1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 32 struct kstat *stat, u32 request_mask, 33 unsigned int query_flags) 34 { 35 struct inode *inode = d_inode(path->dentry); 36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 38 return 0; 39 } 40 EXPORT_SYMBOL(simple_getattr); 41 42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 43 { 44 buf->f_type = dentry->d_sb->s_magic; 45 buf->f_bsize = PAGE_SIZE; 46 buf->f_namelen = NAME_MAX; 47 return 0; 48 } 49 EXPORT_SYMBOL(simple_statfs); 50 51 /* 52 * Retaining negative dentries for an in-memory filesystem just wastes 53 * memory and lookup time: arrange for them to be deleted immediately. 54 */ 55 int always_delete_dentry(const struct dentry *dentry) 56 { 57 return 1; 58 } 59 EXPORT_SYMBOL(always_delete_dentry); 60 61 const struct dentry_operations simple_dentry_operations = { 62 .d_delete = always_delete_dentry, 63 }; 64 EXPORT_SYMBOL(simple_dentry_operations); 65 66 /* 67 * Lookup the data. This is trivial - if the dentry didn't already 68 * exist, we know it is negative. Set d_op to delete negative dentries. 69 */ 70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 71 { 72 if (dentry->d_name.len > NAME_MAX) 73 return ERR_PTR(-ENAMETOOLONG); 74 if (!dentry->d_sb->s_d_op) 75 d_set_d_op(dentry, &simple_dentry_operations); 76 d_add(dentry, NULL); 77 return NULL; 78 } 79 EXPORT_SYMBOL(simple_lookup); 80 81 int dcache_dir_open(struct inode *inode, struct file *file) 82 { 83 file->private_data = d_alloc_cursor(file->f_path.dentry); 84 85 return file->private_data ? 0 : -ENOMEM; 86 } 87 EXPORT_SYMBOL(dcache_dir_open); 88 89 int dcache_dir_close(struct inode *inode, struct file *file) 90 { 91 dput(file->private_data); 92 return 0; 93 } 94 EXPORT_SYMBOL(dcache_dir_close); 95 96 /* parent is locked at least shared */ 97 /* 98 * Returns an element of siblings' list. 99 * We are looking for <count>th positive after <p>; if 100 * found, dentry is grabbed and returned to caller. 101 * If no such element exists, NULL is returned. 102 */ 103 static struct dentry *scan_positives(struct dentry *cursor, 104 struct list_head *p, 105 loff_t count, 106 struct dentry *last) 107 { 108 struct dentry *dentry = cursor->d_parent, *found = NULL; 109 110 spin_lock(&dentry->d_lock); 111 while ((p = p->next) != &dentry->d_subdirs) { 112 struct dentry *d = list_entry(p, struct dentry, d_child); 113 // we must at least skip cursors, to avoid livelocks 114 if (d->d_flags & DCACHE_DENTRY_CURSOR) 115 continue; 116 if (simple_positive(d) && !--count) { 117 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 118 if (simple_positive(d)) 119 found = dget_dlock(d); 120 spin_unlock(&d->d_lock); 121 if (likely(found)) 122 break; 123 count = 1; 124 } 125 if (need_resched()) { 126 list_move(&cursor->d_child, p); 127 p = &cursor->d_child; 128 spin_unlock(&dentry->d_lock); 129 cond_resched(); 130 spin_lock(&dentry->d_lock); 131 } 132 } 133 spin_unlock(&dentry->d_lock); 134 dput(last); 135 return found; 136 } 137 138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 139 { 140 struct dentry *dentry = file->f_path.dentry; 141 switch (whence) { 142 case 1: 143 offset += file->f_pos; 144 fallthrough; 145 case 0: 146 if (offset >= 0) 147 break; 148 fallthrough; 149 default: 150 return -EINVAL; 151 } 152 if (offset != file->f_pos) { 153 struct dentry *cursor = file->private_data; 154 struct dentry *to = NULL; 155 156 inode_lock_shared(dentry->d_inode); 157 158 if (offset > 2) 159 to = scan_positives(cursor, &dentry->d_subdirs, 160 offset - 2, NULL); 161 spin_lock(&dentry->d_lock); 162 if (to) 163 list_move(&cursor->d_child, &to->d_child); 164 else 165 list_del_init(&cursor->d_child); 166 spin_unlock(&dentry->d_lock); 167 dput(to); 168 169 file->f_pos = offset; 170 171 inode_unlock_shared(dentry->d_inode); 172 } 173 return offset; 174 } 175 EXPORT_SYMBOL(dcache_dir_lseek); 176 177 /* 178 * Directory is locked and all positive dentries in it are safe, since 179 * for ramfs-type trees they can't go away without unlink() or rmdir(), 180 * both impossible due to the lock on directory. 181 */ 182 183 int dcache_readdir(struct file *file, struct dir_context *ctx) 184 { 185 struct dentry *dentry = file->f_path.dentry; 186 struct dentry *cursor = file->private_data; 187 struct list_head *anchor = &dentry->d_subdirs; 188 struct dentry *next = NULL; 189 struct list_head *p; 190 191 if (!dir_emit_dots(file, ctx)) 192 return 0; 193 194 if (ctx->pos == 2) 195 p = anchor; 196 else if (!list_empty(&cursor->d_child)) 197 p = &cursor->d_child; 198 else 199 return 0; 200 201 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 202 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 203 d_inode(next)->i_ino, 204 fs_umode_to_dtype(d_inode(next)->i_mode))) 205 break; 206 ctx->pos++; 207 p = &next->d_child; 208 } 209 spin_lock(&dentry->d_lock); 210 if (next) 211 list_move_tail(&cursor->d_child, &next->d_child); 212 else 213 list_del_init(&cursor->d_child); 214 spin_unlock(&dentry->d_lock); 215 dput(next); 216 217 return 0; 218 } 219 EXPORT_SYMBOL(dcache_readdir); 220 221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 222 { 223 return -EISDIR; 224 } 225 EXPORT_SYMBOL(generic_read_dir); 226 227 const struct file_operations simple_dir_operations = { 228 .open = dcache_dir_open, 229 .release = dcache_dir_close, 230 .llseek = dcache_dir_lseek, 231 .read = generic_read_dir, 232 .iterate_shared = dcache_readdir, 233 .fsync = noop_fsync, 234 }; 235 EXPORT_SYMBOL(simple_dir_operations); 236 237 const struct inode_operations simple_dir_inode_operations = { 238 .lookup = simple_lookup, 239 }; 240 EXPORT_SYMBOL(simple_dir_inode_operations); 241 242 static void offset_set(struct dentry *dentry, u32 offset) 243 { 244 dentry->d_fsdata = (void *)((uintptr_t)(offset)); 245 } 246 247 static u32 dentry2offset(struct dentry *dentry) 248 { 249 return (u32)((uintptr_t)(dentry->d_fsdata)); 250 } 251 252 static struct lock_class_key simple_offset_xa_lock; 253 254 /** 255 * simple_offset_init - initialize an offset_ctx 256 * @octx: directory offset map to be initialized 257 * 258 */ 259 void simple_offset_init(struct offset_ctx *octx) 260 { 261 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1); 262 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock); 263 264 /* 0 is '.', 1 is '..', so always start with offset 2 */ 265 octx->next_offset = 2; 266 } 267 268 /** 269 * simple_offset_add - Add an entry to a directory's offset map 270 * @octx: directory offset ctx to be updated 271 * @dentry: new dentry being added 272 * 273 * Returns zero on success. @so_ctx and the dentry offset are updated. 274 * Otherwise, a negative errno value is returned. 