xref: /openbmc/linux/fs/libfs.c (revision 9e3bd0f6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 
23 #include <linux/uaccess.h>
24 
25 #include "internal.h"
26 
27 int simple_getattr(const struct path *path, struct kstat *stat,
28 		   u32 request_mask, unsigned int query_flags)
29 {
30 	struct inode *inode = d_inode(path->dentry);
31 	generic_fillattr(inode, stat);
32 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
33 	return 0;
34 }
35 EXPORT_SYMBOL(simple_getattr);
36 
37 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
38 {
39 	buf->f_type = dentry->d_sb->s_magic;
40 	buf->f_bsize = PAGE_SIZE;
41 	buf->f_namelen = NAME_MAX;
42 	return 0;
43 }
44 EXPORT_SYMBOL(simple_statfs);
45 
46 /*
47  * Retaining negative dentries for an in-memory filesystem just wastes
48  * memory and lookup time: arrange for them to be deleted immediately.
49  */
50 int always_delete_dentry(const struct dentry *dentry)
51 {
52 	return 1;
53 }
54 EXPORT_SYMBOL(always_delete_dentry);
55 
56 const struct dentry_operations simple_dentry_operations = {
57 	.d_delete = always_delete_dentry,
58 };
59 EXPORT_SYMBOL(simple_dentry_operations);
60 
61 /*
62  * Lookup the data. This is trivial - if the dentry didn't already
63  * exist, we know it is negative.  Set d_op to delete negative dentries.
64  */
65 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
66 {
67 	if (dentry->d_name.len > NAME_MAX)
68 		return ERR_PTR(-ENAMETOOLONG);
69 	if (!dentry->d_sb->s_d_op)
70 		d_set_d_op(dentry, &simple_dentry_operations);
71 	d_add(dentry, NULL);
72 	return NULL;
73 }
74 EXPORT_SYMBOL(simple_lookup);
75 
76 int dcache_dir_open(struct inode *inode, struct file *file)
77 {
78 	file->private_data = d_alloc_cursor(file->f_path.dentry);
79 
80 	return file->private_data ? 0 : -ENOMEM;
81 }
82 EXPORT_SYMBOL(dcache_dir_open);
83 
84 int dcache_dir_close(struct inode *inode, struct file *file)
85 {
86 	dput(file->private_data);
87 	return 0;
88 }
89 EXPORT_SYMBOL(dcache_dir_close);
90 
91 /* parent is locked at least shared */
92 static struct dentry *next_positive(struct dentry *parent,
93 				    struct list_head *from,
94 				    int count)
95 {
96 	unsigned *seq = &parent->d_inode->i_dir_seq, n;
97 	struct dentry *res;
98 	struct list_head *p;
99 	bool skipped;
100 	int i;
101 
102 retry:
103 	i = count;
104 	skipped = false;
105 	n = smp_load_acquire(seq) & ~1;
106 	res = NULL;
107 	rcu_read_lock();
108 	for (p = from->next; p != &parent->d_subdirs; p = p->next) {
109 		struct dentry *d = list_entry(p, struct dentry, d_child);
110 		if (!simple_positive(d)) {
111 			skipped = true;
112 		} else if (!--i) {
113 			res = d;
114 			break;
115 		}
116 	}
117 	rcu_read_unlock();
118 	if (skipped) {
119 		smp_rmb();
120 		if (unlikely(*seq != n))
121 			goto retry;
122 	}
123 	return res;
124 }
125 
126 static void move_cursor(struct dentry *cursor, struct list_head *after)
127 {
128 	struct dentry *parent = cursor->d_parent;
129 	unsigned n, *seq = &parent->d_inode->i_dir_seq;
130 	spin_lock(&parent->d_lock);
131 	for (;;) {
132 		n = *seq;
133 		if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
134 			break;
135 		cpu_relax();
136 	}
137 	__list_del(cursor->d_child.prev, cursor->d_child.next);
138 	if (after)
139 		list_add(&cursor->d_child, after);
140 	else
141 		list_add_tail(&cursor->d_child, &parent->d_subdirs);
142 	smp_store_release(seq, n + 2);
143 	spin_unlock(&parent->d_lock);
144 }
145 
146 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
147 {
148 	struct dentry *dentry = file->f_path.dentry;
149 	switch (whence) {
150 		case 1:
151 			offset += file->f_pos;
152 			/* fall through */
153 		case 0:
154 			if (offset >= 0)
155 				break;
156 			/* fall through */
157 		default:
158 			return -EINVAL;
159 	}
160 	if (offset != file->f_pos) {
161 		file->f_pos = offset;
162 		if (file->f_pos >= 2) {
163 			struct dentry *cursor = file->private_data;
164 			struct dentry *to;
165 			loff_t n = file->f_pos - 2;
166 
167 			inode_lock_shared(dentry->d_inode);
168 			to = next_positive(dentry, &dentry->d_subdirs, n);
169 			move_cursor(cursor, to ? &to->d_child : NULL);
170 			inode_unlock_shared(dentry->d_inode);
171 		}
172 	}
173 	return offset;
174 }
175 EXPORT_SYMBOL(dcache_dir_lseek);
176 
177 /* Relationship between i_mode and the DT_xxx types */
178 static inline unsigned char dt_type(struct inode *inode)
179 {
180 	return (inode->i_mode >> 12) & 15;
181 }
182 
183 /*
184  * Directory is locked and all positive dentries in it are safe, since
185  * for ramfs-type trees they can't go away without unlink() or rmdir(),
186  * both impossible due to the lock on directory.
