1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/export.h> 8 #include <linux/pagemap.h> 9 #include <linux/slab.h> 10 #include <linux/mount.h> 11 #include <linux/vfs.h> 12 #include <linux/quotaops.h> 13 #include <linux/mutex.h> 14 #include <linux/namei.h> 15 #include <linux/exportfs.h> 16 #include <linux/writeback.h> 17 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 18 19 #include <asm/uaccess.h> 20 21 #include "internal.h" 22 23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 24 struct kstat *stat) 25 { 26 struct inode *inode = d_inode(dentry); 27 generic_fillattr(inode, stat); 28 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9); 29 return 0; 30 } 31 EXPORT_SYMBOL(simple_getattr); 32 33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 34 { 35 buf->f_type = dentry->d_sb->s_magic; 36 buf->f_bsize = PAGE_CACHE_SIZE; 37 buf->f_namelen = NAME_MAX; 38 return 0; 39 } 40 EXPORT_SYMBOL(simple_statfs); 41 42 /* 43 * Retaining negative dentries for an in-memory filesystem just wastes 44 * memory and lookup time: arrange for them to be deleted immediately. 45 */ 46 int always_delete_dentry(const struct dentry *dentry) 47 { 48 return 1; 49 } 50 EXPORT_SYMBOL(always_delete_dentry); 51 52 const struct dentry_operations simple_dentry_operations = { 53 .d_delete = always_delete_dentry, 54 }; 55 EXPORT_SYMBOL(simple_dentry_operations); 56 57 /* 58 * Lookup the data. This is trivial - if the dentry didn't already 59 * exist, we know it is negative. Set d_op to delete negative dentries. 60 */ 61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 62 { 63 if (dentry->d_name.len > NAME_MAX) 64 return ERR_PTR(-ENAMETOOLONG); 65 if (!dentry->d_sb->s_d_op) 66 d_set_d_op(dentry, &simple_dentry_operations); 67 d_add(dentry, NULL); 68 return NULL; 69 } 70 EXPORT_SYMBOL(simple_lookup); 71 72 int dcache_dir_open(struct inode *inode, struct file *file) 73 { 74 static struct qstr cursor_name = QSTR_INIT(".", 1); 75 76 file->private_data = d_alloc(file->f_path.dentry, &cursor_name); 77 78 return file->private_data ? 0 : -ENOMEM; 79 } 80 EXPORT_SYMBOL(dcache_dir_open); 81 82 int dcache_dir_close(struct inode *inode, struct file *file) 83 { 84 dput(file->private_data); 85 return 0; 86 } 87 EXPORT_SYMBOL(dcache_dir_close); 88 89 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 90 { 91 struct dentry *dentry = file->f_path.dentry; 92 mutex_lock(&d_inode(dentry)->i_mutex); 93 switch (whence) { 94 case 1: 95 offset += file->f_pos; 96 case 0: 97 if (offset >= 0) 98 break; 99 default: 100 mutex_unlock(&d_inode(dentry)->i_mutex); 101 return -EINVAL; 102 } 103 if (offset != file->f_pos) { 104 file->f_pos = offset; 105 if (file->f_pos >= 2) { 106 struct list_head *p; 107 struct dentry *cursor = file->private_data; 108 loff_t n = file->f_pos - 2; 109 110 spin_lock(&dentry->d_lock); 111 /* d_lock not required for cursor */ 112 list_del(&cursor->d_child); 113 p = dentry->d_subdirs.next; 114 while (n && p != &dentry->d_subdirs) { 115 struct dentry *next; 116 next = list_entry(p, struct dentry, d_child); 117 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 118 if (simple_positive(next)) 119 n--; 120 spin_unlock(&next->d_lock); 121 p = p->next; 122 } 123 list_add_tail(&cursor->d_child, p); 124 spin_unlock(&dentry->d_lock); 125 } 126 } 127 mutex_unlock(&d_inode(dentry)->i_mutex); 128 return offset; 129 } 130 EXPORT_SYMBOL(dcache_dir_lseek); 131 132 /* Relationship between i_mode and the DT_xxx types */ 133 static inline unsigned char dt_type(struct inode *inode) 134 { 135 return (inode->i_mode >> 12) & 15; 136 } 137 138 /* 139 * Directory is locked and all positive dentries in it are safe, since 140 * for ramfs-type trees they can't go away without unlink() or rmdir(), 141 * both impossible due to the lock on directory. 