275 */ 276 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 277 { 278 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX); 279 u32 offset; 280 int ret; 281 282 if (dentry2offset(dentry) != 0) 283 return -EBUSY; 284 285 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit, 286 &octx->next_offset, GFP_KERNEL); 287 if (ret < 0) 288 return ret; 289 290 offset_set(dentry, offset); 291 return 0; 292 } 293 294 /** 295 * simple_offset_remove - Remove an entry to a directory's offset map 296 * @octx: directory offset ctx to be updated 297 * @dentry: dentry being removed 298 * 299 */ 300 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 301 { 302 u32 offset; 303 304 offset = dentry2offset(dentry); 305 if (offset == 0) 306 return; 307 308 xa_erase(&octx->xa, offset); 309 offset_set(dentry, 0); 310 } 311 312 /** 313 * simple_offset_rename_exchange - exchange rename with directory offsets 314 * @old_dir: parent of dentry being moved 315 * @old_dentry: dentry being moved 316 * @new_dir: destination parent 317 * @new_dentry: destination dentry 318 * 319 * Returns zero on success. Otherwise a negative errno is returned and the 320 * rename is rolled back. 321 */ 322 int simple_offset_rename_exchange(struct inode *old_dir, 323 struct dentry *old_dentry, 324 struct inode *new_dir, 325 struct dentry *new_dentry) 326 { 327 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 328 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 329 u32 old_index = dentry2offset(old_dentry); 330 u32 new_index = dentry2offset(new_dentry); 331 int ret; 332 333 simple_offset_remove(old_ctx, old_dentry); 334 simple_offset_remove(new_ctx, new_dentry); 335 336 ret = simple_offset_add(new_ctx, old_dentry); 337 if (ret) 338 goto out_restore; 339 340 ret = simple_offset_add(old_ctx, new_dentry); 341 if (ret) { 342 simple_offset_remove(new_ctx, old_dentry); 343 goto out_restore; 344 } 345 346 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 347 if (ret) { 348 simple_offset_remove(new_ctx, old_dentry); 349 simple_offset_remove(old_ctx, new_dentry); 350 goto out_restore; 351 } 352 return 0; 353 354 out_restore: 355 offset_set(old_dentry, old_index); 356 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL); 357 offset_set(new_dentry, new_index); 358 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL); 359 return ret; 360 } 361 362 /** 363 * simple_offset_destroy - Release offset map 364 * @octx: directory offset ctx that is about to be destroyed 365 * 366 * During fs teardown (eg. umount), a directory's offset map might still 367 * contain entries. xa_destroy() cleans out anything that remains. 368 */ 369 void simple_offset_destroy(struct offset_ctx *octx) 370 { 371 xa_destroy(&octx->xa); 372 } 373 374 /** 375 * offset_dir_llseek - Advance the read position of a directory descriptor 376 * @file: an open directory whose position is to be updated 377 * @offset: a byte offset 378 * @whence: enumerator describing the starting position for this update 379 * 380 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 381 * 382 * Returns the updated read position if successful; otherwise a 383 * negative errno is returned and the read position remains unchanged. 384 */ 385 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 386 { 387 switch (whence) { 388 case SEEK_CUR: 389 offset += file->f_pos; 390 fallthrough; 391 case SEEK_SET: 392 if (offset >= 0) 393 break; 394 fallthrough; 395 default: 396 return -EINVAL; 397 } 398 399 /* In this case, ->private_data is protected by f_pos_lock */ 400 file->private_data = NULL; 401 return vfs_setpos(file, offset, U32_MAX); 402 } 403 404 static struct dentry *offset_find_next(struct xa_state *xas) 405 { 406 struct dentry *child, *found = NULL; 407 408 rcu_read_lock(); 409 child = xas_next_entry(xas, U32_MAX); 410 if (!child) 411 goto out; 412 spin_lock(&child->d_lock); 413 if (simple_positive(child)) 414 found = dget_dlock(child); 415 spin_unlock(&child->d_lock); 416 out: 417 rcu_read_unlock(); 418 return found; 419 } 420 421 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 422 { 423 u32 offset = dentry2offset(dentry); 424 struct inode *inode = d_inode(dentry); 425 426 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, 427 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 428 } 429 430 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx) 431 { 432 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode); 433 XA_STATE(xas, &so_ctx->xa, ctx->pos); 434 struct dentry *dentry; 435 436 while (true) { 437 dentry = offset_find_next(&xas); 438 if (!dentry) 439 return ERR_PTR(-ENOENT); 440 441 if (!offset_dir_emit(ctx, dentry)) { 442 dput(dentry); 443 break; 444 } 445 446 dput(dentry); 447 ctx->pos = xas.xa_index + 1; 448 } 449 return NULL; 450 } 451 452 /** 453 * offset_readdir - Emit entries starting at offset @ctx->pos 454 * @file: an open directory to iterate over 455 * @ctx: directory iteration context 456 * 457 * Caller must hold @file's i_rwsem to prevent insertion or removal of 458 * entries during this call. 459 * 460 * On entry, @ctx->pos contains an offset that represents the first entry 461 * to be read from the directory. 462 * 463 * The operation continues until there are no more entries to read, or 464 * until the ctx->actor indicates there is no more space in the caller's 465 * output buffer. 466 * 467 * On return, @ctx->pos contains an offset that will read the next entry 468 * in this directory when offset_readdir() is called again with @ctx. 469 * 470 * Return values: 471 * %0 - Complete 472 */ 473 static int offset_readdir(struct file *file, struct dir_context *ctx) 474 { 475 struct dentry *dir = file->f_path.dentry; 476 477 lockdep_assert_held(&d_inode(dir)->i_rwsem); 478 479 if (!dir_emit_dots(file, ctx)) 480 return 0; 481 482 /* In this case, ->private_data is protected by f_pos_lock */ 483 if (ctx->pos == 2) 484 file->private_data = NULL; 485 else if (file->private_data == ERR_PTR(-ENOENT)) 486 return 0; 487 file->private_data = offset_iterate_dir(d_inode(dir), ctx); 488 return 0; 489 } 490 491 const struct file_operations simple_offset_dir_operations = { 492 .llseek = offset_dir_llseek, 493 .iterate_shared = offset_readdir, 494 .read = generic_read_dir, 495 .fsync = noop_fsync, 496 }; 497 498 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 499 { 500 struct dentry *child = NULL; 501 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs; 502 503 spin_lock(&parent->d_lock); 504 while ((p = p->next) != &parent->d_subdirs) { 505 struct dentry *d = container_of(p, struct dentry, d_child); 506 if (simple_positive(d)) { 507 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 508 if (simple_positive(d)) 509 child = dget_dlock(d); 510 spin_unlock(&d->d_lock); 511 if (likely(child)) 512 break; 513 } 514 } 515 spin_unlock(&parent->d_lock); 516 dput(prev); 517 return child; 518 } 519 520 void simple_recursive_removal(struct dentry *dentry, 521 void (*callback)(struct dentry *)) 522 { 523 struct dentry *this = dget(dentry); 524 while (true) { 525 struct dentry *victim = NULL, *child; 526 struct inode *inode = this->d_inode; 527 528 inode_lock(inode); 529 if (d_is_dir(this)) 530 inode->i_flags |= S_DEAD; 531 while ((child = find_next_child(this, victim)) == NULL) { 532 // kill and ascend 533 // update metadata while it's still locked 534 inode_set_ctime_current(inode); 535 clear_nlink(inode); 536 inode_unlock(inode); 537 victim = this; 538 this = this->d_parent; 539 inode = this->d_inode; 