1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/module.h> 7 #include <linux/pagemap.h> 8 #include <linux/mount.h> 9 #include <linux/vfs.h> 10 #include <linux/mutex.h> 11 #include <linux/exportfs.h> 12 13 #include <asm/uaccess.h> 14 15 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 16 struct kstat *stat) 17 { 18 struct inode *inode = dentry->d_inode; 19 generic_fillattr(inode, stat); 20 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9); 21 return 0; 22 } 23 24 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 25 { 26 buf->f_type = dentry->d_sb->s_magic; 27 buf->f_bsize = PAGE_CACHE_SIZE; 28 buf->f_namelen = NAME_MAX; 29 return 0; 30 } 31 32 /* 33 * Retaining negative dentries for an in-memory filesystem just wastes 34 * memory and lookup time: arrange for them to be deleted immediately. 35 */ 36 static int simple_delete_dentry(struct dentry *dentry) 37 { 38 return 1; 39 } 40 41 /* 42 * Lookup the data. This is trivial - if the dentry didn't already 43 * exist, we know it is negative. Set d_op to delete negative dentries. 44 */ 45 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd) 46 { 47 static const struct dentry_operations simple_dentry_operations = { 48 .d_delete = simple_delete_dentry, 49 }; 50 51 if (dentry->d_name.len > NAME_MAX) 52 return ERR_PTR(-ENAMETOOLONG); 53 dentry->d_op = &simple_dentry_operations; 54 d_add(dentry, NULL); 55 return NULL; 56 } 57 58 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync) 59 { 60 return 0; 61 } 62 63 int dcache_dir_open(struct inode *inode, struct file *file) 64 { 65 static struct qstr cursor_name = {.len = 1, .name = "."}; 66 67 file->private_data = d_alloc(file->f_path.dentry, &cursor_name); 68 69 return file->private_data ? 0 : -ENOMEM; 70 } 71 72 int dcache_dir_close(struct inode *inode, struct file *file) 73 { 74 dput(file->private_data); 75 return 0; 76 } 77 78 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin) 79 { 80 mutex_lock(&file->f_path.dentry->d_inode->i_mutex); 81 switch (origin) { 82 case 1: 83 offset += file->f_pos; 84 case 0: 85 if (offset >= 0) 86 break; 87 default: 88 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 89 return -EINVAL; 90 } 91 if (offset != file->f_pos) { 92 file->f_pos = offset; 93 if (file->f_pos >= 2) { 94 struct list_head *p; 95 struct dentry *cursor = file->private_data; 96 loff_t n = file->f_pos - 2; 97 98 spin_lock(&dcache_lock); 99 list_del(&cursor->d_u.d_child); 100 p = file->f_path.dentry->d_subdirs.next; 101 while (n && p != &file->f_path.dentry->d_subdirs) { 102 struct dentry *next; 103 next = list_entry(p, struct dentry, d_u.d_child); 104 if (!d_unhashed(next) && next->d_inode) 105 n--; 106 p = p->next; 107 } 108 list_add_tail(&cursor->d_u.d_child, p); 109 spin_unlock(&dcache_lock); 110 } 111 } 112 mutex_unlock(&file->f_path.dentry->d_inode->i_mutex); 113 return offset; 114 } 115 116 /* Relationship between i_mode and the DT_xxx types */ 117 static inline unsigned char dt_type(struct inode *inode) 118 { 119 return (inode->i_mode >> 12) & 15; 120 } 121 122 /* 123 * Directory is locked and all positive dentries in it are safe, since 124 * for ramfs-type trees they can't go away without unlink() or rmdir(), 125 * both impossible due to the lock on directory. 126 */ 127 128 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir) 129 { 130 struct dentry *dentry = filp->f_path.dentry; 131 struct dentry *cursor = filp->private_data; 132 struct list_head *p, *q = &cursor->d_u.d_child; 133 ino_t ino; 134 int i = filp->f_pos; 135 136 switch (i) { 137 case 0: 138 ino = dentry->d_inode->i_ino; 139 if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0) 140 break; 141 filp->f_pos++; 142 i++; 143 /* fallthrough */ 144 case 1: 145 ino = parent_ino(dentry); 146 if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0) 147 break; 148 filp->f_pos++; 149 i++; 