142 */ 143 144 int dcache_readdir(struct file *file, struct dir_context *ctx) 145 { 146 struct dentry *dentry = file->f_path.dentry; 147 struct dentry *cursor = file->private_data; 148 struct list_head *p, *q = &cursor->d_child; 149 150 if (!dir_emit_dots(file, ctx)) 151 return 0; 152 spin_lock(&dentry->d_lock); 153 if (ctx->pos == 2) 154 list_move(q, &dentry->d_subdirs); 155 156 for (p = q->next; p != &dentry->d_subdirs; p = p->next) { 157 struct dentry *next = list_entry(p, struct dentry, d_child); 158 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 159 if (!simple_positive(next)) { 160 spin_unlock(&next->d_lock); 161 continue; 162 } 163 164 spin_unlock(&next->d_lock); 165 spin_unlock(&dentry->d_lock); 166 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 167 d_inode(next)->i_ino, dt_type(d_inode(next)))) 168 return 0; 169 spin_lock(&dentry->d_lock); 170 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 171 /* next is still alive */ 172 list_move(q, p); 173 spin_unlock(&next->d_lock); 174 p = q; 175 ctx->pos++; 176 } 177 spin_unlock(&dentry->d_lock); 178 return 0; 179 } 180 EXPORT_SYMBOL(dcache_readdir); 181 182 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 183 { 184 return -EISDIR; 185 } 186 EXPORT_SYMBOL(generic_read_dir); 187 188 const struct file_operations simple_dir_operations = { 189 .open = dcache_dir_open, 190 .release = dcache_dir_close, 191 .llseek = dcache_dir_lseek, 192 .read = generic_read_dir, 193 .iterate = dcache_readdir, 194 .fsync = noop_fsync, 195 }; 196 EXPORT_SYMBOL(simple_dir_operations); 197 198 const struct inode_operations simple_dir_inode_operations = { 199 .lookup = simple_lookup, 200 }; 201 EXPORT_SYMBOL(simple_dir_inode_operations); 202 203 static const struct super_operations simple_super_operations = { 204 .statfs = simple_statfs, 205 }; 206 207 /* 208 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 209 * will never be mountable) 210 */ 211 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name, 212 const struct super_operations *ops, 213 const struct dentry_operations *dops, unsigned long magic) 214 { 215 struct super_block *s; 216 struct dentry *dentry; 217 struct inode *root; 218 struct qstr d_name = QSTR_INIT(name, strlen(name)); 219 220 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL); 221 if (IS_ERR(s)) 222 return ERR_CAST(s); 223 224 s->s_maxbytes = MAX_LFS_FILESIZE; 225 s->s_blocksize = PAGE_SIZE; 226 s->s_blocksize_bits = PAGE_SHIFT; 227 s->s_magic = magic; 228 s->s_op = ops ? ops : &simple_super_operations; 229 s->s_time_gran = 1; 230 root = new_inode(s); 231 if (!root) 232 goto Enomem; 233 /* 234 * since this is the first inode, make it number 1. New inodes created 235 * after this must take care not to collide with it (by passing 236 * max_reserved of 1 to iunique). 237 */ 238 root->i_ino = 1; 239 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 240 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 241 dentry = __d_alloc(s, &d_name); 242 if (!dentry) { 243 iput(root); 244 goto Enomem; 245 } 246 d_instantiate(dentry, root); 247 s->s_root = dentry; 248 s->s_d_op = dops; 249 s->s_flags |= MS_ACTIVE; 250 return dget(s->s_root); 251 252 Enomem: 253 deactivate_locked_super(s); 254 return ERR_PTR(-ENOMEM); 255 } 256 EXPORT_SYMBOL(mount_pseudo); 257 258 int simple_open(struct inode *inode, struct file *file) 259 { 260 if (inode->i_private) 261 file->private_data = inode->i_private; 262 return 0; 263 } 264 EXPORT_SYMBOL(simple_open); 265 266 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 267 { 268 struct inode *inode = d_inode(old_dentry); 269 270 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 271 inc_nlink(inode); 272 ihold(inode); 273 dget(dentry); 274 d_instantiate(dentry, inode); 275 return 0; 276 } 277 EXPORT_SYMBOL(simple_link); 278 279 int simple_empty(struct dentry *dentry) 280 { 281 struct dentry *child; 282 int ret = 0; 283 284 spin_lock(&dentry->d_lock); 285 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 286 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 287 if (simple_positive(child)) { 288 spin_unlock(&child->d_lock); 289 goto out; 290 } 291 spin_unlock(&child->d_lock); 292 } 293 ret = 1; 294 out: 295 spin_unlock(&dentry->d_lock); 296 return ret; 297 } 298 EXPORT_SYMBOL(simple_empty); 299 300 int simple_unlink(struct inode *dir, struct dentry *dentry) 301 { 302 struct inode *inode = d_inode(dentry); 303 304 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 305 drop_nlink(inode); 306 dput(dentry); 307 return 0; 308 } 309 EXPORT_SYMBOL(simple_unlink); 310 311 int simple_rmdir(struct inode *dir, struct dentry *dentry) 312 { 313 if (!simple_empty(dentry)) 314 return -ENOTEMPTY; 315 