540 inode_lock(inode); 541 if (simple_positive(victim)) { 542 d_invalidate(victim); // avoid lost mounts 543 if (d_is_dir(victim)) 544 fsnotify_rmdir(inode, victim); 545 else 546 fsnotify_unlink(inode, victim); 547 if (callback) 548 callback(victim); 549 dput(victim); // unpin it 550 } 551 if (victim == dentry) { 552 inode_set_mtime_to_ts(inode, 553 inode_set_ctime_current(inode)); 554 if (d_is_dir(dentry)) 555 drop_nlink(inode); 556 inode_unlock(inode); 557 dput(dentry); 558 return; 559 } 560 } 561 inode_unlock(inode); 562 this = child; 563 } 564 } 565 EXPORT_SYMBOL(simple_recursive_removal); 566 567 static const struct super_operations simple_super_operations = { 568 .statfs = simple_statfs, 569 }; 570 571 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 572 { 573 struct pseudo_fs_context *ctx = fc->fs_private; 574 struct inode *root; 575 576 s->s_maxbytes = MAX_LFS_FILESIZE; 577 s->s_blocksize = PAGE_SIZE; 578 s->s_blocksize_bits = PAGE_SHIFT; 579 s->s_magic = ctx->magic; 580 s->s_op = ctx->ops ?: &simple_super_operations; 581 s->s_xattr = ctx->xattr; 582 s->s_time_gran = 1; 583 root = new_inode(s); 584 if (!root) 585 return -ENOMEM; 586 587 /* 588 * since this is the first inode, make it number 1. New inodes created 589 * after this must take care not to collide with it (by passing 590 * max_reserved of 1 to iunique). 591 */ 592 root->i_ino = 1; 593 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 594 simple_inode_init_ts(root); 595 s->s_root = d_make_root(root); 596 if (!s->s_root) 597 return -ENOMEM; 598 s->s_d_op = ctx->dops; 599 return 0; 600 } 601 602 static int pseudo_fs_get_tree(struct fs_context *fc) 603 { 604 return get_tree_nodev(fc, pseudo_fs_fill_super); 605 } 606 607 static void pseudo_fs_free(struct fs_context *fc) 608 { 609 kfree(fc->fs_private); 610 } 611 612 static const struct fs_context_operations pseudo_fs_context_ops = { 613 .free = pseudo_fs_free, 614 .get_tree = pseudo_fs_get_tree, 615 }; 616 617 /* 618 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 619 * will never be mountable) 620 */ 621 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 622 unsigned long magic) 623 { 624 struct pseudo_fs_context *ctx; 625 626 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 627 if (likely(ctx)) { 628 ctx->magic = magic; 629 fc->fs_private = ctx; 630 fc->ops = &pseudo_fs_context_ops; 631 fc->sb_flags |= SB_NOUSER; 632 fc->global = true; 633 } 634 return ctx; 635 } 636 EXPORT_SYMBOL(init_pseudo); 637 638 int simple_open(struct inode *inode, struct file *file) 639 { 640 if (inode->i_private) 641 file->private_data = inode->i_private; 642 return 0; 643 } 644 EXPORT_SYMBOL(simple_open); 645 646 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 647 { 648 struct inode *inode = d_inode(old_dentry); 649 650 inode_set_mtime_to_ts(dir, 651 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 652 inc_nlink(inode); 653 ihold(inode); 654 dget(dentry); 655 d_instantiate(dentry, inode); 656 return 0; 657 } 658 EXPORT_SYMBOL(simple_link); 659 660 int simple_empty(struct dentry *dentry) 661 { 662 struct dentry *child; 663 int ret = 0; 664 665 spin_lock(&dentry->d_lock); 666 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 667 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 668 if (simple_positive(child)) { 669 spin_unlock(&child->d_lock); 670 goto out; 671 } 672 spin_unlock(&child->d_lock); 673 } 674 ret = 1; 675 out: 676 spin_unlock(&dentry->d_lock); 677 return ret; 678 } 679 EXPORT_SYMBOL(simple_empty); 680 681 int simple_unlink(struct inode *dir, struct dentry *dentry) 682 { 683 struct inode *inode = d_inode(dentry); 684 685 inode_set_mtime_to_ts(dir, 686 inode_set_ctime_to_ts(dir, inode_set_ctime_current(inode))); 687 drop_nlink(inode); 688 dput(dentry); 689 return 0; 690 } 691 EXPORT_SYMBOL(simple_unlink); 692 693 int simple_rmdir(struct inode *dir, struct dentry *dentry) 694 { 695 if (!simple_empty(dentry)) 696 return -ENOTEMPTY; 697 698 drop_nlink(d_inode(dentry)); 699 simple_unlink(dir, dentry); 700 drop_nlink(dir); 701 return 0; 702 } 703 EXPORT_SYMBOL(simple_rmdir); 704 705 /** 706 * simple_rename_timestamp - update the various inode timestamps for rename 707 * @old_dir: old parent directory 708 * @old_dentry: dentry that is being renamed 709 * @new_dir: new parent directory 710 * @new_dentry: target for rename 711 * 712 * POSIX mandates that the old and new parent directories have their ctime and 713 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 714 * their ctime updated. 715 */ 716 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 717 struct inode *new_dir, struct dentry *new_dentry) 718 { 719 struct inode *newino = d_inode(new_dentry); 720 721 inode_set_mtime_to_ts(old_dir, inode_set_ctime_current(old_dir)); 722 if (new_dir != old_dir) 723 inode_set_mtime_to_ts(new_dir, 724 inode_set_ctime_current(new_dir)); 725 inode_set_ctime_current(d_inode(old_dentry)); 726 if (newino) 727 inode_set_ctime_current(newino); 728 } 729 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 730 731 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 732 struct inode *new_dir, struct dentry *new_dentry) 733 { 734 bool old_is_dir = d_is_dir(old_dentry); 735 bool new_is_dir = d_is_dir(new_dentry); 736 737 if (old_dir != new_dir && old_is_dir != new_is_dir) { 738 if (old_is_dir) { 739 drop_nlink(old_dir); 740 inc_nlink(new_dir); 741 } else { 742 drop_nlink(new_dir); 743 inc_nlink(old_dir); 744 } 745 } 746 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 747 return 0; 748 } 749 EXPORT_SYMBOL_GPL(simple_rename_exchange); 750 751 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 752 struct dentry *old_dentry, struct inode *new_dir, 753 struct dentry *new_dentry, unsigned int flags) 754 { 755 int they_are_dirs = d_is_dir(old_dentry); 756 757 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 758 return -EINVAL; 759 760 if (flags & RENAME_EXCHANGE) 761 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 762 763 if (!simple_empty(new_dentry)) 764 return -ENOTEMPTY; 765 766 if (d_really_is_positive(new_dentry)) { 767 simple_unlink(new_dir, new_dentry); 768 if (they_are_dirs) { 769 drop_nlink(d_inode(new_dentry)); 770 drop_nlink(old_dir); 771 } 772 } else if (they_are_dirs) { 773 drop_nlink(old_dir); 774 inc_nlink(new_dir); 775 } 776 777 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 778 return 0; 779 } 780 EXPORT_SYMBOL(simple_rename); 781 782 /** 783 * simple_setattr - setattr for simple filesystem 784 * @idmap: idmap of the target mount 785 * @dentry: dentry 786 * @iattr: iattr structure 787 * 788 * Returns 0 on success, -error on failure. 789 * 790 * simple_setattr is a simple ->setattr implementation without a proper 791 * implementation of size changes. 792 * 793 * It can either be used for in-memory filesystems or special files 794 * on simple regular filesystems. Anything that needs to change on-disk 795 * or wire state on size changes needs its own setattr method. 