_t *ppos) 962 { 963 struct simple_attr *attr; 964 unsigned long long val; 965 size_t size; 966 ssize_t ret; 967 968 attr = file->private_data; 969 if (!attr->set) 970 return -EACCES; 971 972 ret = mutex_lock_interruptible(&attr->mutex); 973 if (ret) 974 return ret; 975 976 ret = -EFAULT; 977 size = min(sizeof(attr->set_buf) - 1, len); 978 if (copy_from_user(attr->set_buf, buf, size)) 979 goto out; 980 981 attr->set_buf[size] = '\0'; 982 ret = kstrtoull(attr->set_buf, 0, &val); 983 if (ret) 984 goto out; 985 ret = attr->set(attr->data, val); 986 if (ret == 0) 987 ret = len; /* on success, claim we got the whole input */ 988 out: 989 mutex_unlock(&attr->mutex); 990 return ret; 991 } 992 EXPORT_SYMBOL_GPL(simple_attr_write); 993 994 /** 995 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 996 * @sb: filesystem to do the file handle conversion on 997 * @fid: file handle to convert 998 * @fh_len: length of the file handle in bytes 999 * @fh_type: type of file handle 1000 * @get_inode: filesystem callback to retrieve inode 1001 * 1002 * This function decodes @fid as long as it has one of the well-known 1003 * Linux filehandle types and calls @get_inode on it to retrieve the 1004 * inode for the object specified in the file handle. 1005 */ 1006 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1007 int fh_len, int fh_type, struct inode *(*get_inode) 1008 (struct super_block *sb, u64 ino, u32 gen)) 1009 { 1010 struct inode *inode = NULL; 1011 1012 if (fh_len < 2) 1013 return NULL; 1014 1015 switch (fh_type) { 1016 case FILEID_INO32_GEN: 1017 case FILEID_INO32_GEN_PARENT: 1018 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1019 break; 1020 } 1021 1022 return d_obtain_alias(inode); 1023 } 1024 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1025 1026 /** 1027 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1028 * @sb: filesystem to do the file handle conversion on 1029 * @fid: file handle to convert 1030 * @fh_len: length of the file handle in bytes 1031 * @fh_type: type of file handle 1032 * @get_inode: filesystem callback to retrieve inode 1033 * 1034 * This function decodes @fid as long as it has one of the well-known 1035 * Linux filehandle types and calls @get_inode on it to retrieve the 1036 * inode for the _parent_ object specified in the file handle if it 1037 * is specified in the file handle, or NULL otherwise. 1038 */ 1039 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1040 int fh_len, int fh_type, struct inode *(*get_inode) 1041 (struct super_block *sb, u64 ino, u32 gen)) 1042 { 1043 struct inode *inode = NULL; 1044 1045 if (fh_len <= 2) 1046 return NULL; 1047 1048 switch (fh_type) { 1049 case FILEID_INO32_GEN_PARENT: 1050 inode = get_inode(sb, fid->i32.parent_ino, 1051 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1052 break; 1053 } 1054 1055 return d_obtain_alias(inode); 1056 } 1057 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1058 1059 /** 1060 * __generic_file_fsync - generic fsync implementation for simple filesystems 1061 * 1062 * @file: file to synchronize 1063 * @start: start offset in bytes 1064 * @end: end offset in bytes (inclusive) 1065 * @datasync: only synchronize essential metadata if true 1066 * 1067 * This is a generic implementation of the fsync method for simple 1068 * filesystems which track all non-inode metadata in the buffers list 1069 * hanging off the address_space structure. 1070 */ 1071 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1072 int datasync) 1073 { 1074 struct inode *inode = file->f_mapping->host; 1075 int err; 1076 int ret; 1077 1078 err = file_write_and_wait_range(file, start, end); 1079 if (err) 1080 return err; 1081 1082 inode_lock(inode); 1083 ret = sync_mapping_buffers(inode->i_mapping); 1084 if (!(inode->i_state & I_DIRTY_ALL)) 1085 goto out; 1086 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1087 goto out; 1088 1089 err = sync_inode_metadata(inode, 1); 1090 if (ret == 0) 1091 ret = err; 1092 1093 out: 1094 inode_unlock(inode); 1095 /* check and advance again to catch errors after syncing out buffers */ 1096 err = file_check_and_advance_wb_err(file); 1097 if (ret == 0) 1098 ret = err; 1099 return ret; 1100 } 1101 EXPORT_SYMBOL(__generic_file_fsync); 1102 1103 /** 1104 * generic_file_fsync - generic fsync implementation for simple filesystems 1105 * with flush 1106 * @file: file to synchronize 1107 * @start: start offset in bytes 1108 * @end: end offset in bytes (inclusive) 1109 * @datasync: only synchronize essential metadata if true 1110 * 1111 */ 1112 1113 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1114 int datasync) 1115 { 1116 struct inode *inode = file->f_mapping->host; 1117 int err; 1118 1119 err = __generic_file_fsync(file, start, end, datasync); 1120 if (err) 1121 return err; 1122 return blkdev_issue_flush(inode->i_sb->s_bdev); 1123 } 1124 EXPORT_SYMBOL(generic_file_fsync); 1125 1126 /** 1127 * generic_check_addressable - Check addressability of file system 1128 * @blocksize_bits: log of file system block size 1129 * @num_blocks: number of blocks in file system 1130 * 1131 * Determine whether a file system with @num_blocks blocks (and a 1132 * block size of 2**@blocksize_bits) is addressable by the sector_t 1133 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1134 */ 1135 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1136 { 1137 u64 last_fs_block = num_blocks - 1; 1138 u64 last_fs_page = 1139 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1140 1141 if (unlikely(num_blocks == 0)) 1142 return 0; 1143 1144 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1145 return -EINVAL; 1146 1147 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1148 (last_fs_page > (pgoff_t)(~0ULL))) { 1149 return -EFBIG; 1150 } 1151 return 0; 1152 } 1153 EXPORT_SYMBOL(generic_check_addressable); 1154 1155 /* 1156 * No-op implementation of ->fsync for in-memory filesystems. 1157 */ 1158 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1159 { 1160 return 0; 1161 } 1162 EXPORT_SYMBOL(noop_fsync); 1163 1164 int noop_set_page_dirty(struct page *page) 1165 { 1166 /* 1167 * Unlike __set_page_dirty_no_writeback that handles dirty page 1168 * tracking in the page object, dax does all dirty tracking in 1169 * the inode address_space in response to mkwrite faults. In the 1170 * dax case we only need to worry about potentially dirty CPU 1171 * caches, not dirty page cache pages to write back. 1172 * 1173 * This callback is defined to prevent fallback to 1174 * __set_page_dirty_buffers() in set_page_dirty(). 1175 */ 1176 return 0; 1177 } 1178 EXPORT_SYMBOL_GPL(noop_set_page_dirty); 1179 1180 void noop_invalidatepage(struct page *page, unsigned int offset, 1181 unsigned int length) 1182 { 1183 /* 1184 * There is no page cache to invalidate in the dax case, however 1185 * we need this callback defined to prevent falling back to 1186 * block_invalidatepage() in do_invalidatepage(). 1187 */ 1188 } 1189 EXPORT_SYMBOL_GPL(noop_invalidatepage); 1190 1191 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1192 { 1193 /* 1194 * iomap based filesystems support direct I/O without need for 1195 * this callback. However, it still needs to be set in 1196 * inode->a_ops so that open/fcntl know that direct I/O is 1197 * generally supported. 1198 */ 1199 return -EINVAL; 1200 } 1201 EXPORT_SYMBOL_GPL(noop_direct_IO); 1202 1203 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1204 void kfree_link(void *p) 1205 { 1206 kfree(p); 1207 } 1208 EXPORT_SYMBOL(kfree_link); 1209 1210 /* 1211 * nop .set_page_dirty method so that people can use .page_mkwrite on 1212 * anon inodes. 1213 */ 1214 static int anon_set_page_dirty(struct page *page) 1215 { 1216 return 0; 1217 }; 1218 1219 struct inode *alloc_anon_inode(struct super_block *s) 1220 { 1221 static const struct address_space_operations anon_aops = { 1222 .set_page_dirty = anon_set_page_dirty, 1223 }; 1224 struct inode *inode = new_inode_pseudo(s); 1225 1226 if (!inode) 1227 return ERR_PTR(-ENOMEM); 1228 1229 inode->i_ino = get_next_ino(); 1230 inode->i_mapping->a_ops = &anon_aops; 1231 1232 /* 1233 * Mark the inode dirty from the very beginning, 1234 * that way it will never be moved to the dirty 1235 * list because mark_inode_dirty() will think 1236 * that it already _is_ on the dirty list. 1237 */ 1238 inode->i_state = I_DIRTY; 1239 inode->i_mode = S_IRUSR | S_IWUSR; 1240 inode->i_uid = current_fsuid(); 1241 inode->i_gid = current_fsgid(); 1242 inode->i_flags |= S_PRIVATE; 1243 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 1244 return inode; 1245 } 1246 EXPORT_SYMBOL(alloc_anon_inode); 1247 1248 /** 1249 * simple_nosetlease - generic helper for prohibiting leases 1250 * @filp: file pointer 1251 * @arg: type of lease to obtain 1252 * @flp: new lease supplied for insertion 1253 * @priv: private data for lm_setup operation 1254 * 1255 * Generic helper for filesystems that do not wish to allow leases to be set. 1256 * All arguments are ignored and it just returns -EINVAL. 