316 drop_nlink(d_inode(dentry)); 317 simple_unlink(dir, dentry); 318 drop_nlink(dir); 319 return 0; 320 } 321 EXPORT_SYMBOL(simple_rmdir); 322 323 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 324 struct inode *new_dir, struct dentry *new_dentry) 325 { 326 struct inode *inode = d_inode(old_dentry); 327 int they_are_dirs = d_is_dir(old_dentry); 328 329 if (!simple_empty(new_dentry)) 330 return -ENOTEMPTY; 331 332 if (d_really_is_positive(new_dentry)) { 333 simple_unlink(new_dir, new_dentry); 334 if (they_are_dirs) { 335 drop_nlink(d_inode(new_dentry)); 336 drop_nlink(old_dir); 337 } 338 } else if (they_are_dirs) { 339 drop_nlink(old_dir); 340 inc_nlink(new_dir); 341 } 342 343 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 344 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 345 346 return 0; 347 } 348 EXPORT_SYMBOL(simple_rename); 349 350 /** 351 * simple_setattr - setattr for simple filesystem 352 * @dentry: dentry 353 * @iattr: iattr structure 354 * 355 * Returns 0 on success, -error on failure. 356 * 357 * simple_setattr is a simple ->setattr implementation without a proper 358 * implementation of size changes. 359 * 360 * It can either be used for in-memory filesystems or special files 361 * on simple regular filesystems. Anything that needs to change on-disk 362 * or wire state on size changes needs its own setattr method. 363 */ 364 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 365 { 366 struct inode *inode = d_inode(dentry); 367 int error; 368 369 error = inode_change_ok(inode, iattr); 370 if (error) 371 return error; 372 373 if (iattr->ia_valid & ATTR_SIZE) 374 truncate_setsize(inode, iattr->ia_size); 375 setattr_copy(inode, iattr); 376 mark_inode_dirty(inode); 377 return 0; 378 } 379 EXPORT_SYMBOL(simple_setattr); 380 381 int simple_readpage(struct file *file, struct page *page) 382 { 383 clear_highpage(page); 384 flush_dcache_page(page); 385 SetPageUptodate(page); 386 unlock_page(page); 387 return 0; 388 } 389 EXPORT_SYMBOL(simple_readpage); 390 391 int simple_write_begin(struct file *file, struct address_space *mapping, 392 loff_t pos, unsigned len, unsigned flags, 393 struct page **pagep, void **fsdata) 394 { 395 struct page *page; 396 pgoff_t index; 397 398 index = pos >> PAGE_CACHE_SHIFT; 399 400 page = grab_cache_page_write_begin(mapping, index, flags); 401 if (!page) 402 return -ENOMEM; 403 404 *pagep = page; 405 406 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) { 407 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 408 409 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE); 410 } 411 return 0; 412 } 413 EXPORT_SYMBOL(simple_write_begin); 414 415 /** 416 * simple_write_end - .write_end helper for non-block-device FSes 417 * @available: See .write_end of address_space_operations 418 * @file: " 419 * @mapping: " 420 * @pos: " 421 * @len: " 422 * @copied: " 423 * @page: " 424 * @fsdata: " 425 * 426 * simple_write_end does the minimum needed for updating a page after writing is 427 * done. It has the same API signature as the .write_end of 428 * address_space_operations vector. So it can just be set onto .write_end for 429 * FSes that don't need any other processing. i_mutex is assumed to be held. 430 * Block based filesystems should use generic_write_end(). 431 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 432 * is not called, so a filesystem that actually does store data in .write_inode 433 * should extend on what's done here with a call to mark_inode_dirty() in the 434 * case that i_size has changed. 435 */ 436 int simple_write_end(struct file *file, struct address_space *mapping, 437 loff_t pos, unsigned len, unsigned copied, 438 struct page *page, void *fsdata) 439 { 440 struct inode *inode = page->mapping->host; 441 loff_t last_pos = pos + copied; 442 443 /* zero the stale part of the page if we did a short copy */ 444 if (copied < len) { 445 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 446 447 zero_user(page, from + copied, len - copied); 448 } 449 450 if (!PageUptodate(page)) 451 SetPageUptodate(page); 452 /* 453 * No need to use i_size_read() here, the i_size 454 * cannot change under us because we hold the i_mutex. 