796 */ 797 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 798 struct iattr *iattr) 799 { 800 struct inode *inode = d_inode(dentry); 801 int error; 802 803 error = setattr_prepare(idmap, dentry, iattr); 804 if (error) 805 return error; 806 807 if (iattr->ia_valid & ATTR_SIZE) 808 truncate_setsize(inode, iattr->ia_size); 809 setattr_copy(idmap, inode, iattr); 810 mark_inode_dirty(inode); 811 return 0; 812 } 813 EXPORT_SYMBOL(simple_setattr); 814 815 static int simple_read_folio(struct file *file, struct folio *folio) 816 { 817 folio_zero_range(folio, 0, folio_size(folio)); 818 flush_dcache_folio(folio); 819 folio_mark_uptodate(folio); 820 folio_unlock(folio); 821 return 0; 822 } 823 824 int simple_write_begin(struct file *file, struct address_space *mapping, 825 loff_t pos, unsigned len, 826 struct page **pagep, void **fsdata) 827 { 828 struct folio *folio; 829 830 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 831 mapping_gfp_mask(mapping)); 832 if (IS_ERR(folio)) 833 return PTR_ERR(folio); 834 835 *pagep = &folio->page; 836 837 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 838 size_t from = offset_in_folio(folio, pos); 839 840 folio_zero_segments(folio, 0, from, 841 from + len, folio_size(folio)); 842 } 843 return 0; 844 } 845 EXPORT_SYMBOL(simple_write_begin); 846 847 /** 848 * simple_write_end - .write_end helper for non-block-device FSes 849 * @file: See .write_end of address_space_operations 850 * @mapping: " 851 * @pos: " 852 * @len: " 853 * @copied: " 854 * @page: " 855 * @fsdata: " 856 * 857 * simple_write_end does the minimum needed for updating a page after writing is 858 * done. It has the same API signature as the .write_end of 859 * address_space_operations vector. So it can just be set onto .write_end for 860 * FSes that don't need any other processing. i_mutex is assumed to be held. 861 * Block based filesystems should use generic_write_end(). 862 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 863 * is not called, so a filesystem that actually does store data in .write_inode 864 * should extend on what's done here with a call to mark_inode_dirty() in the 865 * case that i_size has changed. 866 * 867 * Use *ONLY* with simple_read_folio() 868 */ 869 static int simple_write_end(struct file *file, struct address_space *mapping, 870 loff_t pos, unsigned len, unsigned copied, 871 struct page *page, void *fsdata) 872 { 873 struct folio *folio = page_folio(page); 874 struct inode *inode = folio->mapping->host; 875 loff_t last_pos = pos + copied; 876 877 /* zero the stale part of the folio if we did a short copy */ 878 if (!folio_test_uptodate(folio)) { 879 if (copied < len) { 880 size_t from = offset_in_folio(folio, pos); 881 882 folio_zero_range(folio, from + copied, len - copied); 883 } 884 folio_mark_uptodate(folio); 885 } 886 /* 887 * No need to use i_size_read() here, the i_size 888 * cannot change under us because we hold the i_mutex. 889 */ 890 if (last_pos > inode->i_size) 891 i_size_write(inode, last_pos); 892 893 folio_mark_dirty(folio); 894 folio_unlock(folio); 895 folio_put(folio); 896 897 return copied; 898 } 899 900 /* 901 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 902 */ 903 const struct address_space_operations ram_aops = { 904 .read_folio = simple_read_folio, 905 .write_begin = simple_write_begin, 906 .write_end = simple_write_end, 907 .dirty_folio = noop_dirty_folio, 908 }; 909 EXPORT_SYMBOL(ram_aops); 910 911 /* 912 * the inodes created here are not hashed. If you use iunique to generate 913 * unique inode values later for this filesystem, then you must take care 914 * to pass it an appropriate max_reserved value to avoid collisions. 915 */ 916 int simple_fill_super(struct super_block *s, unsigned long magic, 917 const struct tree_descr *files) 918 { 919 struct inode *inode; 920 struct dentry *root; 921 struct dentry *dentry; 922 int i; 923 924 s->s_blocksize = PAGE_SIZE; 925 s->s_blocksize_bits = PAGE_SHIFT; 926 s->s_magic = magic; 927 s->s_op = &simple_super_operations; 928 s->s_time_gran = 1; 929 930 inode = new_inode(s); 931 if (!inode) 932 return -ENOMEM; 933 /* 934 * because the root inode is 1, the files array must not contain an 935 * entry at index 1 936 */ 937 inode->i_ino = 1; 938 inode->i_mode = S_IFDIR | 0755; 939 simple_inode_init_ts(inode); 940 inode->i_op = &simple_dir_inode_operations; 941 inode->i_fop = &simple_dir_operations; 942 set_nlink(inode, 2); 943 root = d_make_root(inode); 944 if (!root) 945 return -ENOMEM; 946 for (i = 0; !files->name || files->name[0]; i++, files++) { 947 if (!files->name) 948 continue; 949 950 /* warn if it tries to conflict with the root inode */ 951 if (unlikely(i == 1)) 952 printk(KERN_WARNING "%s: %s passed in a files array" 953 "with an index of 1!\n", __func__, 954 s->s_type->name); 955 956 dentry = d_alloc_name(root, files->name); 957 if (!dentry) 958 goto out; 959 inode = new_inode(s); 960 if (!inode) { 961 dput(dentry); 962 goto out; 963 } 964 inode->i_mode = S_IFREG | files->mode; 965 simple_inode_init_ts(inode); 966 inode->i_fop = files->ops; 967 inode->i_ino = i; 968 d_add(dentry, inode); 969 } 970 s->s_root = root; 971 return 0; 972 out: 973 d_genocide(root); 974 shrink_dcache_parent(root); 975 dput(root); 976 return -ENOMEM; 977 } 978 EXPORT_SYMBOL(simple_fill_super); 979 980 static DEFINE_SPINLOCK(pin_fs_lock); 981 982 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 983 { 984 struct vfsmount *mnt = NULL; 985 spin_lock(&pin_fs_lock); 986 if (unlikely(!*mount)) { 987 spin_unlock(&pin_fs_lock); 988 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 989 if (IS_ERR(mnt)) 990 return PTR_ERR(mnt); 991 spin_lock(&pin_fs_lock); 992 if (!*mount) 993 *mount = mnt; 994 } 995 mntget(*mount); 996 ++*count; 997 spin_unlock(&pin_fs_lock); 998 mntput(mnt); 999 return 0; 1000 } 1001 EXPORT_SYMBOL(simple_pin_fs); 1002 1003 void simple_release_fs(struct vfsmount **mount, int *count) 1004 { 1005 struct vfsmount *mnt; 1006 spin_lock(&pin_fs_lock); 1007 mnt = *mount; 1008 if (!--*count) 1009 *mount = NULL; 1010 spin_unlock(&pin_fs_lock); 1011 mntput(mnt); 1012 } 1013 EXPORT_SYMBOL(simple_release_fs); 1014 1015 /** 1016 * simple_read_from_buffer - copy data from the buffer to user space 1017 * @to: the user space buffer to read to 1018 * @count: the maximum number of bytes to read 1019 * @ppos: the current position in the buffer 1020 * @from: the buffer to read from 1021 * @available: the size of the buffer 1022 * 1023 * The simple_read_from_buffer() function reads up to @count bytes from the 1024 * buffer @from at offset @ppos into the user space address starting at @to. 1025 * 1026 * On success, the number of bytes read is returned and the offset @ppos is 1027 * advanced by this number, or negative value is returned on error. 