150 /* fallthrough */ 151 default: 152 spin_lock(&dcache_lock); 153 if (filp->f_pos == 2) 154 list_move(q, &dentry->d_subdirs); 155 156 for (p=q->next; p != &dentry->d_subdirs; p=p->next) { 157 struct dentry *next; 158 next = list_entry(p, struct dentry, d_u.d_child); 159 if (d_unhashed(next) || !next->d_inode) 160 continue; 161 162 spin_unlock(&dcache_lock); 163 if (filldir(dirent, next->d_name.name, 164 next->d_name.len, filp->f_pos, 165 next->d_inode->i_ino, 166 dt_type(next->d_inode)) < 0) 167 return 0; 168 spin_lock(&dcache_lock); 169 /* next is still alive */ 170 list_move(q, p); 171 p = q; 172 filp->f_pos++; 173 } 174 spin_unlock(&dcache_lock); 175 } 176 return 0; 177 } 178 179 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 180 { 181 return -EISDIR; 182 } 183 184 const struct file_operations simple_dir_operations = { 185 .open = dcache_dir_open, 186 .release = dcache_dir_close, 187 .llseek = dcache_dir_lseek, 188 .read = generic_read_dir, 189 .readdir = dcache_readdir, 190 .fsync = simple_sync_file, 191 }; 192 193 const struct inode_operations simple_dir_inode_operations = { 194 .lookup = simple_lookup, 195 }; 196 197 static const struct super_operations simple_super_operations = { 198 .statfs = simple_statfs, 199 }; 200 201 /* 202 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 203 * will never be mountable) 204 */ 205 int get_sb_pseudo(struct file_system_type *fs_type, char *name, 206 const struct super_operations *ops, unsigned long magic, 207 struct vfsmount *mnt) 208 { 209 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL); 210 struct dentry *dentry; 211 struct inode *root; 212 struct qstr d_name = {.name = name, .len = strlen(name)}; 213 214 if (IS_ERR(s)) 215 return PTR_ERR(s); 216 217 s->s_flags = MS_NOUSER; 218 s->s_maxbytes = ~0ULL; 219 s->s_blocksize = PAGE_SIZE; 220 s->s_blocksize_bits = PAGE_SHIFT; 221 s->s_magic = magic; 222 s->s_op = ops ? ops : &simple_super_operations; 223 s->s_time_gran = 1; 224 root = new_inode(s); 225 if (!root) 226 goto Enomem; 227 /* 228 * since this is the first inode, make it number 1. New inodes created 229 * after this must take care not to collide with it (by passing 230 * max_reserved of 1 to iunique). 231 */ 232 root->i_ino = 1; 233 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 234 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 235 dentry = d_alloc(NULL, &d_name); 236 if (!dentry) { 237 iput(root); 238 goto Enomem; 239 } 240 dentry->d_sb = s; 241 dentry->d_parent = dentry; 242 d_instantiate(dentry, root); 243 s->s_root = dentry; 244 s->s_flags |= MS_ACTIVE; 245 simple_set_mnt(mnt, s); 246 return 0; 247 248 Enomem: 249 up_write(&s->s_umount); 250 deactivate_super(s); 251 return -ENOMEM; 252 } 253 254 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 255 { 256 struct inode *inode = old_dentry->d_inode; 257 258 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 259 inc_nlink(inode); 260 atomic_inc(&inode->i_count); 261 dget(dentry); 262 d_instantiate(dentry, inode); 263 return 0; 264 } 265 266 static inline int simple_positive(struct dentry *dentry) 267 { 268 return dentry->d_inode && !d_unhashed(dentry); 269 } 270 271 int simple_empty(struct dentry *dentry) 272 { 273 struct dentry *child; 274 int ret = 0; 275 276 spin_lock(&dcache_lock); 277 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) 278 if (simple_positive(child)) 279 goto out; 280 ret = 1; 281 out: 282 spin_unlock(&dcache_lock); 283 return ret; 284 } 285 286 int simple_unlink(struct inode *dir, struct dentry *dentry) 287 { 288 struct inode *inode = dentry->d_inode; 289 290 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 291 drop_nlink(inode); 292 dput(dentry); 293 return 0; 294 } 295 296 int simple_rmdir(struct inode *dir, struct dentry *dentry) 297 { 298 if (!simple_empty(dentry)) 299 return -ENOTEMPTY; 300 301 