455 */ 456 if (last_pos > inode->i_size) 457 i_size_write(inode, last_pos); 458 459 set_page_dirty(page); 460 unlock_page(page); 461 page_cache_release(page); 462 463 return copied; 464 } 465 EXPORT_SYMBOL(simple_write_end); 466 467 /* 468 * the inodes created here are not hashed. If you use iunique to generate 469 * unique inode values later for this filesystem, then you must take care 470 * to pass it an appropriate max_reserved value to avoid collisions. 471 */ 472 int simple_fill_super(struct super_block *s, unsigned long magic, 473 struct tree_descr *files) 474 { 475 struct inode *inode; 476 struct dentry *root; 477 struct dentry *dentry; 478 int i; 479 480 s->s_blocksize = PAGE_CACHE_SIZE; 481 s->s_blocksize_bits = PAGE_CACHE_SHIFT; 482 s->s_magic = magic; 483 s->s_op = &simple_super_operations; 484 s->s_time_gran = 1; 485 486 inode = new_inode(s); 487 if (!inode) 488 return -ENOMEM; 489 /* 490 * because the root inode is 1, the files array must not contain an 491 * entry at index 1 492 */ 493 inode->i_ino = 1; 494 inode->i_mode = S_IFDIR | 0755; 495 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 496 inode->i_op = &simple_dir_inode_operations; 497 inode->i_fop = &simple_dir_operations; 498 set_nlink(inode, 2); 499 root = d_make_root(inode); 500 if (!root) 501 return -ENOMEM; 502 for (i = 0; !files->name || files->name[0]; i++, files++) { 503 if (!files->name) 504 continue; 505 506 /* warn if it tries to conflict with the root inode */ 507 if (unlikely(i == 1)) 508 printk(KERN_WARNING "%s: %s passed in a files array" 509 "with an index of 1!\n", __func__, 510 s->s_type->name); 511 512 dentry = d_alloc_name(root, files->name); 513 if (!dentry) 514 goto out; 515 inode = new_inode(s); 516 if (!inode) { 517 dput(dentry); 518 goto out; 519 } 520 inode->i_mode = S_IFREG | files->mode; 521 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 522 inode->i_fop = files->ops; 523 inode->i_ino = i; 524 d_add(dentry, inode); 525 } 526 s->s_root = root; 527 return 0; 528 out: 529 d_genocide(root); 530 shrink_dcache_parent(root); 531 dput(root); 532 return -ENOMEM; 533 } 534 EXPORT_SYMBOL(simple_fill_super); 535 536 static DEFINE_SPINLOCK(pin_fs_lock); 537 538 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 539 { 540 struct vfsmount *mnt = NULL; 541 spin_lock(&pin_fs_lock); 542 if (unlikely(!*mount)) { 543 spin_unlock(&pin_fs_lock); 544 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL); 545 if (IS_ERR(mnt)) 546 return PTR_ERR(mnt); 547 spin_lock(&pin_fs_lock); 548 if (!*mount) 549 *mount = mnt; 550 } 551 mntget(*mount); 552 ++*count; 553 spin_unlock(&pin_fs_lock); 554 mntput(mnt); 555 return 0; 556 } 557 EXPORT_SYMBOL(simple_pin_fs); 558 559 void simple_release_fs(struct vfsmount **mount, int *count) 560 { 561 struct vfsmount *mnt; 562 spin_lock(&pin_fs_lock); 563 mnt = *mount; 564 if (!--*count) 565 *mount = NULL; 566 spin_unlock(&pin_fs_lock); 567 mntput(mnt); 568 } 569 EXPORT_SYMBOL(simple_release_fs); 570 571 /** 572 * simple_read_from_buffer - copy data from the buffer to user space 573 * @to: the user space buffer to read to 574 * @count: the maximum number of bytes to read 575 * @ppos: the current position in the buffer 576 * @from: the buffer to read from 577 * @available: the size of the buffer 578 * 579 * The simple_read_from_buffer() function reads up to @count bytes from the 580 * buffer @from at offset @ppos into the user space address starting at @to. 581 * 582 * On success, the number of bytes read is returned and the offset @ppos is 583 * advanced by this number, or negative value is returned on error. 584 **/ 585 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 586 const void *from, size_t available) 587 { 588 loff_t pos = *ppos; 589 size_t ret; 590 591 if (pos < 0) 592 return -EINVAL; 593 if (pos >= available || !count) 594 return 0; 595 if (count > available - pos) 596 count = available - pos; 597 ret = copy_to_user(to, from + pos, count); 598 if (ret == count) 599 return -EFAULT; 600 count -= ret; 601 *ppos = pos + count; 602 return count; 603 } 604 EXPORT_SYMBOL(simple_read_from_buffer); 605 606 /** 607 * simple_write_to_buffer - copy data from user space to the buffer 608 * @to: the buffer to write to 609 * @available: the size of the buffer 610 * @ppos: the current position in the buffer 611 * @from: the user space buffer to read from 612 * @count: the maximum number of bytes to read 613 * 614 * The simple_write_to_buffer() function reads up to @count bytes from the user 615 * space address starting at @from into the buffer @to at offset @ppos. 616 * 617 * On success, the number of bytes written is returned and the offset @ppos is 618 * advanced by this number, or negative value is returned on error. 