1028 **/ 1029 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1030 const void *from, size_t available) 1031 { 1032 loff_t pos = *ppos; 1033 size_t ret; 1034 1035 if (pos < 0) 1036 return -EINVAL; 1037 if (pos >= available || !count) 1038 return 0; 1039 if (count > available - pos) 1040 count = available - pos; 1041 ret = copy_to_user(to, from + pos, count); 1042 if (ret == count) 1043 return -EFAULT; 1044 count -= ret; 1045 *ppos = pos + count; 1046 return count; 1047 } 1048 EXPORT_SYMBOL(simple_read_from_buffer); 1049 1050 /** 1051 * simple_write_to_buffer - copy data from user space to the buffer 1052 * @to: the buffer to write to 1053 * @available: the size of the buffer 1054 * @ppos: the current position in the buffer 1055 * @from: the user space buffer to read from 1056 * @count: the maximum number of bytes to read 1057 * 1058 * The simple_write_to_buffer() function reads up to @count bytes from the user 1059 * space address starting at @from into the buffer @to at offset @ppos. 1060 * 1061 * On success, the number of bytes written is returned and the offset @ppos is 1062 * advanced by this number, or negative value is returned on error. 1063 **/ 1064 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1065 const void __user *from, size_t count) 1066 { 1067 loff_t pos = *ppos; 1068 size_t res; 1069 1070 if (pos < 0) 1071 return -EINVAL; 1072 if (pos >= available || !count) 1073 return 0; 1074 if (count > available - pos) 1075 count = available - pos; 1076 res = copy_from_user(to + pos, from, count); 1077 if (res == count) 1078 return -EFAULT; 1079 count -= res; 1080 *ppos = pos + count; 1081 return count; 1082 } 1083 EXPORT_SYMBOL(simple_write_to_buffer); 1084 1085 /** 1086 * memory_read_from_buffer - copy data from the buffer 1087 * @to: the kernel space buffer to read to 1088 * @count: the maximum number of bytes to read 1089 * @ppos: the current position in the buffer 1090 * @from: the buffer to read from 1091 * @available: the size of the buffer 1092 * 1093 * The memory_read_from_buffer() function reads up to @count bytes from the 1094 * buffer @from at offset @ppos into the kernel space address starting at @to. 1095 * 1096 * On success, the number of bytes read is returned and the offset @ppos is 1097 * advanced by this number, or negative value is returned on error. 1098 **/ 1099 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1100 const void *from, size_t available) 1101 { 1102 loff_t pos = *ppos; 1103 1104 if (pos < 0) 1105 return -EINVAL; 1106 if (pos >= available) 1107 return 0; 1108 if (count > available - pos) 1109 count = available - pos; 1110 memcpy(to, from + pos, count); 1111 *ppos = pos + count; 1112 1113 return count; 1114 } 1115 EXPORT_SYMBOL(memory_read_from_buffer); 1116 1117 /* 1118 * Transaction based IO. 1119 * The file expects a single write which triggers the transaction, and then 1120 * possibly a read which collects the result - which is stored in a 1121 * file-local buffer. 1122 */ 1123 1124 void simple_transaction_set(struct file *file, size_t n) 1125 { 1126 struct simple_transaction_argresp *ar = file->private_data; 1127 1128 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1129 1130 /* 1131 * The barrier ensures that ar->size will really remain zero until 1132 * ar->data is ready for reading. 1133 */ 1134 smp_mb(); 1135 ar->size = n; 1136 } 1137 EXPORT_SYMBOL(simple_transaction_set); 1138 1139 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1140 { 1141 struct simple_transaction_argresp *ar; 1142 static DEFINE_SPINLOCK(simple_transaction_lock); 1143 1144 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1145 return ERR_PTR(-EFBIG); 1146 1147 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1148 if (!ar) 1149 return ERR_PTR(-ENOMEM); 1150 1151 spin_lock(&simple_transaction_lock); 1152 1153 /* only one write allowed per open */ 1154 if (file->private_data) { 1155 spin_unlock(&simple_transaction_lock); 1156 free_page((unsigned long)ar); 1157 return ERR_PTR(-EBUSY); 1158 } 1159 1160 file->private_data = ar; 1161 1162 spin_unlock(&simple_transaction_lock); 1163 1164 if (copy_from_user(ar->data, buf, size)) 1165 return ERR_PTR(-EFAULT); 1166 1167 return ar->data; 1168 } 1169 EXPORT_SYMBOL(simple_transaction_get); 1170 1171 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1172 { 1173 struct simple_transaction_argresp *ar = file->private_data; 1174 1175 if (!ar) 1176 return 0; 1177 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1178 } 1179 EXPORT_SYMBOL(simple_transaction_read); 1180 1181 int simple_transaction_release(struct inode *inode, struct file *file) 1182 { 1183 free_page((unsigned long)file->private_data); 1184 return 0; 1185 } 1186 EXPORT_SYMBOL(simple_transaction_release); 1187 1188 /* Simple attribute files */ 1189 1190 struct simple_attr { 1191 int (*get)(void *, u64 *); 1192 int (*set)(void *, u64); 1193 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1194 char set_buf[24]; 1195 void *data; 1196 const char *fmt; /* format for read operation */ 1197 struct mutex mutex; /* protects access to these buffers */ 1198 }; 1199 1200 /* simple_attr_open is called by an actual attribute open file operation 1201 * to set the attribute specific access operations. */ 1202 int simple_attr_open(struct inode *inode, struct file *file, 1203 int (*get)(void *, u64 *), int (*set)(void *, u64), 1204 const char *fmt) 1205 { 1206 struct simple_attr *attr; 1207 1208 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1209 if (!attr) 1210 return -ENOMEM; 1211 1212 attr->get = get; 1213 attr->set = set; 1214 attr->data = inode->i_private; 1215 attr->fmt = fmt; 1216 mutex_init(&attr->mutex); 1217 1218 file->private_data = attr; 1219 1220 return nonseekable_open(inode, file); 1221 } 1222 EXPORT_SYMBOL_GPL(simple_attr_open); 1223 1224 int simple_attr_release(struct inode *inode, struct file *file) 1225 { 1226 kfree(file->private_data); 1227 return 0; 1228 } 1229 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1230 1231 /* read from the buffer that is filled with the get function */ 1232 ssize_t simple_attr_read(struct file *file, char __user *buf, 1233 size_t len, loff_t *ppos) 1234 { 1235 struct simple_attr *attr; 1236 size_t size; 1237 ssize_t ret; 1238 1239 attr = file->private_data; 1240 1241 if (!attr->get) 1242 return -EACCES; 1243 1244 ret = mutex_lock_interruptible(&attr->mutex); 1245 if (ret) 1246 return ret; 1247 1248 if (*ppos && attr->get_buf[0]) { 1249 /* continued read */ 1250 size = strlen(attr->get_buf); 1251 } else { 1252 /* first read */ 1253 u64 val; 1254 ret = attr->get(attr->data, &val); 1255 if (ret) 1256 goto out; 1257 1258 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1259 attr->fmt, (unsigned long long)val); 1260 } 1261 1262 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1263 out: 1264 mutex_unlock(&attr->mutex); 1265 return ret; 1266 } 1267 EXPORT_SYMBOL_GPL(simple_attr_read); 1268 1269 /* interpret the buffer as a number to call the set function with */ 1270 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1271 size_t len, loff_t *ppos, bool is_signed) 1272 { 1273 struct simple_attr *attr; 1274 unsigned long long val; 1275 size_t size; 1276 ssize_t ret; 1277 1278 attr = file->private_data; 1279 if (!attr->set) 1280 return -EACCES; 1281 1282 ret = mutex_lock_interruptible(&attr->mutex); 1283 if (ret) 1284 return ret; 1285 1286 ret = -EFAULT; 1287 size = min(sizeof(attr->set_buf) - 1, len); 1288 if (copy_from_user(attr->set_buf, buf, size)) 1289 goto out; 1290 1291 attr->set_buf[size] = '\0'; 1292 if (is_signed) 1293 ret = kstrtoll(attr->set_buf, 0, &val); 1294 else 1295 ret = kstrtoull(attr->set_buf, 0, &val); 1296 if (ret) 1297 goto out; 1298 ret = attr->set(attr->data, val); 1299 if (ret == 0) 1300 ret = len; /* on success, claim we got the whole input */ 1301 out: 1302 mutex_unlock(&attr->mutex); 1303 return ret; 1304 } 1305 1306 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1307 size_t len, loff_t *ppos) 1308 { 1309 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1310 } 1311 EXPORT_SYMBOL_GPL(simple_attr_write); 1312 1313 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1314 size_t len, loff_t *ppos) 1315 { 1316 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1317 } 1318 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1319 1320 /** 1321 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1322 * @sb: filesystem to do the file handle conversion on 1323 * @fid: file handle to convert 1324 * @fh_len: length of the file handle in bytes 1325 * @fh_type: type of file handle 1326 * @get_inode: filesystem callback to retrieve inode 1327 * 1328 * This function decodes @fid as long as it has one of the well-known 1329 * Linux filehandle types and calls @get_inode on it to retrieve the 1330 * inode for the object specified in the file handle. 1331 */ 1332 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1333 int fh_len, int fh_type, struct inode *(*get_inode) 1334 (struct super_block *sb, u64 ino, u32 gen)) 1335 { 1336 struct inode *inode = NULL; 1337 1338 if (fh_len < 2) 1339 return NULL; 1340 1341 switch (fh_type) { 1342 case FILEID_INO32_GEN: 1343 case FILEID_INO32_GEN_PARENT: 1344 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1345 break; 1346 } 1347 1348 return d_obtain_alias(inode); 1349 } 1350 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1351 1352 /** 1353 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1354 * @sb: filesystem to do the file handle conversion on 1355 * @fid: file handle to convert 1356 * @fh_len: length of the file handle in bytes 1357 * @fh_type: type of file handle 1358 * @get_inode: filesystem callback to retrieve inode 1359 * 1360 * This function decodes @fid as long as it has one of the well-known 1361 * Linux filehandle types and calls @get_inode on it to retrieve the 1362 * inode for the _parent_ object specified in the file handle if it 1363 * is specified in the file handle, or NULL otherwise. 1364 */ 1365 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1366 int fh_len, int fh_type, struct inode *(*get_inode) 1367 (struct super_block *sb, u64 ino, u32 gen)) 1368 { 1369 struct inode *inode = NULL; 1370 1371 if (fh_len <= 2) 1372 return NULL; 1373 1374 switch (fh_type) { 1375 case FILEID_INO32_GEN_PARENT: 1376 inode = get_inode(sb, fid->i32.parent_ino, 1377 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1378 break; 1379 } 1380 1381 return d_obtain_alias(inode); 1382 } 1383 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1384 1385 /** 1386 * __generic_file_fsync - generic fsync implementation for simple filesystems 1387 * 1388 * @file: file to synchronize 1389 * @start: start offset in bytes 1390 * @end: end offset in bytes (inclusive) 1391 * @datasync: only synchronize essential metadata if true 1392 * 1393 * This is a generic implementation of the fsync method for simple 1394 * filesystems which track all non-inode metadata in the buffers list 1395 * hanging off the address_space structure. 1396 */ 1397 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1398 int datasync) 1399 { 1400 struct inode *inode = file->f_mapping->host; 1401 int err; 1402 int ret; 1403 1404 err = file_write_and_wait_range(file, start, end); 1405 if (err) 1406 return err; 1407 1408 inode_lock(inode); 1409 ret = sync_mapping_buffers(inode->i_mapping); 1410 if (!(inode->i_state & I_DIRTY_ALL)) 1411 goto out; 1412 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1413 goto out; 1414 1415 err = sync_inode_metadata(inode, 1); 1416 if (ret == 0) 1417 ret = err; 1418 1419 out: 1420 inode_unlock(inode); 1421 /* check and advance again to catch errors after syncing out buffers */ 1422 err = file_check_and_advance_wb_err(file); 1423 if (ret == 0) 1424 ret = err; 1425 return ret; 1426 } 1427 EXPORT_SYMBOL(__generic_file_fsync); 1428 1429 /** 1430 * generic_file_fsync - generic fsync implementation for simple filesystems 1431 * with flush 1432 * @file: file to synchronize 1433 * @start: start offset in bytes 1434 * @end: end offset in bytes (inclusive) 1435 * @datasync: only synchronize essential metadata if true 1436 * 1437 */ 1438 1439 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1440 int datasync) 1441 { 1442 struct inode *inode = file->f_mapping->host; 1443 int err; 1444 1445 err = __generic_file_fsync(file, start, end, datasync); 1446 if (err) 1447 return err; 1448 return blkdev_issue_flush(inode->i_sb->s_bdev); 1449 } 1450 EXPORT_SYMBOL(generic_file_fsync); 1451 1452 /** 1453 * generic_check_addressable - Check addressability of file system 1454 * @blocksize_bits: log of file system block size 1455 * @num_blocks: number of blocks in file system 1456 * 1457 * Determine whether a file system with @num_blocks blocks (and a 1458 * block size of 2**@blocksize_bits) is addressable by the sector_t 1459 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1460 */ 1461 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1462 { 1463 u64 last_fs_block = num_blocks - 1; 1464 u64 last_fs_page = 1465 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1466 1467 if (unlikely(num_blocks == 0)) 1468 return 0; 1469 1470 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1471 return -EINVAL; 1472 1473 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1474 (last_fs_page > (pgoff_t)(~0ULL))) { 1475 return -EFBIG; 1476 } 1477 return 0; 1478 } 1479 EXPORT_SYMBOL(generic_check_addressable); 1480 1481 /* 1482 * No-op implementation of ->fsync for in-memory filesystems. 1483 */ 1484 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1485 { 1486 return 0; 1487 } 1488 EXPORT_SYMBOL(noop_fsync); 1489 1490 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1491 { 1492 /* 1493 * iomap based filesystems support direct I/O without need for 1494 * this callback. However, it still needs to be set in 1495 * inode->a_ops so that open/fcntl know that direct I/O is 1496 * generally supported. 