drop_nlink(dentry->d_inode); 302 simple_unlink(dir, dentry); 303 drop_nlink(dir); 304 return 0; 305 } 306 307 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 308 struct inode *new_dir, struct dentry *new_dentry) 309 { 310 struct inode *inode = old_dentry->d_inode; 311 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode); 312 313 if (!simple_empty(new_dentry)) 314 return -ENOTEMPTY; 315 316 if (new_dentry->d_inode) { 317 simple_unlink(new_dir, new_dentry); 318 if (they_are_dirs) 319 drop_nlink(old_dir); 320 } else if (they_are_dirs) { 321 drop_nlink(old_dir); 322 inc_nlink(new_dir); 323 } 324 325 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 326 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 327 328 return 0; 329 } 330 331 int simple_readpage(struct file *file, struct page *page) 332 { 333 clear_highpage(page); 334 flush_dcache_page(page); 335 SetPageUptodate(page); 336 unlock_page(page); 337 return 0; 338 } 339 340 int simple_prepare_write(struct file *file, struct page *page, 341 unsigned from, unsigned to) 342 { 343 if (!PageUptodate(page)) { 344 if (to - from != PAGE_CACHE_SIZE) 345 zero_user_segments(page, 346 0, from, 347 to, PAGE_CACHE_SIZE); 348 } 349 return 0; 350 } 351 352 int simple_write_begin(struct file *file, struct address_space *mapping, 353 loff_t pos, unsigned len, unsigned flags, 354 struct page **pagep, void **fsdata) 355 { 356 struct page *page; 357 pgoff_t index; 358 unsigned from; 359 360 index = pos >> PAGE_CACHE_SHIFT; 361 from = pos & (PAGE_CACHE_SIZE - 1); 362 363 page = grab_cache_page_write_begin(mapping, index, flags); 364 if (!page) 365 return -ENOMEM; 366 367 *pagep = page; 368 369 return simple_prepare_write(file, page, from, from+len); 370 } 371 372 static int simple_commit_write(struct file *file, struct page *page, 373 unsigned from, unsigned to) 374 { 375 struct inode *inode = page->mapping->host; 376 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to; 377 378 if (!PageUptodate(page)) 379 SetPageUptodate(page); 380 /* 381 * No need to use i_size_read() here, the i_size 382 * cannot change under us because we hold the i_mutex. 383 */ 384 if (pos > inode->i_size) 385 i_size_write(inode, pos); 386 set_page_dirty(page); 387 return 0; 388 } 389 390 int simple_write_end(struct file *file, struct address_space *mapping, 391 loff_t pos, unsigned len, unsigned copied, 392 struct page *page, void *fsdata) 393 { 394 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 395 396 /* zero the stale part of the page if we did a short copy */ 397 if (copied < len) { 398 void *kaddr = kmap_atomic(page, KM_USER0); 399 memset(kaddr + from + copied, 0, len - copied); 400 flush_dcache_page(page); 401 kunmap_atomic(kaddr, KM_USER0); 402 } 403 404 simple_commit_write(file, page, from, from+copied); 405 406 unlock_page(page); 407 page_cache_release(page); 408 409 return copied; 410 } 411 412 /* 413 * the inodes created here are not hashed. If you use iunique to generate 414 * unique inode values later for this filesystem, then you must take care 415 * to pass it an appropriate max_reserved value to avoid collisions. 416 */ 417 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files) 418 { 419 struct inode *inode; 420 struct dentry *root; 421 struct dentry *dentry; 422 int i; 423 424 s->s_blocksize = PAGE_CACHE_SIZE; 425 s->s_blocksize_bits = PAGE_CACHE_SHIFT; 426 s->s_magic = magic; 427 s->s_op = &simple_super_operations; 428 s->s_time_gran = 1; 429 430 inode = new_inode(s); 431 if (!inode) 432 return -ENOMEM; 433 /* 434 * because the root inode is 1, the files array must not contain an 435 * entry at index 1 436 */ 437 inode->i_ino = 1; 438 inode->i_mode = S_IFDIR | 0755; 439 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 440 inode->i_op = &simple_dir_inode_operations; 441 inode->i_fop = &simple_dir_operations; 442 inode->i_nlink = 2; 443 root = d_alloc_root(inode); 444 if (!root) { 445 iput(inode); 446 return -ENOMEM; 447 } 448 for (i = 0; !files->name || files->name[0]; i++, files++) { 449 if (!files->name) 450 continue; 451 452 /* warn if it tries to conflict with the root inode */ 453 if (unlikely(i == 1)) 454 printk(KERN_WARNING "%s: %s passed in a files array" 455 "with an index of 1!