619 **/ 620 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 621 const void __user *from, size_t count) 622 { 623 loff_t pos = *ppos; 624 size_t res; 625 626 if (pos < 0) 627 return -EINVAL; 628 if (pos >= available || !count) 629 return 0; 630 if (count > available - pos) 631 count = available - pos; 632 res = copy_from_user(to + pos, from, count); 633 if (res == count) 634 return -EFAULT; 635 count -= res; 636 *ppos = pos + count; 637 return count; 638 } 639 EXPORT_SYMBOL(simple_write_to_buffer); 640 641 /** 642 * memory_read_from_buffer - copy data from the buffer 643 * @to: the kernel space buffer to read to 644 * @count: the maximum number of bytes to read 645 * @ppos: the current position in the buffer 646 * @from: the buffer to read from 647 * @available: the size of the buffer 648 * 649 * The memory_read_from_buffer() function reads up to @count bytes from the 650 * buffer @from at offset @ppos into the kernel space address starting at @to. 651 * 652 * On success, the number of bytes read is returned and the offset @ppos is 653 * advanced by this number, or negative value is returned on error. 654 **/ 655 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 656 const void *from, size_t available) 657 { 658 loff_t pos = *ppos; 659 660 if (pos < 0) 661 return -EINVAL; 662 if (pos >= available) 663 return 0; 664 if (count > available - pos) 665 count = available - pos; 666 memcpy(to, from + pos, count); 667 *ppos = pos + count; 668 669 return count; 670 } 671 EXPORT_SYMBOL(memory_read_from_buffer); 672 673 /* 674 * Transaction based IO. 675 * The file expects a single write which triggers the transaction, and then 676 * possibly a read which collects the result - which is stored in a 677 * file-local buffer. 678 */ 679 680 void simple_transaction_set(struct file *file, size_t n) 681 { 682 struct simple_transaction_argresp *ar = file->private_data; 683 684 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 685 686 /* 687 * The barrier ensures that ar->size will really remain zero until 688 * ar->data is ready for reading. 689 */ 690 smp_mb(); 691 ar->size = n; 692 } 693 EXPORT_SYMBOL(simple_transaction_set); 694 695 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 696 { 697 struct simple_transaction_argresp *ar; 698 static DEFINE_SPINLOCK(simple_transaction_lock); 699 700 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 701 return ERR_PTR(-EFBIG); 702 703 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 704 if (!ar) 705 return ERR_PTR(-ENOMEM); 706 707 spin_lock(&simple_transaction_lock); 708 709 /* only one write allowed per open */ 710 if (file->private_data) { 711 spin_unlock(&simple_transaction_lock); 712 free_page((unsigned long)ar); 713 return ERR_PTR(-EBUSY); 714 } 715 716 file->private_data = ar; 717 718 spin_unlock(&simple_transaction_lock); 719 720 if (copy_from_user(ar->data, buf, size)) 721 return ERR_PTR(-EFAULT); 722 723 return ar->data; 724 } 725 EXPORT_SYMBOL(simple_transaction_get); 726 727 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 728 { 729 struct simple_transaction_argresp *ar = file->private_data; 730 731 if (!ar) 732 return 0; 733 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 734 } 735 EXPORT_SYMBOL(simple_transaction_read); 736 737 int simple_transaction_release(struct inode *inode, struct file *file) 738 { 739 free_page((unsigned long)file->private_data); 740 return 0; 741 } 742 EXPORT_SYMBOL(simple_transaction_release); 743 744 /* Simple attribute files */ 745 746 struct simple_attr { 747 int (*get)(void *, u64 *); 748 int (*set)(void *, u64); 749 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 750 char set_buf[24]; 751 void *data; 752 const char *fmt; /* format for read operation */ 753 struct mutex mutex; /* protects access to these buffers */ 754 }; 755 