187  */
188 
189 int dcache_readdir(struct file *file, struct dir_context *ctx)
190 {
191 	struct dentry *dentry = file->f_path.dentry;
192 	struct dentry *cursor = file->private_data;
193 	struct list_head *p = &cursor->d_child;
194 	struct dentry *next;
195 	bool moved = false;
196 
197 	if (!dir_emit_dots(file, ctx))
198 		return 0;
199 
200 	if (ctx->pos == 2)
201 		p = &dentry->d_subdirs;
202 	while ((next = next_positive(dentry, p, 1)) != NULL) {
203 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
204 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
205 			break;
206 		moved = true;
207 		p = &next->d_child;
208 		ctx->pos++;
209 	}
210 	if (moved)
211 		move_cursor(cursor, p);
212 	return 0;
213 }
214 EXPORT_SYMBOL(dcache_readdir);
215 
216 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
217 {
218 	return -EISDIR;
219 }
220 EXPORT_SYMBOL(generic_read_dir);
221 
222 const struct file_operations simple_dir_operations = {
223 	.open		= dcache_dir_open,
224 	.release	= dcache_dir_close,
225 	.llseek		= dcache_dir_lseek,
226 	.read		= generic_read_dir,
227 	.iterate_shared	= dcache_readdir,
228 	.fsync		= noop_fsync,
229 };
230 EXPORT_SYMBOL(simple_dir_operations);
231 
232 const struct inode_operations simple_dir_inode_operations = {
233 	.lookup		= simple_lookup,
234 };
235 EXPORT_SYMBOL(simple_dir_inode_operations);
236 
237 static const struct super_operations simple_super_operations = {
238 	.statfs		= simple_statfs,
239 };
240 
241 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
242 {
243 	struct pseudo_fs_context *ctx = fc->fs_private;
244 	struct inode *root;
245 
246 	s->s_maxbytes = MAX_LFS_FILESIZE;
247 	s->s_blocksize = PAGE_SIZE;
248 	s->s_blocksize_bits = PAGE_SHIFT;
249 	s->s_magic = ctx->magic;
250 	s->s_op = ctx->ops ?: &simple_super_operations;
251 	s->s_xattr = ctx->xattr;
252 	s->s_time_gran = 1;
253 	root = new_inode(s);
254 	if (!root)
255 		return -ENOMEM;
256 
257 	/*
258 	 * since this is the first inode, make it number 1. New inodes created
259 	 * after this must take care not to collide with it (by passing
260 	 * max_reserved of 1 to iunique).
261 	 */
262 	root->i_ino = 1;
263 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
264 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
265 	s->s_root = d_make_root(root);
266 	if (!s->s_root)
267 		return -ENOMEM;
268 	s->s_d_op = ctx->dops;
269 	return 0;
270 }
271 
272 static int pseudo_fs_get_tree(struct fs_context *fc)
273 {
274 	return get_tree_nodev(fc, pseudo_fs_fill_super);
275 }
276 
277 static void pseudo_fs_free(struct fs_context *fc)
278 {
279 	kfree(fc->fs_private);
280 }
281 
282 static const struct fs_context_operations pseudo_fs_context_ops = {
283 	.free		= pseudo_fs_free,
284 	.get_tree	= pseudo_fs_get_tree,
285 };
286 
287 /*
288  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
289  * will never be mountable)
290  */
291 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
292 					unsigned long magic)
293 {
294 	struct pseudo_fs_context *ctx;
295 
296 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
297 	if (likely(ctx)) {
298 		ctx->magic = magic;
299 		fc->fs_private = ctx;
300 		fc->ops = &pseudo_fs_context_ops;
301 		fc->sb_flags |= SB_NOUSER;
302 		fc->global = true;
303 	}
304 	return ctx;
305 }
306 EXPORT_SYMBOL(init_pseudo);
307 
308 int simple_open(struct inode *inode, struct file *file)
309 {
310 	if (inode->i_private)
311 		file->private_data = inode->i_private;
312 	return 0;
313 }
314 EXPORT_SYMBOL(simple_open);
315 
316 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
317 {
318 	struct inode *inode = d_inode(old_dentry);
319 
320 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
321 	inc_nlink(inode);
322 	ihold(inode);
323 	dget(dentry);
324 	d_instantiate(dentry, inode);
325 	return 0;
326 }
327 EXPORT_SYMBOL(simple_link);
328 
329 int simple_empty(struct dentry *dentry)
330 {
331 	struct dentry *child;
332 	int ret = 0;
333 
334 	spin_lock(&dentry->d_lock);
335 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
336 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
337 		if (simple_positive(child)) {
338 			spin_unlock(&child->d_lock);
339 			goto out;
340 		}
341 		spin_unlock(&child->d_lock);
342 	}