1497 */ 1498 return -EINVAL; 1499 } 1500 EXPORT_SYMBOL_GPL(noop_direct_IO); 1501 1502 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1503 void kfree_link(void *p) 1504 { 1505 kfree(p); 1506 } 1507 EXPORT_SYMBOL(kfree_link); 1508 1509 struct inode *alloc_anon_inode(struct super_block *s) 1510 { 1511 static const struct address_space_operations anon_aops = { 1512 .dirty_folio = noop_dirty_folio, 1513 }; 1514 struct inode *inode = new_inode_pseudo(s); 1515 1516 if (!inode) 1517 return ERR_PTR(-ENOMEM); 1518 1519 inode->i_ino = get_next_ino(); 1520 inode->i_mapping->a_ops = &anon_aops; 1521 1522 /* 1523 * Mark the inode dirty from the very beginning, 1524 * that way it will never be moved to the dirty 1525 * list because mark_inode_dirty() will think 1526 * that it already _is_ on the dirty list. 1527 */ 1528 inode->i_state = I_DIRTY; 1529 inode->i_mode = S_IRUSR | S_IWUSR; 1530 inode->i_uid = current_fsuid(); 1531 inode->i_gid = current_fsgid(); 1532 inode->i_flags |= S_PRIVATE; 1533 simple_inode_init_ts(inode); 1534 return inode; 1535 } 1536 EXPORT_SYMBOL(alloc_anon_inode); 1537 1538 /** 1539 * simple_nosetlease - generic helper for prohibiting leases 1540 * @filp: file pointer 1541 * @arg: type of lease to obtain 1542 * @flp: new lease supplied for insertion 1543 * @priv: private data for lm_setup operation 1544 * 1545 * Generic helper for filesystems that do not wish to allow leases to be set. 1546 * All arguments are ignored and it just returns -EINVAL. 1547 */ 1548 int 1549 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp, 1550 void **priv) 1551 { 1552 return -EINVAL; 1553 } 1554 EXPORT_SYMBOL(simple_nosetlease); 1555 1556 /** 1557 * simple_get_link - generic helper to get the target of "fast" symlinks 1558 * @dentry: not used here 1559 * @inode: the symlink inode 1560 * @done: not used here 1561 * 1562 * Generic helper for filesystems to use for symlink inodes where a pointer to 1563 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1564 * since as an optimization the path lookup code uses any non-NULL ->i_link 1565 * directly, without calling ->get_link(). But ->get_link() still must be set, 1566 * to mark the inode_operations as being for a symlink. 1567 * 1568 * Return: the symlink target 1569 */ 1570 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1571 struct delayed_call *done) 1572 { 1573 return inode->i_link; 1574 } 1575 EXPORT_SYMBOL(simple_get_link); 1576 1577 const struct inode_operations simple_symlink_inode_operations = { 1578 .get_link = simple_get_link, 1579 }; 1580 EXPORT_SYMBOL(simple_symlink_inode_operations); 1581 1582 /* 1583 * Operations for a permanently empty directory. 1584 */ 1585 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1586 { 1587 return ERR_PTR(-ENOENT); 1588 } 1589 1590 static int empty_dir_getattr(struct mnt_idmap *idmap, 1591 const struct path *path, struct kstat *stat, 1592 u32 request_mask, unsigned int query_flags) 1593 { 1594 struct inode *inode = d_inode(path->dentry); 1595 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1596 return 0; 1597 } 1598 1599 static int empty_dir_setattr(struct mnt_idmap *idmap, 1600 struct dentry *dentry, struct iattr *attr) 1601 { 1602 return -EPERM; 1603 } 1604 1605 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1606 { 1607 return -EOPNOTSUPP; 1608 } 1609 1610 static const struct inode_operations empty_dir_inode_operations = { 1611 .lookup = empty_dir_lookup, 1612 .permission = generic_permission, 1613 .setattr = empty_dir_setattr, 1614 .getattr = empty_dir_getattr, 1615 .listxattr = empty_dir_listxattr, 1616 }; 1617 1618 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1619 { 1620 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1621 return generic_file_llseek_size(file, offset, whence, 2, 2); 1622 } 1623 1624 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1625 { 1626 dir_emit_dots(file, ctx); 1627 return 0; 1628 } 1629 1630 static const struct file_operations empty_dir_operations = { 1631 .llseek = empty_dir_llseek, 1632 .read = generic_read_dir, 1633 .iterate_shared = empty_dir_readdir, 1634 .fsync = noop_fsync, 1635 }; 1636 1637 1638 void make_empty_dir_inode(struct inode *inode) 1639 { 1640 set_nlink(inode, 2); 1641 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1642 inode->i_uid = GLOBAL_ROOT_UID; 1643 inode->i_gid = GLOBAL_ROOT_GID; 1644 inode->i_rdev = 0; 1645 inode->i_size = 0; 1646 inode->i_blkbits = PAGE_SHIFT; 1647 inode->i_blocks = 0; 1648 1649 inode->i_op = &empty_dir_inode_operations; 1650 inode->i_opflags &= ~IOP_XATTR; 1651 inode->i_fop = &empty_dir_operations; 1652 } 1653 1654 bool is_empty_dir_inode(struct inode *inode) 1655 { 1656 return (inode->i_fop == &empty_dir_operations) && 1657 (inode->i_op == &empty_dir_inode_operations); 1658 } 1659 1660 #if IS_ENABLED(CONFIG_UNICODE) 1661 /** 1662 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1663 * @dentry: dentry whose name we are checking against 1664 * @len: len of name of dentry 1665 * @str: str pointer to name of dentry 1666 * @name: Name to compare against 1667 * 1668 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1669 */ 1670 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1671 const char *str, const struct qstr *name) 1672 { 1673 const struct dentry *parent = READ_ONCE(dentry->d_parent); 1674 const struct inode *dir = READ_ONCE(parent->d_inode); 1675 const struct super_block *sb = dentry->d_sb; 1676 const struct unicode_map *um = sb->s_encoding; 1677 struct qstr qstr = QSTR_INIT(str, len); 1678 char strbuf[DNAME_INLINE_LEN]; 1679 int ret; 1680 1681 if (!dir || !IS_CASEFOLDED(dir)) 1682 goto fallback; 1683 /* 1684 * If the dentry name is stored in-line, then it may be concurrently 1685 * modified by a rename. If this happens, the VFS will eventually retry 1686 * the lookup, so it doesn't matter what ->d_compare() returns. 1687 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1688 * string. Therefore, we have to copy the name into a temporary buffer. 1689 */ 1690 if (len <= DNAME_INLINE_LEN - 1) { 1691 memcpy(strbuf, str, len); 1692 strbuf[len] = 0; 1693 qstr.name = strbuf; 1694 /* prevent compiler from optimizing out the temporary buffer */ 1695 barrier(); 1696 } 1697 ret = utf8_strncasecmp(um, name, &qstr); 1698 if (ret >= 0) 1699 return ret; 1700 1701 if (sb_has_strict_encoding(sb)) 1702 return -EINVAL; 1703 fallback: 1704 if (len != name->len) 1705 return 1; 1706 return !!memcmp(str, name->name, len); 1707 } 1708 1709 /** 1710 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1711 * @dentry: dentry of the parent directory 1712 * @str: qstr of name whose hash we should fill in 1713 * 1714 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1715 */ 1716 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1717 { 1718 const struct inode *dir = READ_ONCE(dentry->d_inode); 1719 struct super_block *sb = dentry->d_sb; 1720 const struct unicode_map *um = sb->s_encoding; 1721 int ret = 0; 1722 1723 if (!dir || !IS_CASEFOLDED(dir)) 1724 return 0; 1725 1726 ret = utf8_casefold_hash(um, dentry, str); 1727 if (ret < 0 && sb_has_strict_encoding(sb)) 1728 return -EINVAL; 1729 return 0; 1730 } 1731 1732 static const struct dentry_operations generic_ci_dentry_ops = { 1733 .d_hash = generic_ci_d_hash, 1734 .d_compare = generic_ci_d_compare, 1735 }; 1736 #endif 1737 1738 #ifdef CONFIG_FS_ENCRYPTION 1739 static const struct dentry_operations generic_encrypted_dentry_ops = { 1740 .d_revalidate = fscrypt_d_revalidate, 1741 }; 1742 #endif 1743 1744 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1745 static const struct dentry_operations generic_encrypted_ci_dentry_ops = { 1746 .d_hash = generic_ci_d_hash, 1747 .d_compare = generic_ci_d_compare, 1748 .d_revalidate = fscrypt_d_revalidate, 1749 }; 1750 #endif 1751 1752 /** 1753 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry 1754 * @dentry: dentry to set ops on 1755 * 1756 * Casefolded directories need d_hash and d_compare set, so that the dentries 1757 * contained in them are handled case-insensitively. Note that these operations 1758 * are needed on the parent directory rather than on the dentries in it, and 1759 * while the casefolding flag can be toggled on and off on an empty directory, 1760 * dentry_operations can't be changed later. As a result, if the filesystem has 1761 * casefolding support enabled at all, we have to give all dentries the 1762 * casefolding operations even if their inode doesn't have the casefolding flag 1763 * currently (and thus the casefolding ops would be no-ops for now). 