756 /* simple_attr_open is called by an actual attribute open file operation 757 * to set the attribute specific access operations. */ 758 int simple_attr_open(struct inode *inode, struct file *file, 759 int (*get)(void *, u64 *), int (*set)(void *, u64), 760 const char *fmt) 761 { 762 struct simple_attr *attr; 763 764 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 765 if (!attr) 766 return -ENOMEM; 767 768 attr->get = get; 769 attr->set = set; 770 attr->data = inode->i_private; 771 attr->fmt = fmt; 772 mutex_init(&attr->mutex); 773 774 file->private_data = attr; 775 776 return nonseekable_open(inode, file); 777 } 778 EXPORT_SYMBOL_GPL(simple_attr_open); 779 780 int simple_attr_release(struct inode *inode, struct file *file) 781 { 782 kfree(file->private_data); 783 return 0; 784 } 785 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 786 787 /* read from the buffer that is filled with the get function */ 788 ssize_t simple_attr_read(struct file *file, char __user *buf, 789 size_t len, loff_t *ppos) 790 { 791 struct simple_attr *attr; 792 size_t size; 793 ssize_t ret; 794 795 attr = file->private_data; 796 797 if (!attr->get) 798 return -EACCES; 799 800 ret = mutex_lock_interruptible(&attr->mutex); 801 if (ret) 802 return ret; 803 804 if (*ppos) { /* continued read */ 805 size = strlen(attr->get_buf); 806 } else { /* first read */ 807 u64 val; 808 ret = attr->get(attr->data, &val); 809 if (ret) 810 goto out; 811 812 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 813 attr->fmt, (unsigned long long)val); 814 } 815 816 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 817 out: 818 mutex_unlock(&attr->mutex); 819 return ret; 820 } 821 EXPORT_SYMBOL_GPL(simple_attr_read); 822 823 /* interpret the buffer as a number to call the set function with */ 824 ssize_t simple_attr_write(struct file *file, const char __user *buf, 825 size_t len, loff_t *ppos) 826 { 827 struct simple_attr *attr; 828 u64 val; 829 size_t size; 830 ssize_t ret; 831 832 attr = file->private_data; 833 if (!attr->set) 834 return -EACCES; 835 836 ret = mutex_lock_interruptible(&attr->mutex); 837 if (ret) 838 return ret; 839 840 ret = -EFAULT; 841 size = min(sizeof(attr->set_buf) - 1, len); 842 if (copy_from_user(attr->set_buf, buf, size)) 843 goto out; 844 845 attr->set_buf[size] = '\0'; 846 val = simple_strtoll(attr->set_buf, NULL, 0); 847 ret = attr->set(attr->data, val); 848 if (ret == 0) 849 ret = len; /* on success, claim we got the whole input */ 850 out: 851 mutex_unlock(&attr->mutex); 852 return ret; 853 } 854 EXPORT_SYMBOL_GPL(simple_attr_write); 855 856 /** 857 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 858 * @sb: filesystem to do the file handle conversion on 859 * @fid: file handle to convert 860 * @fh_len: length of the file handle in bytes 861 * @fh_type: type of file handle 862 * @get_inode: filesystem callback to retrieve inode 863 * 864 * This function decodes @fid as long as it has one of the well-known 865 * Linux filehandle types and calls @get_inode on it to retrieve the 866 * inode for the object specified in the file handle. 867 */ 868 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 869 int fh_len, int fh_type, struct inode *(*get_inode) 870 (struct super_block *sb, u64 ino, u32 gen)) 871 { 872 struct inode *inode = NULL; 873 874 if (fh_len < 2) 875 return NULL; 876 877 switch (fh_type) { 878 case FILEID_INO32_GEN: 879 case FILEID_INO32_GEN_PARENT: 880 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 881 break; 882 } 883 884 return d_obtain_alias(inode); 885 } 886 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 887 888 /** 889 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 890 * @sb: filesystem to do the file handle conversion on 891 * @fid: file handle to convert 892 * @fh_len: length of the file handle in bytes 893 * @fh_type: type of file handle 894 * @get_inode: filesystem callback to retrieve inode 895 * 896 * This function decodes @fid as long as it has one of the well-known 897 * Linux filehandle types and calls @get_inode on it to retrieve the 898 * inode for the _parent_ object specified in the file handle if it 899 * is specified in the file handle, or NULL otherwise. 