\n", __func__, 456 s->s_type->name); 457 458 dentry = d_alloc_name(root, files->name); 459 if (!dentry) 460 goto out; 461 inode = new_inode(s); 462 if (!inode) 463 goto out; 464 inode->i_mode = S_IFREG | files->mode; 465 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 466 inode->i_fop = files->ops; 467 inode->i_ino = i; 468 d_add(dentry, inode); 469 } 470 s->s_root = root; 471 return 0; 472 out: 473 d_genocide(root); 474 dput(root); 475 return -ENOMEM; 476 } 477 478 static DEFINE_SPINLOCK(pin_fs_lock); 479 480 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 481 { 482 struct vfsmount *mnt = NULL; 483 spin_lock(&pin_fs_lock); 484 if (unlikely(!*mount)) { 485 spin_unlock(&pin_fs_lock); 486 mnt = vfs_kern_mount(type, 0, type->name, NULL); 487 if (IS_ERR(mnt)) 488 return PTR_ERR(mnt); 489 spin_lock(&pin_fs_lock); 490 if (!*mount) 491 *mount = mnt; 492 } 493 mntget(*mount); 494 ++*count; 495 spin_unlock(&pin_fs_lock); 496 mntput(mnt); 497 return 0; 498 } 499 500 void simple_release_fs(struct vfsmount **mount, int *count) 501 { 502 struct vfsmount *mnt; 503 spin_lock(&pin_fs_lock); 504 mnt = *mount; 505 if (!--*count) 506 *mount = NULL; 507 spin_unlock(&pin_fs_lock); 508 mntput(mnt); 509 } 510 511 /** 512 * simple_read_from_buffer - copy data from the buffer to user space 513 * @to: the user space buffer to read to 514 * @count: the maximum number of bytes to read 515 * @ppos: the current position in the buffer 516 * @from: the buffer to read from 517 * @available: the size of the buffer 518 * 519 * The simple_read_from_buffer() function reads up to @count bytes from the 520 * buffer @from at offset @ppos into the user space address starting at @to. 521 * 522 * On success, the number of bytes read is returned and the offset @ppos is 523 * advanced by this number, or negative value is returned on error. 524 **/ 525 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 526 const void *from, size_t available) 527 { 528 loff_t pos = *ppos; 529 if (pos < 0) 530 return -EINVAL; 531 if (pos >= available) 532 return 0; 533 if (count > available - pos) 534 count = available - pos; 535 if (copy_to_user(to, from + pos, count)) 536 return -EFAULT; 537 *ppos = pos + count; 538 return count; 539 } 540 541 /** 542 * memory_read_from_buffer - copy data from the buffer 543 * @to: the kernel space buffer to read to 544 * @count: the maximum number of bytes to read 545 * @ppos: the current position in the buffer 546 * @from: the buffer to read from 547 * @available: the size of the buffer 548 * 549 * The memory_read_from_buffer() function reads up to @count bytes from the 550 * buffer @from at offset @ppos into the kernel space address starting at @to. 551 * 552 * On success, the number of bytes read is returned and the offset @ppos is 553 * advanced by this number, or negative value is returned on error. 554 **/ 555 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 556 const void *from, size_t available) 557 { 558 loff_t pos = *ppos; 559 560 if (pos < 0) 561 return -EINVAL; 562 if (pos >= available) 563 return 0; 564 if (count > available - pos) 565 count = available - pos; 566 memcpy(to, from + pos, count); 567 *ppos = pos + count; 568 569 return count; 570 } 571 572 /* 573 * Transaction based IO. 574 * The file expects a single write which triggers the transaction, and then 575 * possibly a read which collects the result - which is stored in a 576 * file-local buffer. 