343 	ret = 1;
344 out:
345 	spin_unlock(&dentry->d_lock);
346 	return ret;
347 }
348 EXPORT_SYMBOL(simple_empty);
349 
350 int simple_unlink(struct inode *dir, struct dentry *dentry)
351 {
352 	struct inode *inode = d_inode(dentry);
353 
354 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
355 	drop_nlink(inode);
356 	dput(dentry);
357 	return 0;
358 }
359 EXPORT_SYMBOL(simple_unlink);
360 
361 int simple_rmdir(struct inode *dir, struct dentry *dentry)
362 {
363 	if (!simple_empty(dentry))
364 		return -ENOTEMPTY;
365 
366 	drop_nlink(d_inode(dentry));
367 	simple_unlink(dir, dentry);
368 	drop_nlink(dir);
369 	return 0;
370 }
371 EXPORT_SYMBOL(simple_rmdir);
372 
373 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
374 		  struct inode *new_dir, struct dentry *new_dentry,
375 		  unsigned int flags)
376 {
377 	struct inode *inode = d_inode(old_dentry);
378 	int they_are_dirs = d_is_dir(old_dentry);
379 
380 	if (flags & ~RENAME_NOREPLACE)
381 		return -EINVAL;
382 
383 	if (!simple_empty(new_dentry))
384 		return -ENOTEMPTY;
385 
386 	if (d_really_is_positive(new_dentry)) {
387 		simple_unlink(new_dir, new_dentry);
388 		if (they_are_dirs) {
389 			drop_nlink(d_inode(new_dentry));
390 			drop_nlink(old_dir);
391 		}
392 	} else if (they_are_dirs) {
393 		drop_nlink(old_dir);
394 		inc_nlink(new_dir);
395 	}
396 
397 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
398 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
399 
400 	return 0;
401 }
402 EXPORT_SYMBOL(simple_rename);
403 
404 /**
405  * simple_setattr - setattr for simple filesystem
406  * @dentry: dentry
407  * @iattr: iattr structure
408  *
409  * Returns 0 on success, -error on failure.
410  *
411  * simple_setattr is a simple ->setattr implementation without a proper
412  * implementation of size changes.
413  *
414  * It can either be used for in-memory filesystems or special files
415  * on simple regular filesystems.  Anything that needs to change on-disk
416  * or wire state on size changes needs its own setattr method.
417  */
418 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
419 {
420 	struct inode *inode = d_inode(dentry);
421 	int error;
422 
423 	error = setattr_prepare(dentry, iattr);
424 	if (error)
425 		return error;
426 
427 	if (iattr->ia_valid & ATTR_SIZE)
428 		truncate_setsize(inode, iattr->ia_size);
429 	setattr_copy(inode, iattr);
430 	mark_inode_dirty(inode);
431 	return 0;
432 }
433 EXPORT_SYMBOL(simple_setattr);
434 
435 int simple_readpage(struct file *file, struct page *page)
436 {
437 	clear_highpage(page);
438 	flush_dcache_page(page);
439 	SetPageUptodate(page);
440 	unlock_page(page);
441 	return 0;
442 }
443 EXPORT_SYMBOL(simple_readpage);
444 
445 int simple_write_begin(struct file *file, struct address_space *mapping,
446 			loff_t pos, unsigned len, unsigned flags,
447 			struct page **pagep, void **fsdata)
448 {
449 	struct page *page;
450 	pgoff_t index;
451 
452 	index = pos >> PAGE_SHIFT;
453 
454 	page = grab_cache_page_write_begin(mapping, index, flags);
455 	if (!page)
456 		return -ENOMEM;
457 
458 	*pagep = page;
459 
460 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
461 		unsigned from = pos & (PAGE_SIZE - 1);
462 
463 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
464 	}
465 	return 0;
466 }
467 EXPORT_SYMBOL(simple_write_begin);
468 
469 /**
470  * simple_write_end - .write_end helper for non-block-device FSes
471  * @available: See .write_end of address_space_operations
472  * @file: 		"
473  * @mapping: 		"
474  * @pos: 		"
475  * @len: 		"
476  * @copied: 		"
477  * @page: 		"
478  * @fsdata: 		"
479  *
480  * simple_write_end does the minimum needed for updating a page after writing is
481  * done. It has the same API signature as the .write_end of
482  * address_space_operations vector. So it can just be set onto .write_end for
483  * FSes that don't need any other processing. i_mutex is assumed to be held.
484  * Block based filesystems should use generic_write_end().
485  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
486  * is not called, so a filesystem that actually does store data in .write_inode
487  * should extend on what's done here with a call to mark_inode_dirty() in the
488  * case that i_size has changed.