1764 * 1765 * Encryption works differently in that the only dentry operation it needs is 1766 * d_revalidate, which it only needs on dentries that have the no-key name flag. 1767 * The no-key flag can't be set "later", so we don't have to worry about that. 1768 * 1769 * Finally, to maximize compatibility with overlayfs (which isn't compatible 1770 * with certain dentry operations) and to avoid taking an unnecessary 1771 * performance hit, we use custom dentry_operations for each possible 1772 * combination rather than always installing all operations. 1773 */ 1774 void generic_set_encrypted_ci_d_ops(struct dentry *dentry) 1775 { 1776 #ifdef CONFIG_FS_ENCRYPTION 1777 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME; 1778 #endif 1779 #if IS_ENABLED(CONFIG_UNICODE) 1780 bool needs_ci_ops = dentry->d_sb->s_encoding; 1781 #endif 1782 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1783 if (needs_encrypt_ops && needs_ci_ops) { 1784 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops); 1785 return; 1786 } 1787 #endif 1788 #ifdef CONFIG_FS_ENCRYPTION 1789 if (needs_encrypt_ops) { 1790 d_set_d_op(dentry, &generic_encrypted_dentry_ops); 1791 return; 1792 } 1793 #endif 1794 #if IS_ENABLED(CONFIG_UNICODE) 1795 if (needs_ci_ops) { 1796 d_set_d_op(dentry, &generic_ci_dentry_ops); 1797 return; 1798 } 1799 #endif 1800 } 1801 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops); 1802 1803 /** 1804 * inode_maybe_inc_iversion - increments i_version 1805 * @inode: inode with the i_version that should be updated 1806 * @force: increment the counter even if it's not necessary? 1807 * 1808 * Every time the inode is modified, the i_version field must be seen to have 1809 * changed by any observer. 1810 * 1811 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1812 * the value, and clear the queried flag. 1813 * 1814 * In the common case where neither is set, then we can return "false" without 1815 * updating i_version. 1816 * 1817 * If this function returns false, and no other metadata has changed, then we 1818 * can avoid logging the metadata. 1819 */ 1820 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1821 { 1822 u64 cur, new; 1823 1824 /* 1825 * The i_version field is not strictly ordered with any other inode 1826 * information, but the legacy inode_inc_iversion code used a spinlock 1827 * to serialize increments. 1828 * 1829 * Here, we add full memory barriers to ensure that any de-facto 1830 * ordering with other info is preserved. 1831 * 1832 * This barrier pairs with the barrier in inode_query_iversion() 1833 */ 1834 smp_mb(); 1835 cur = inode_peek_iversion_raw(inode); 1836 do { 1837 /* If flag is clear then we needn't do anything */ 1838 if (!force && !(cur & I_VERSION_QUERIED)) 1839 return false; 1840 1841 /* Since lowest bit is flag, add 2 to avoid it */ 1842 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 1843 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1844 return true; 1845 } 1846 EXPORT_SYMBOL(inode_maybe_inc_iversion); 1847 1848 /** 1849 * inode_query_iversion - read i_version for later use 1850 * @inode: inode from which i_version should be read 1851 * 1852 * Read the inode i_version counter. This should be used by callers that wish 1853 * to store the returned i_version for later comparison. This will guarantee 1854 * that a later query of the i_version will result in a different value if 1855 * anything has changed. 1856 * 1857 * In this implementation, we fetch the current value, set the QUERIED flag and 1858 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 1859 * that fails, we try again with the newly fetched value from the cmpxchg. 1860 */ 1861 u64 inode_query_iversion(struct inode *inode) 1862 { 1863 u64 cur, new; 1864 1865 cur = inode_peek_iversion_raw(inode); 1866 do { 1867 /* If flag is already set, then no need to swap */ 1868 if (cur & I_VERSION_QUERIED) { 1869 /* 1870 * This barrier (and the implicit barrier in the 1871 * cmpxchg below) pairs with the barrier in 1872 * inode_maybe_inc_iversion(). 1873 */ 1874 smp_mb(); 1875 break; 1876 } 1877 1878 new = cur | I_VERSION_QUERIED; 1879 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1880 return cur >> I_VERSION_QUERIED_SHIFT; 1881 } 1882 EXPORT_SYMBOL(inode_query_iversion); 1883 1884 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 1885 ssize_t direct_written, ssize_t buffered_written) 1886 { 1887 struct address_space *mapping = iocb->ki_filp->f_mapping; 1888 loff_t pos = iocb->ki_pos - buffered_written; 1889 loff_t end = iocb->ki_pos - 1; 1890 int err; 1891 1892 /* 1893 * If the buffered write fallback returned an error, we want to return 1894 * the number of bytes which were written by direct I/O, or the error 1895 * code if that was zero. 1896 * 1897 * Note that this differs from normal direct-io semantics, which will 1898 * return -EFOO even if some bytes were written. 1899 */ 1900 if (unlikely(buffered_written < 0)) { 1901 if (direct_written) 1902 return direct_written; 1903 return buffered_written; 1904 } 1905 1906 /* 1907 * We need to ensure that the page cache pages are written to disk and 1908 * invalidated to preserve the expected O_DIRECT semantics. 1909 */ 1910 err = filemap_write_and_wait_range(mapping, pos, end); 1911 if (err < 0) { 1912 /* 1913 * We don't know how much we wrote, so just return the number of 1914 * bytes which were direct-written 1915 */ 1916 iocb->ki_pos -= buffered_written; 1917 if (direct_written) 1918 return direct_written; 1919 return err; 1920 } 1921 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 1922 return direct_written + buffered_written; 1923 } 1924 EXPORT_SYMBOL_GPL(direct_write_fallback); 1925 1926 /** 1927 * simple_inode_init_ts - initialize the timestamps for a new inode 1928 * @inode: inode to be initialized 1929 * 1930 * When a new inode is created, most filesystems set the timestamps to the 1931 * current time. Add a helper to do this. 1932 */ 1933 struct timespec64 simple_inode_init_ts(struct inode *inode) 1934 { 1935 struct timespec64 ts = inode_set_ctime_current(inode); 1936 1937 inode_set_atime_to_ts(inode, ts); 1938 inode_set_mtime_to_ts(inode, ts); 1939 return ts; 1940 } 1941 EXPORT_SYMBOL(simple_inode_init_ts); 1942