577 */ 578 579 void simple_transaction_set(struct file *file, size_t n) 580 { 581 struct simple_transaction_argresp *ar = file->private_data; 582 583 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 584 585 /* 586 * The barrier ensures that ar->size will really remain zero until 587 * ar->data is ready for reading. 588 */ 589 smp_mb(); 590 ar->size = n; 591 } 592 593 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 594 { 595 struct simple_transaction_argresp *ar; 596 static DEFINE_SPINLOCK(simple_transaction_lock); 597 598 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 599 return ERR_PTR(-EFBIG); 600 601 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 602 if (!ar) 603 return ERR_PTR(-ENOMEM); 604 605 spin_lock(&simple_transaction_lock); 606 607 /* only one write allowed per open */ 608 if (file->private_data) { 609 spin_unlock(&simple_transaction_lock); 610 free_page((unsigned long)ar); 611 return ERR_PTR(-EBUSY); 612 } 613 614 file->private_data = ar; 615 616 spin_unlock(&simple_transaction_lock); 617 618 if (copy_from_user(ar->data, buf, size)) 619 return ERR_PTR(-EFAULT); 620 621 return ar->data; 622 } 623 624 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 625 { 626 struct simple_transaction_argresp *ar = file->private_data; 627 628 if (!ar) 629 return 0; 630 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 631 } 632 633 int simple_transaction_release(struct inode *inode, struct file *file) 634 { 635 free_page((unsigned long)file->private_data); 636 return 0; 637 } 638 639 /* Simple attribute files */ 640 641 struct simple_attr { 642 int (*get)(void *, u64 *); 643 int (*set)(void *, u64); 644 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 645 char set_buf[24]; 646 void *data; 647 const char *fmt; /* format for read operation */ 648 struct mutex mutex; /* protects access to these buffers */ 649 }; 650 651 /* simple_attr_open is called by an actual attribute open file operation 652 * to set the attribute specific access operations. */ 653 int simple_attr_open(struct inode *inode, struct file *file, 654 int (*get)(void *, u64 *), int (*set)(void *, u64), 655 const char *fmt) 656 { 657 struct simple_attr *attr; 658 659 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 660 if (!attr) 661 return -ENOMEM; 662 663 attr->get = get; 664 attr->set = set; 665 attr->data = inode->i_private; 666 attr->fmt = fmt; 667 mutex_init(&attr->mutex); 668 669 file->private_data = attr; 670 671 return nonseekable_open(inode, file); 672 } 673 674 int simple_attr_release(struct inode *inode, struct file *file) 675 { 676 kfree(file->private_data); 677 return 0; 678 } 679 680 /* read from the buffer that is filled with the get function */ 681 ssize_t simple_attr_read(struct file *file, char __user *buf, 682 size_t len, loff_t *ppos) 683 { 684 struct simple_attr *attr; 685 size_t size; 686 ssize_t ret; 687 688 attr = file->private_data; 689 690 if (!attr->get) 691 return -EACCES; 692 693 ret = mutex_lock_interruptible(&attr->mutex); 694 if (ret) 695 return ret; 696 697 if (*ppos) { /* continued read */ 698 size = strlen(attr->get_buf); 699 } else { /* first read */ 700 u64 val; 701 ret = attr->get(attr->data, &val); 702 if (ret) 703 goto out; 704 705 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 706 attr->fmt, (unsigned long long)val); 707 } 708 709 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 710 out: 711 mutex_unlock(&attr->mutex); 712 return ret; 713 } 714 715 /* interpret the buffer as a number to call the set function with */ 716 ssize_t simple_attr_write(struct file *file, const char __user *buf, 717 size_t len, loff_t *ppos) 718 { 719 struct simple_attr *attr; 720 u64 val; 721 size_t size; 722 ssize_t ret; 723 724 attr = file->private_data; 725 if (!attr->set) 726 return -EACCES; 727 728 ret = mutex_lock_interruptible(&attr->mutex); 729 if (ret) 730 return ret; 731 732 ret = -EFAULT; 733 