489  *
490  * Use *ONLY* with simple_readpage()
491  */
492 int simple_write_end(struct file *file, struct address_space *mapping,
493 			loff_t pos, unsigned len, unsigned copied,
494 			struct page *page, void *fsdata)
495 {
496 	struct inode *inode = page->mapping->host;
497 	loff_t last_pos = pos + copied;
498 
499 	/* zero the stale part of the page if we did a short copy */
500 	if (!PageUptodate(page)) {
501 		if (copied < len) {
502 			unsigned from = pos & (PAGE_SIZE - 1);
503 
504 			zero_user(page, from + copied, len - copied);
505 		}
506 		SetPageUptodate(page);
507 	}
508 	/*
509 	 * No need to use i_size_read() here, the i_size
510 	 * cannot change under us because we hold the i_mutex.
511 	 */
512 	if (last_pos > inode->i_size)
513 		i_size_write(inode, last_pos);
514 
515 	set_page_dirty(page);
516 	unlock_page(page);
517 	put_page(page);
518 
519 	return copied;
520 }
521 EXPORT_SYMBOL(simple_write_end);
522 
523 /*
524  * the inodes created here are not hashed. If you use iunique to generate
525  * unique inode values later for this filesystem, then you must take care
526  * to pass it an appropriate max_reserved value to avoid collisions.
527  */
528 int simple_fill_super(struct super_block *s, unsigned long magic,
529 		      const struct tree_descr *files)
530 {
531 	struct inode *inode;
532 	struct dentry *root;
533 	struct dentry *dentry;
534 	int i;
535 
536 	s->s_blocksize = PAGE_SIZE;
537 	s->s_blocksize_bits = PAGE_SHIFT;
538 	s->s_magic = magic;
539 	s->s_op = &simple_super_operations;
540 	s->s_time_gran = 1;
541 
542 	inode = new_inode(s);
543 	if (!inode)
544 		return -ENOMEM;
545 	/*
546 	 * because the root inode is 1, the files array must not contain an
547 	 * entry at index 1
548 	 */
549 	inode->i_ino = 1;
550 	inode->i_mode = S_IFDIR | 0755;
551 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
552 	inode->i_op = &simple_dir_inode_operations;
553 	inode->i_fop = &simple_dir_operations;
554 	set_nlink(inode, 2);
555 	root = d_make_root(inode);
556 	if (!root)
557 		return -ENOMEM;
558 	for (i = 0; !files->name || files->name[0]; i++, files++) {
559 		if (!files->name)
560 			continue;
561 
562 		/* warn if it tries to conflict with the root inode */
563 		if (unlikely(i == 1))
564 			printk(KERN_WARNING "%s: %s passed in a files array"
565 				"with an index of 1!\n", __func__,
566 				s->s_type->name);
567 
568 		dentry = d_alloc_name(root, files->name);
569 		if (!dentry)
570 			goto out;
571 		inode = new_inode(s);
572 		if (!inode) {
573 			dput(dentry);
574 			goto out;
575 		}
576 		inode->i_mode = S_IFREG | files->mode;
577 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
578 		inode->i_fop = files->ops;
579 		inode->i_ino = i;
580 		d_add(dentry, inode);
581 	}
582 	s->s_root = root;
583 	return 0;
584 out:
585 	d_genocide(root);
586 	shrink_dcache_parent(root);
587 	dput(root);
588 	return -ENOMEM;
589 }
590 EXPORT_SYMBOL(simple_fill_super);
591 
592 static DEFINE_SPINLOCK(pin_fs_lock);
593 
594 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
595 {
596 	struct vfsmount *mnt = NULL;
597 	spin_lock(&pin_fs_lock);
598 	if (unlikely(!*mount)) {
599 		spin_unlock(&pin_fs_lock);
600 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
601 		if (IS_ERR(mnt))
602 			return PTR_ERR(mnt);
603 		spin_lock(&pin_fs_lock);
604 		if (!*mount)
605 			*mount = mnt;
606 	}
607 	mntget(*mount);
608 	++*count;
609 	spin_unlock(&pin_fs_lock);
610 	mntput(mnt);
611 	return 0;
612 }
613 EXPORT_SYMBOL(simple_pin_fs);
614 
615 void simple_release_fs(struct vfsmount **mount, int *count)
616 {
617 	struct vfsmount *mnt;
618 	spin_lock(&pin_fs_lock);
619 	mnt = *mount;
620 	if (!--*count)
621 		*mount = NULL;
622 	spin_unlock(&pin_fs_lock);
623 	mntput(mnt);
624 }
625 EXPORT_SYMBOL(simple_release_fs);
626 
627 /**
628  * simple_read_from_buffer - copy data from the buffer to user space
629  * @to: the user space buffer to read to
630  * @count: the maximum number of bytes to read
631  * @ppos: the current position in the buffer
632  * @from: the buffer to read from
633  * @available: the size of the buffer
634  *
635  * The simple_read_from_buffer() function reads up to @count bytes from the
636  * buffer @from at offset @ppos into the user space address starting at @to.
637  *
638  * On success, the number of bytes read is returned and the offset @ppos is
639  * advanced by this number, or negative value is returned on error.