900 */ 901 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 902 int fh_len, int fh_type, struct inode *(*get_inode) 903 (struct super_block *sb, u64 ino, u32 gen)) 904 { 905 struct inode *inode = NULL; 906 907 if (fh_len <= 2) 908 return NULL; 909 910 switch (fh_type) { 911 case FILEID_INO32_GEN_PARENT: 912 inode = get_inode(sb, fid->i32.parent_ino, 913 (fh_len > 3 ? fid->i32.parent_gen : 0)); 914 break; 915 } 916 917 return d_obtain_alias(inode); 918 } 919 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 920 921 /** 922 * __generic_file_fsync - generic fsync implementation for simple filesystems 923 * 924 * @file: file to synchronize 925 * @start: start offset in bytes 926 * @end: end offset in bytes (inclusive) 927 * @datasync: only synchronize essential metadata if true 928 * 929 * This is a generic implementation of the fsync method for simple 930 * filesystems which track all non-inode metadata in the buffers list 931 * hanging off the address_space structure. 932 */ 933 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 934 int datasync) 935 { 936 struct inode *inode = file->f_mapping->host; 937 int err; 938 int ret; 939 940 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 941 if (err) 942 return err; 943 944 mutex_lock(&inode->i_mutex); 945 ret = sync_mapping_buffers(inode->i_mapping); 946 if (!(inode->i_state & I_DIRTY_ALL)) 947 goto out; 948 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 949 goto out; 950 951 err = sync_inode_metadata(inode, 1); 952 if (ret == 0) 953 ret = err; 954 955 out: 956 mutex_unlock(&inode->i_mutex); 957 return ret; 958 } 959 EXPORT_SYMBOL(__generic_file_fsync); 960 961 /** 962 * generic_file_fsync - generic fsync implementation for simple filesystems 963 * with flush 964 * @file: file to synchronize 965 * @start: start offset in bytes 966 * @end: end offset in bytes (inclusive) 967 * @datasync: only synchronize essential metadata if true 968 * 969 */ 970 971 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 972 int datasync) 973 { 974 struct inode *inode = file->f_mapping->host; 975 int err; 976 977 err = __generic_file_fsync(file, start, end, datasync); 978 if (err) 979 return err; 980 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 981 } 982 EXPORT_SYMBOL(generic_file_fsync); 983 984 /** 985 * generic_check_addressable - Check addressability of file system 986 * @blocksize_bits: log of file system block size 987 * @num_blocks: number of blocks in file system 988 * 989 * Determine whether a file system with @num_blocks blocks (and a 990 * block size of 2**@blocksize_bits) is addressable by the sector_t 991 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 992 */ 993 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 994 { 995 u64 last_fs_block = num_blocks - 1; 996 u64 last_fs_page = 997 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits); 998 999 if (unlikely(num_blocks == 0)) 1000 return 0; 1001 1002 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT)) 1003 return -EINVAL; 1004 1005 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1006 (last_fs_page > (pgoff_t)(~0ULL))) { 1007 return -EFBIG; 1008 } 1009 return 0; 1010 } 1011 EXPORT_SYMBOL(generic_check_addressable); 1012 1013 /* 1014 * No-op implementation of ->fsync for in-memory filesystems. 1015 */ 1016 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1017 { 1018 return 0; 1019 } 1020 EXPORT_SYMBOL(noop_fsync); 1021 1022 void kfree_put_link(struct inode *unused, void *cookie) 1023 { 1024 kfree(cookie); 1025 } 1026 EXPORT_SYMBOL(kfree_put_link); 1027 1028 void free_page_put_link(struct inode *unused, void *cookie) 1029 { 1030 free_page((unsigned long) cookie); 1031 } 1032 EXPORT_SYMBOL(free_page_put_link); 1033 1034 /* 1035 * nop .set_page_dirty method so that people can use .page_mkwrite on 1036 * anon inodes. 