size = min(sizeof(attr->set_buf) - 1, len); 734 if (copy_from_user(attr->set_buf, buf, size)) 735 goto out; 736 737 ret = len; /* claim we got the whole input */ 738 attr->set_buf[size] = '\0'; 739 val = simple_strtol(attr->set_buf, NULL, 0); 740 attr->set(attr->data, val); 741 out: 742 mutex_unlock(&attr->mutex); 743 return ret; 744 } 745 746 /** 747 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 748 * @sb: filesystem to do the file handle conversion on 749 * @fid: file handle to convert 750 * @fh_len: length of the file handle in bytes 751 * @fh_type: type of file handle 752 * @get_inode: filesystem callback to retrieve inode 753 * 754 * This function decodes @fid as long as it has one of the well-known 755 * Linux filehandle types and calls @get_inode on it to retrieve the 756 * inode for the object specified in the file handle. 757 */ 758 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 759 int fh_len, int fh_type, struct inode *(*get_inode) 760 (struct super_block *sb, u64 ino, u32 gen)) 761 { 762 struct inode *inode = NULL; 763 764 if (fh_len < 2) 765 return NULL; 766 767 switch (fh_type) { 768 case FILEID_INO32_GEN: 769 case FILEID_INO32_GEN_PARENT: 770 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 771 break; 772 } 773 774 return d_obtain_alias(inode); 775 } 776 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 777 778 /** 779 * generic_fh_to_dentry - generic helper for the fh_to_parent export operation 780 * @sb: filesystem to do the file handle conversion on 781 * @fid: file handle to convert 782 * @fh_len: length of the file handle in bytes 783 * @fh_type: type of file handle 784 * @get_inode: filesystem callback to retrieve inode 785 * 786 * This function decodes @fid as long as it has one of the well-known 787 * Linux filehandle types and calls @get_inode on it to retrieve the 788 * inode for the _parent_ object specified in the file handle if it 789 * is specified in the file handle, or NULL otherwise. 790 */ 791 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 792 int fh_len, int fh_type, struct inode *(*get_inode) 793 (struct super_block *sb, u64 ino, u32 gen)) 794 { 795 struct inode *inode = NULL; 796 797 if (fh_len <= 2) 798 return NULL; 799 800 switch (fh_type) { 801 case FILEID_INO32_GEN_PARENT: 802 inode = get_inode(sb, fid->i32.parent_ino, 803 (fh_len > 3 ? fid->i32.parent_gen : 0)); 804 break; 805 } 806 807 return d_obtain_alias(inode); 808 } 809 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 810 811 EXPORT_SYMBOL(dcache_dir_close); 812 EXPORT_SYMBOL(dcache_dir_lseek); 813 EXPORT_SYMBOL(dcache_dir_open); 814 EXPORT_SYMBOL(dcache_readdir); 815 EXPORT_SYMBOL(generic_read_dir); 816 EXPORT_SYMBOL(get_sb_pseudo); 817 EXPORT_SYMBOL(simple_write_begin); 818 EXPORT_SYMBOL(simple_write_end); 819 EXPORT_SYMBOL(simple_dir_inode_operations); 820 EXPORT_SYMBOL(simple_dir_operations); 821 EXPORT_SYMBOL(simple_empty); 822 EXPORT_SYMBOL(d_alloc_name); 823 EXPORT_SYMBOL(simple_fill_super); 824 EXPORT_SYMBOL(simple_getattr); 825 EXPORT_SYMBOL(simple_link); 826 EXPORT_SYMBOL(simple_lookup); 827 EXPORT_SYMBOL(simple_pin_fs); 828 EXPORT_UNUSED_SYMBOL(simple_prepare_write); 829 EXPORT_SYMBOL(simple_readpage); 830 EXPORT_SYMBOL(simple_release_fs); 831 EXPORT_SYMBOL(simple_rename); 832 EXPORT_SYMBOL(simple_rmdir); 833 EXPORT_SYMBOL(simple_statfs); 834 EXPORT_SYMBOL(simple_sync_file); 835 EXPORT_SYMBOL(simple_unlink); 836 EXPORT_SYMBOL(simple_read_from_buffer); 837 EXPORT_SYMBOL(memory_read_from_buffer); 838 EXPORT_SYMBOL(simple_transaction_set); 839 EXPORT_SYMBOL(simple_transaction_get); 840 EXPORT_SYMBOL(simple_transaction_read); 841 EXPORT_SYMBOL(simple_transaction_release); 842 EXPORT_SYMBOL_GPL(simple_attr_open); 843 EXPORT_SYMBOL_GPL(simple_attr_release); 844 EXPORT_SYMBOL_GPL(simple_attr_read); 845 EXPORT_SYMBOL_GPL(simple_attr_write); 846