640  **/
641 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
642 				const void *from, size_t available)
643 {
644 	loff_t pos = *ppos;
645 	size_t ret;
646 
647 	if (pos < 0)
648 		return -EINVAL;
649 	if (pos >= available || !count)
650 		return 0;
651 	if (count > available - pos)
652 		count = available - pos;
653 	ret = copy_to_user(to, from + pos, count);
654 	if (ret == count)
655 		return -EFAULT;
656 	count -= ret;
657 	*ppos = pos + count;
658 	return count;
659 }
660 EXPORT_SYMBOL(simple_read_from_buffer);
661 
662 /**
663  * simple_write_to_buffer - copy data from user space to the buffer
664  * @to: the buffer to write to
665  * @available: the size of the buffer
666  * @ppos: the current position in the buffer
667  * @from: the user space buffer to read from
668  * @count: the maximum number of bytes to read
669  *
670  * The simple_write_to_buffer() function reads up to @count bytes from the user
671  * space address starting at @from into the buffer @to at offset @ppos.
672  *
673  * On success, the number of bytes written is returned and the offset @ppos is
674  * advanced by this number, or negative value is returned on error.
675  **/
676 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
677 		const void __user *from, size_t count)
678 {
679 	loff_t pos = *ppos;
680 	size_t res;
681 
682 	if (pos < 0)
683 		return -EINVAL;
684 	if (pos >= available || !count)
685 		return 0;
686 	if (count > available - pos)
687 		count = available - pos;
688 	res = copy_from_user(to + pos, from, count);
689 	if (res == count)
690 		return -EFAULT;
691 	count -= res;
692 	*ppos = pos + count;
693 	return count;
694 }
695 EXPORT_SYMBOL(simple_write_to_buffer);
696 
697 /**
698  * memory_read_from_buffer - copy data from the buffer
699  * @to: the kernel space buffer to read to
700  * @count: the maximum number of bytes to read
701  * @ppos: the current position in the buffer
702  * @from: the buffer to read from
703  * @available: the size of the buffer
704  *
705  * The memory_read_from_buffer() function reads up to @count bytes from the
706  * buffer @from at offset @ppos into the kernel space address starting at @to.
707  *
708  * On success, the number of bytes read is returned and the offset @ppos is
709  * advanced by this number, or negative value is returned on error.
710  **/
711 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
712 				const void *from, size_t available)
713 {
714 	loff_t pos = *ppos;
715 
716 	if (pos < 0)
717 		return -EINVAL;
718 	if (pos >= available)
719 		return 0;
720 	if (count > available - pos)
721 		count = available - pos;
722 	memcpy(to, from + pos, count);
723 	*ppos = pos + count;
724 
725 	return count;
726 }
727 EXPORT_SYMBOL(memory_read_from_buffer);
728 
729 /*
730  * Transaction based IO.
731  * The file expects a single write which triggers the transaction, and then
732  * possibly a read which collects the result - which is stored in a
733  * file-local buffer.
734  */
735 
736 void simple_transaction_set(struct file *file, size_t n)
737 {
738 	struct simple_transaction_argresp *ar = file->private_data;
739 
740 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
741 
742 	/*
743 	 * The barrier ensures that ar->size will really remain zero until
744 	 * ar->data is ready for reading.
745 	 */
746 	smp_mb();
747 	ar->size = n;
748 }
749 EXPORT_SYMBOL(simple_transaction_set);
750 
751 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
752 {
753 	struct simple_transaction_argresp *ar;
754 	static DEFINE_SPINLOCK(simple_transaction_lock);
755 
756 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
757 		return ERR_PTR(-EFBIG);
758 
759 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
760 	if (!ar)
761 		return ERR_PTR(-ENOMEM);
762 
763 	spin_lock(&simple_transaction_lock);
764 
765 	/* only one write allowed per open */
766 	if (file->private_data) {
767 		spin_unlock(&simple_transaction_lock);
768 		free_page((unsigned long)ar);
769 		return ERR_PTR(-EBUSY);
770 	}
771 
772 	file->private_data = ar;
773 
774 	spin_unlock(&simple_transaction_lock);
775 
776 	if (copy_from_user(ar->data, buf, size))
777 		return ERR_PTR(-EFAULT);
778 
779 	return ar->data;
780 }
781 EXPORT_SYMBOL(simple_transaction_get);
782 
783 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
784 {
785 	struct simple_transaction_argresp *ar = file->private_data;
786 
787 	if (!ar)
788 		return 0;
789 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
790 }
791 EXPORT_SYMBOL(simple_transaction_read);
792 
793 int simple_transaction_release(struct inode *inode, struct file *file)
794 {
795 	free_page((unsigned long)file->private_data);
796 	return 0;
797 }
798 EXPORT_SYMBOL(simple_transaction_release);
799 
800 /* Simple attribute files */
801 
802 struct simple_attr {
803 	int (*get)(void *, u64 *);
804 	int (*set)(void *, u64);
805 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
806 	char set_buf[24];
807 	void *data;
808 	const char *fmt;	/* format for read operation */
809 	struct mutex mutex;	/* protects access to these buffers */
810 };
811 
812 /* simple_attr_open is called by an actual attribute open file operation
813  * to set the attribute specific access operations. */