1257 */ 1258 int 1259 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp, 1260 void **priv) 1261 { 1262 return -EINVAL; 1263 } 1264 EXPORT_SYMBOL(simple_nosetlease); 1265 1266 /** 1267 * simple_get_link - generic helper to get the target of "fast" symlinks 1268 * @dentry: not used here 1269 * @inode: the symlink inode 1270 * @done: not used here 1271 * 1272 * Generic helper for filesystems to use for symlink inodes where a pointer to 1273 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1274 * since as an optimization the path lookup code uses any non-NULL ->i_link 1275 * directly, without calling ->get_link(). But ->get_link() still must be set, 1276 * to mark the inode_operations as being for a symlink. 1277 * 1278 * Return: the symlink target 1279 */ 1280 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1281 struct delayed_call *done) 1282 { 1283 return inode->i_link; 1284 } 1285 EXPORT_SYMBOL(simple_get_link); 1286 1287 const struct inode_operations simple_symlink_inode_operations = { 1288 .get_link = simple_get_link, 1289 }; 1290 EXPORT_SYMBOL(simple_symlink_inode_operations); 1291 1292 /* 1293 * Operations for a permanently empty directory. 1294 */ 1295 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1296 { 1297 return ERR_PTR(-ENOENT); 1298 } 1299 1300 static int empty_dir_getattr(struct user_namespace *mnt_userns, 1301 const struct path *path, struct kstat *stat, 1302 u32 request_mask, unsigned int query_flags) 1303 { 1304 struct inode *inode = d_inode(path->dentry); 1305 generic_fillattr(&init_user_ns, inode, stat); 1306 return 0; 1307 } 1308 1309 static int empty_dir_setattr(struct user_namespace *mnt_userns, 1310 struct dentry *dentry, struct iattr *attr) 1311 { 1312 return -EPERM; 1313 } 1314 1315 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1316 { 1317 return -EOPNOTSUPP; 1318 } 1319 1320 static const struct inode_operations empty_dir_inode_operations = { 1321 .lookup = empty_dir_lookup, 1322 .permission = generic_permission, 1323 .setattr = empty_dir_setattr, 1324 .getattr = empty_dir_getattr, 1325 .listxattr = empty_dir_listxattr, 1326 }; 1327 1328 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1329 { 1330 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1331 return generic_file_llseek_size(file, offset, whence, 2, 2); 1332 } 1333 1334 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1335 { 1336 dir_emit_dots(file, ctx); 1337 return 0; 1338 } 1339 1340 static const struct file_operations empty_dir_operations = { 1341 .llseek = empty_dir_llseek, 1342 .read = generic_read_dir, 1343 .iterate_shared = empty_dir_readdir, 1344 .fsync = noop_fsync, 1345 }; 1346 1347 1348 void make_empty_dir_inode(struct inode *inode) 1349 { 1350 set_nlink(inode, 2); 1351 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1352 inode->i_uid = GLOBAL_ROOT_UID; 1353 inode->i_gid = GLOBAL_ROOT_GID; 1354 inode->i_rdev = 0; 1355 inode->i_size = 0; 1356 inode->i_blkbits = PAGE_SHIFT; 1357 inode->i_blocks = 0; 1358 1359 inode->i_op = &empty_dir_inode_operations; 1360 inode->i_opflags &= ~IOP_XATTR; 1361 inode->i_fop = &empty_dir_operations; 1362 } 1363 1364 bool is_empty_dir_inode(struct inode *inode) 1365 { 1366 return (inode->i_fop == &empty_dir_operations) && 1367 (inode->i_op == &empty_dir_inode_operations); 1368 } 1369 1370 #ifdef CONFIG_UNICODE 1371 /* 1372 * Determine if the name of a dentry should be casefolded. 1373 * 1374 * Return: if names will need casefolding 1375 */ 1376 static bool needs_casefold(const struct inode *dir) 1377 { 1378 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding; 1379 } 1380 1381 /** 1382 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1383 * @dentry: dentry whose name we are checking against 1384 * @len: len of name of dentry 1385 * @str: str pointer to name of dentry 1386 * @name: Name to compare against 1387 * 1388 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1389 */ 1390 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1391 const char *str, const struct qstr *name) 1392 { 1393 const struct dentry *parent = READ_ONCE(dentry->d_parent); 1394 const struct inode *dir = READ_ONCE(parent->d_inode); 1395 const struct super_block *sb = dentry->d_sb; 1396 const struct unicode_map *um = sb->s_encoding; 1397 struct qstr qstr = QSTR_INIT(str, len); 1398 char strbuf[DNAME_INLINE_LEN]; 1399 int ret; 1400 1401 if (!dir || !needs_casefold(dir)) 1402 goto fallback; 1403 /* 1404 * If the dentry name is stored in-line, then it may be concurrently 1405 * modified by a rename. If this happens, the VFS will eventually retry 1406 * the lookup, so it doesn't matter what ->d_compare() returns. 