1037 */ 1038 static int anon_set_page_dirty(struct page *page) 1039 { 1040 return 0; 1041 }; 1042 1043 /* 1044 * A single inode exists for all anon_inode files. Contrary to pipes, 1045 * anon_inode inodes have no associated per-instance data, so we need 1046 * only allocate one of them. 1047 */ 1048 struct inode *alloc_anon_inode(struct super_block *s) 1049 { 1050 static const struct address_space_operations anon_aops = { 1051 .set_page_dirty = anon_set_page_dirty, 1052 }; 1053 struct inode *inode = new_inode_pseudo(s); 1054 1055 if (!inode) 1056 return ERR_PTR(-ENOMEM); 1057 1058 inode->i_ino = get_next_ino(); 1059 inode->i_mapping->a_ops = &anon_aops; 1060 1061 /* 1062 * Mark the inode dirty from the very beginning, 1063 * that way it will never be moved to the dirty 1064 * list because mark_inode_dirty() will think 1065 * that it already _is_ on the dirty list. 1066 */ 1067 inode->i_state = I_DIRTY; 1068 inode->i_mode = S_IRUSR | S_IWUSR; 1069 inode->i_uid = current_fsuid(); 1070 inode->i_gid = current_fsgid(); 1071 inode->i_flags |= S_PRIVATE; 1072 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1073 return inode; 1074 } 1075 EXPORT_SYMBOL(alloc_anon_inode); 1076 1077 /** 1078 * simple_nosetlease - generic helper for prohibiting leases 1079 * @filp: file pointer 1080 * @arg: type of lease to obtain 1081 * @flp: new lease supplied for insertion 1082 * @priv: private data for lm_setup operation 1083 * 1084 * Generic helper for filesystems that do not wish to allow leases to be set. 1085 * All arguments are ignored and it just returns -EINVAL. 1086 */ 1087 int 1088 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp, 1089 void **priv) 1090 { 1091 return -EINVAL; 1092 } 1093 EXPORT_SYMBOL(simple_nosetlease); 1094 1095 const char *simple_follow_link(struct dentry *dentry, void **cookie) 1096 { 1097 return d_inode(dentry)->i_link; 1098 } 1099 EXPORT_SYMBOL(simple_follow_link); 1100 1101 const struct inode_operations simple_symlink_inode_operations = { 1102 .follow_link = simple_follow_link, 1103 .readlink = generic_readlink 1104 }; 1105 EXPORT_SYMBOL(simple_symlink_inode_operations); 1106 1107 /* 1108 * Operations for a permanently empty directory. 1109 */ 1110 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1111 { 1112 return ERR_PTR(-ENOENT); 1113 } 1114 1115 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry, 1116 struct kstat *stat) 1117 { 1118 struct inode *inode = d_inode(dentry); 1119 generic_fillattr(inode, stat); 1120 return 0; 1121 } 1122 1123 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr) 1124 { 1125 return -EPERM; 1126 } 1127 1128 static int empty_dir_setxattr(struct dentry *dentry, const char *name, 1129 const void *value, size_t size, int flags) 1130 { 1131 return -EOPNOTSUPP; 1132 } 1133 1134 static ssize_t empty_dir_getxattr(struct dentry *dentry, const char *name, 1135 void *value, size_t size) 1136 { 1137 return -EOPNOTSUPP; 1138 } 1139 1140 static int empty_dir_removexattr(struct dentry *dentry, const char *name) 1141 { 1142 return -EOPNOTSUPP; 1143 } 1144 1145 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1146 { 1147 return -EOPNOTSUPP; 1148 } 1149 1150 static const struct inode_operations empty_dir_inode_operations = { 1151 .lookup = empty_dir_lookup, 1152 .permission = generic_permission, 1153 .setattr = empty_dir_setattr, 1154 .getattr = empty_dir_getattr, 1155 .setxattr = empty_dir_setxattr, 1156 .getxattr = empty_dir_getxattr, 1157 .removexattr = empty_dir_removexattr, 1158 .listxattr = empty_dir_listxattr, 1159 }; 1160 1161 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1162 { 1163 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1164 return generic_file_llseek_size(file, offset, whence, 2, 2); 1165 } 1166 1167 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1168 { 1169 dir_emit_dots(file, ctx); 1170 return 0; 1171 } 1172 1173 static const struct file_operations empty_dir_operations = { 1174 .llseek = empty_dir_llseek, 1175 .read = generic_read_dir, 1176 .iterate = empty_dir_readdir, 1177 .fsync = noop_fsync, 1178 }; 1179 1180 1181 void make_empty_dir_inode(struct inode *inode) 1182 { 1183 set_nlink(inode, 2); 1184 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1185 inode->i_uid = GLOBAL_ROOT_UID; 1186 inode->i_gid = GLOBAL_ROOT_GID; 1187 inode->i_rdev = 0; 1188 inode->i_size = 0; 1189 inode->i_blkbits = PAGE_SHIFT; 1190 inode->i_blocks = 0; 1191 1192 inode->i_op = &empty_dir_inode_operations; 1193 inode->i_fop = &empty_dir_operations; 1194 } 1195 1196 bool is_empty_dir_inode(struct inode *inode) 1197 { 1198 return (inode->i_fop == &empty_dir_operations) && 1199 (inode->i_op == &empty_dir_inode_operations); 1200 } 1201