814 int simple_attr_open(struct inode *inode, struct file *file,
815 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
816 		     const char *fmt)
817 {
818 	struct simple_attr *attr;
819 
820 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
821 	if (!attr)
822 		return -ENOMEM;
823 
824 	attr->get = get;
825 	attr->set = set;
826 	attr->data = inode->i_private;
827 	attr->fmt = fmt;
828 	mutex_init(&attr->mutex);
829 
830 	file->private_data = attr;
831 
832 	return nonseekable_open(inode, file);
833 }
834 EXPORT_SYMBOL_GPL(simple_attr_open);
835 
836 int simple_attr_release(struct inode *inode, struct file *file)
837 {
838 	kfree(file->private_data);
839 	return 0;
840 }
841 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
842 
843 /* read from the buffer that is filled with the get function */
844 ssize_t simple_attr_read(struct file *file, char __user *buf,
845 			 size_t len, loff_t *ppos)
846 {
847 	struct simple_attr *attr;
848 	size_t size;
849 	ssize_t ret;
850 
851 	attr = file->private_data;
852 
853 	if (!attr->get)
854 		return -EACCES;
855 
856 	ret = mutex_lock_interruptible(&attr->mutex);
857 	if (ret)
858 		return ret;
859 
860 	if (*ppos) {		/* continued read */
861 		size = strlen(attr->get_buf);
862 	} else {		/* first read */
863 		u64 val;
864 		ret = attr->get(attr->data, &val);
865 		if (ret)
866 			goto out;
867 
868 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
869 				 attr->fmt, (unsigned long long)val);
870 	}
871 
872 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
873 out:
874 	mutex_unlock(&attr->mutex);
875 	return ret;
876 }
877 EXPORT_SYMBOL_GPL(simple_attr_read);
878 
879 /* interpret the buffer as a number to call the set function with */
880 ssize_t simple_attr_write(struct file *file, const char __user *buf,
881 			  size_t len, loff_t *ppos)
882 {
883 	struct simple_attr *attr;
884 	u64 val;
885 	size_t size;
886 	ssize_t ret;
887 
888 	attr = file->private_data;
889 	if (!attr->set)
890 		return -EACCES;
891 
892 	ret = mutex_lock_interruptible(&attr->mutex);
893 	if (ret)
894 		return ret;
895 
896 	ret = -EFAULT;
897 	size = min(sizeof(attr->set_buf) - 1, len);
898 	if (copy_from_user(attr->set_buf, buf, size))
899 		goto out;
900 
901 	attr->set_buf[size] = '\0';
902 	val = simple_strtoll(attr->set_buf, NULL, 0);
903 	ret = attr->set(attr->data, val);
904 	if (ret == 0)
905 		ret = len; /* on success, claim we got the whole input */
906 out:
907 	mutex_unlock(&attr->mutex);
908 	return ret;
909 }
910 EXPORT_SYMBOL_GPL(simple_attr_write);
911 
912 /**
913  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
914  * @sb:		filesystem to do the file handle conversion on
915  * @fid:	file handle to convert
916  * @fh_len:	length of the file handle in bytes
917  * @fh_type:	type of file handle
918  * @get_inode:	filesystem callback to retrieve inode
919  *
920  * This function decodes @fid as long as it has one of the well-known
921  * Linux filehandle types and calls @get_inode on it to retrieve the
922  * inode for the object specified in the file handle.
923  */
924 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
925 		int fh_len, int fh_type, struct inode *(*get_inode)
926 			(struct super_block *sb, u64 ino, u32 gen))
927 {
928 	struct inode *inode = NULL;
929 
930 	if (fh_len < 2)
931 		return NULL;
932 
933 	switch (fh_type) {
934 	case FILEID_INO32_GEN:
935 	case FILEID_INO32_GEN_PARENT:
936 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
937 		break;
938 	}
939 
940 	return d_obtain_alias(inode);
941 }
942 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
943 
944 /**
945  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
946  * @sb:		filesystem to do the file handle conversion on
947  * @fid:	file handle to convert
948  * @fh_len:	length of the file handle in bytes
949  * @fh_type:	type of file handle
950  * @get_inode:	filesystem callback to retrieve inode
951  *
952  * This function decodes @fid as long as it has one of the well-known
953  * Linux filehandle types and calls @get_inode on it to retrieve the
954  * inode for the _parent_ object specified in the file handle if it
955  * is specified in the file handle, or NULL otherwise.
956  */
957 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
958 		int fh_len, int fh_type, struct inode *(*get_inode)
959 			(struct super_block *sb, u64 ino, u32 gen))
960 {
961 	struct inode *inode = NULL;
962 
963 	if (fh_len <= 2)
964 		return NULL;
965 
966 	switch (fh_type) {
967 	case FILEID_INO32_GEN_PARENT:
968 		inode = get_inode(sb, fid->i32.parent_ino,
969 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
970 		break;
971 	}
972 
973 	return d_obtain_alias(inode);
974 }
975 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
976 
977 /**
978  * __generic_file_fsync - generic fsync implementation for simple filesystems
979  *
980  * @file:	file to synchronize
981  * @start:	start offset in bytes
982  * @end:	end offset in bytes (inclusive)
983  * @datasync:	only synchronize essential metadata if true
984  *
985  * This is a generic implementation of the fsync method for simple
986  * filesystems which track all non-inode metadata in the buffers list
987  * hanging off the address_space structure.