1407 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1408 * string. Therefore, we have to copy the name into a temporary buffer. 1409 */ 1410 if (len <= DNAME_INLINE_LEN - 1) { 1411 memcpy(strbuf, str, len); 1412 strbuf[len] = 0; 1413 qstr.name = strbuf; 1414 /* prevent compiler from optimizing out the temporary buffer */ 1415 barrier(); 1416 } 1417 ret = utf8_strncasecmp(um, name, &qstr); 1418 if (ret >= 0) 1419 return ret; 1420 1421 if (sb_has_strict_encoding(sb)) 1422 return -EINVAL; 1423 fallback: 1424 if (len != name->len) 1425 return 1; 1426 return !!memcmp(str, name->name, len); 1427 } 1428 1429 /** 1430 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1431 * @dentry: dentry of the parent directory 1432 * @str: qstr of name whose hash we should fill in 1433 * 1434 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1435 */ 1436 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1437 { 1438 const struct inode *dir = READ_ONCE(dentry->d_inode); 1439 struct super_block *sb = dentry->d_sb; 1440 const struct unicode_map *um = sb->s_encoding; 1441 int ret = 0; 1442 1443 if (!dir || !needs_casefold(dir)) 1444 return 0; 1445 1446 ret = utf8_casefold_hash(um, dentry, str); 1447 if (ret < 0 && sb_has_strict_encoding(sb)) 1448 return -EINVAL; 1449 return 0; 1450 } 1451 1452 static const struct dentry_operations generic_ci_dentry_ops = { 1453 .d_hash = generic_ci_d_hash, 1454 .d_compare = generic_ci_d_compare, 1455 }; 1456 #endif 1457 1458 #ifdef CONFIG_FS_ENCRYPTION 1459 static const struct dentry_operations generic_encrypted_dentry_ops = { 1460 .d_revalidate = fscrypt_d_revalidate, 1461 }; 1462 #endif 1463 1464 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE) 1465 static const struct dentry_operations generic_encrypted_ci_dentry_ops = { 1466 .d_hash = generic_ci_d_hash, 1467 .d_compare = generic_ci_d_compare, 1468 .d_revalidate = fscrypt_d_revalidate, 1469 }; 1470 #endif 1471 1472 /** 1473 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry 1474 * @dentry: dentry to set ops on 1475 * 1476 * Casefolded directories need d_hash and d_compare set, so that the dentries 1477 * contained in them are handled case-insensitively. Note that these operations 1478 * are needed on the parent directory rather than on the dentries in it, and 1479 * while the casefolding flag can be toggled on and off on an empty directory, 1480 * dentry_operations can't be changed later. As a result, if the filesystem has 1481 * casefolding support enabled at all, we have to give all dentries the 1482 * casefolding operations even if their inode doesn't have the casefolding flag 1483 * currently (and thus the casefolding ops would be no-ops for now). 1484 * 1485 * Encryption works differently in that the only dentry operation it needs is 1486 * d_revalidate, which it only needs on dentries that have the no-key name flag. 1487 * The no-key flag can't be set "later", so we don't have to worry about that. 1488 * 1489 * Finally, to maximize compatibility with overlayfs (which isn't compatible 1490 * with certain dentry operations) and to avoid taking an unnecessary 1491 * performance hit, we use custom dentry_operations for each possible 1492 * combination rather than always installing all operations. 1493 */ 1494 void generic_set_encrypted_ci_d_ops(struct dentry *dentry) 1495 { 1496 #ifdef CONFIG_FS_ENCRYPTION 1497 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME; 1498 #endif 1499 #ifdef CONFIG_UNICODE 1500 bool needs_ci_ops = dentry->d_sb->s_encoding; 1501 #endif 1502 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE) 1503 if (needs_encrypt_ops && needs_ci_ops) { 1504 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops); 1505 return; 1506 } 1507 #endif 1508 #ifdef CONFIG_FS_ENCRYPTION 1509 if (needs_encrypt_ops) { 1510 d_set_d_op(dentry, &generic_encrypted_dentry_ops); 1511 return; 1512 } 1513 #endif 1514 #ifdef CONFIG_UNICODE 1515 if (needs_ci_ops) { 1516 d_set_d_op(dentry, &generic_ci_dentry_ops); 1517 return; 1518 } 1519 #endif 1520 } 1521 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops); 1522