988  */
989 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
990 				 int datasync)
991 {
992 	struct inode *inode = file->f_mapping->host;
993 	int err;
994 	int ret;
995 
996 	err = file_write_and_wait_range(file, start, end);
997 	if (err)
998 		return err;
999 
1000 	inode_lock(inode);
1001 	ret = sync_mapping_buffers(inode->i_mapping);
1002 	if (!(inode->i_state & I_DIRTY_ALL))
1003 		goto out;
1004 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1005 		goto out;
1006 
1007 	err = sync_inode_metadata(inode, 1);
1008 	if (ret == 0)
1009 		ret = err;
1010 
1011 out:
1012 	inode_unlock(inode);
1013 	/* check and advance again to catch errors after syncing out buffers */
1014 	err = file_check_and_advance_wb_err(file);
1015 	if (ret == 0)
1016 		ret = err;
1017 	return ret;
1018 }
1019 EXPORT_SYMBOL(__generic_file_fsync);
1020 
1021 /**
1022  * generic_file_fsync - generic fsync implementation for simple filesystems
1023  *			with flush
1024  * @file:	file to synchronize
1025  * @start:	start offset in bytes
1026  * @end:	end offset in bytes (inclusive)
1027  * @datasync:	only synchronize essential metadata if true
1028  *
1029  */
1030 
1031 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1032 		       int datasync)
1033 {
1034 	struct inode *inode = file->f_mapping->host;
1035 	int err;
1036 
1037 	err = __generic_file_fsync(file, start, end, datasync);
1038 	if (err)
1039 		return err;
1040 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1041 }
1042 EXPORT_SYMBOL(generic_file_fsync);
1043 
1044 /**
1045  * generic_check_addressable - Check addressability of file system
1046  * @blocksize_bits:	log of file system block size
1047  * @num_blocks:		number of blocks in file system
1048  *
1049  * Determine whether a file system with @num_blocks blocks (and a
1050  * block size of 2**@blocksize_bits) is addressable by the sector_t
1051  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1052  */
1053 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1054 {
1055 	u64 last_fs_block = num_blocks - 1;
1056 	u64 last_fs_page =
1057 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1058 
1059 	if (unlikely(num_blocks == 0))
1060 		return 0;
1061 
1062 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1063 		return -EINVAL;
1064 
1065 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1066 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1067 		return -EFBIG;
1068 	}
1069 	return 0;
1070 }
1071 EXPORT_SYMBOL(generic_check_addressable);
1072 
1073 /*
1074  * No-op implementation of ->fsync for in-memory filesystems.
1075  */
1076 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1077 {
1078 	return 0;
1079 }
1080 EXPORT_SYMBOL(noop_fsync);
1081 
1082 int noop_set_page_dirty(struct page *page)
1083 {
1084 	/*
1085 	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1086 	 * tracking in the page object, dax does all dirty tracking in
1087 	 * the inode address_space in response to mkwrite faults. In the
1088 	 * dax case we only need to worry about potentially dirty CPU
1089 	 * caches, not dirty page cache pages to write back.
1090 	 *
1091 	 * This callback is defined to prevent fallback to
1092 	 * __set_page_dirty_buffers() in set_page_dirty().
1093 	 */
1094 	return 0;
1095 }
1096 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1097 
1098 void noop_invalidatepage(struct page *page, unsigned int offset,
1099 		unsigned int length)
1100 {
1101 	/*
1102 	 * There is no page cache to invalidate in the dax case, however
1103 	 * we need this callback defined to prevent falling back to
1104 	 * block_invalidatepage() in do_invalidatepage().
1105 	 */
1106 }
1107 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1108 
1109 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1110 {
1111 	/*
1112 	 * iomap based filesystems support direct I/O without need for
1113 	 * this callback. However, it still needs to be set in
1114 	 * inode->a_ops so that open/fcntl know that direct I/O is
1115 	 * generally supported.
1116 	 */
1117 	return -EINVAL;
1118 }
1119 EXPORT_SYMBOL_GPL(noop_direct_IO);
1120 
1121 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1122 void kfree_link(void *p)
1123 {
1124 	kfree(p);
1125 }
1126 EXPORT_SYMBOL(kfree_link);
1127 
1128 /*
1129  * nop .set_page_dirty method so that people can use .page_mkwrite on
1130  * anon inodes.
1131  */
1132 static int anon_set_page_dirty(struct page *page)
1133 {
1134 	return 0;
1135 };
1136 
1137 /*
1138  * A single inode exists for all anon_inode files. Contrary to pipes,
1139  * anon_inode inodes have no associated per-instance data, so we need
1140  * only allocate one of them.
1141  */
1142 struct inode *alloc_anon_inode(struct super_block *s)
1143 {
1144 	static const struct address_space_operations anon_aops = {
1145 		.set_page_dirty = anon_set_page_dirty,
1146 	};
1147 	struct inode *inode = new_inode_pseudo(s);
1148 
1149 	if (!inode)
1150 		return ERR_PTR(-ENOMEM);
1151 
1152 	inode->i_ino = get_next_ino();
1153 	inode->i_mapping->a_ops = &anon_aops;
1154 
1155 	/*
1156 	 * Mark the inode dirty from the very beginning,
1157 	 * that way it will never be moved to the dirty
1158 	 * list because mark_inode_dirty() will think
1159 	 * that it already _is_ on the dirty list.
1160 	 */
1161 	inode->i_state = I_DIRTY;
1162 	inode->i_mode = S_IRUSR | S_IWUSR;
1163 	inode->i_uid = current_fsuid();
1164 	inode->i_gid = current_fsgid();
1165 	inode->i_flags |= S_PRIVATE;
1166 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1167 	return inode;
1168 }
1169 EXPORT_SYMBOL(alloc_anon_inode);
1170 
1171 /**
1172  * simple_nosetlease - generic helper for prohibiting leases
1173  * @filp: file pointer
1174  * @arg: type of lease to obtain
1175  * @flp: new lease supplied for insertion
1176  * @priv: private data for lm_setup operation
1177  *
1178  * Generic helper for filesystems that do not wish to allow leases to be set.
1179  * All arguments are ignored and it just returns -EINVAL.
1180  */
1181 int
1182 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1183 		  void **priv)
1184 {
1185 	return -EINVAL;
1186 }
1187 EXPORT_SYMBOL(simple_nosetlease);
1188 
1189 /**
1190  * simple_get_link - generic helper to get the target of "fast" symlinks
1191  * @dentry: not used here
1192  * @inode: the symlink inode
1193  * @done: not used here
1194  *
1195  * Generic helper for filesystems to use for symlink inodes where a pointer to
1196  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1197  * since as an optimization the path lookup code uses any non-NULL ->i_link
1198  * directly, without calling ->get_link().  But ->get_link() still must be set,
1199  * to mark the inode_operations as being for a symlink.
1200  *
1201  * Return: the symlink target
1202  */
1203 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1204 			    struct delayed_call *done)
1205 {
1206 	return inode->i_link;
1207 }
1208 EXPORT_SYMBOL(simple_get_link);
1209 
1210 const struct inode_operations simple_symlink_inode_operations = {
1211 	.get_link = simple_get_link,
1212 };
1213 EXPORT_SYMBOL(simple_symlink_inode_operations);
1214 
1215 /*
1216  * Operations for a permanently empty directory.
1217  */
1218 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1219 {
1220 	return ERR_PTR(-ENOENT);
1221 }
1222 
1223 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1224 			     u32 request_mask, unsigned int query_flags)
1225 {
1226 	struct inode *inode = d_inode(path->dentry);
1227 	generic_fillattr(inode, stat);
1228 	return 0;
1229 }
1230 
1231 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1232 {
1233 	return -EPERM;
1234 }
1235 
1236 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1237 {
1238 	return -EOPNOTSUPP;
1239 }
1240 
1241 static const struct inode_operations empty_dir_inode_operations = {
1242 	.lookup		= empty_dir_lookup,
1243 	.permission	= generic_permission,
1244 	.setattr	= empty_dir_setattr,
1245 	.getattr	= empty_dir_getattr,
1246 	.listxattr	= empty_dir_listxattr,
1247 };
1248 
1249 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1250 {
1251 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1252 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1253 }
1254 
1255 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1256 {
1257 	dir_emit_dots(file, ctx);
1258 	return 0;
1259 }
1260 
1261 static const struct file_operations empty_dir_operations = {
1262 	.llseek		= empty_dir_llseek,
1263 	.read		= generic_read_dir,
1264 	.iterate_shared	= empty_dir_readdir,
1265 	.fsync		= noop_fsync,
1266 };
1267 
1268 
1269 void make_empty_dir_inode(struct inode *inode)
1270 {
1271 	set_nlink(inode, 2);
1272 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1273 	inode->i_uid = GLOBAL_ROOT_UID;
1274 	inode->i_gid = GLOBAL_ROOT_GID;
1275 	inode->i_rdev = 0;
1276 	inode->i_size = 0;
1277 	inode->i_blkbits = PAGE_SHIFT;
1278 	inode->i_blocks = 0;
1279 
1280 	inode->i_op = &empty_dir_inode_operations;
1281 	inode->i_opflags &= ~IOP_XATTR;
1282 	inode->i_fop = &empty_dir_operations;
1283 }
1284 
1285 bool is_empty_dir_inode(struct inode *inode)
1286 {
1287 	return (inode->i_fop == &empty_dir_operations) &&
1288 		(inode->i_op == &empty_dir_inode_operations);
1289 }
1290