xref: /openbmc/linux/fs/libfs.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/mount.h>
9 #include <linux/vfs.h>
10 #include <linux/mutex.h>
11 #include <linux/exportfs.h>
12 
13 #include <asm/uaccess.h>
14 
15 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
16 		   struct kstat *stat)
17 {
18 	struct inode *inode = dentry->d_inode;
19 	generic_fillattr(inode, stat);
20 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
21 	return 0;
22 }
23 
24 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
25 {
26 	buf->f_type = dentry->d_sb->s_magic;
27 	buf->f_bsize = PAGE_CACHE_SIZE;
28 	buf->f_namelen = NAME_MAX;
29 	return 0;
30 }
31 
32 /*
33  * Retaining negative dentries for an in-memory filesystem just wastes
34  * memory and lookup time: arrange for them to be deleted immediately.
35  */
36 static int simple_delete_dentry(struct dentry *dentry)
37 {
38 	return 1;
39 }
40 
41 /*
42  * Lookup the data. This is trivial - if the dentry didn't already
43  * exist, we know it is negative.  Set d_op to delete negative dentries.
44  */
45 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
46 {
47 	static struct dentry_operations simple_dentry_operations = {
48 		.d_delete = simple_delete_dentry,
49 	};
50 
51 	if (dentry->d_name.len > NAME_MAX)
52 		return ERR_PTR(-ENAMETOOLONG);
53 	dentry->d_op = &simple_dentry_operations;
54 	d_add(dentry, NULL);
55 	return NULL;
56 }
57 
58 int simple_sync_file(struct file * file, struct dentry *dentry, int datasync)
59 {
60 	return 0;
61 }
62 
63 int dcache_dir_open(struct inode *inode, struct file *file)
64 {
65 	static struct qstr cursor_name = {.len = 1, .name = "."};
66 
67 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
68 
69 	return file->private_data ? 0 : -ENOMEM;
70 }
71 
72 int dcache_dir_close(struct inode *inode, struct file *file)
73 {
74 	dput(file->private_data);
75 	return 0;
76 }
77 
78 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
79 {
80 	mutex_lock(&file->f_path.dentry->d_inode->i_mutex);
81 	switch (origin) {
82 		case 1:
83 			offset += file->f_pos;
84 		case 0:
85 			if (offset >= 0)
86 				break;
87 		default:
88 			mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
89 			return -EINVAL;
90 	}
91 	if (offset != file->f_pos) {
92 		file->f_pos = offset;
93 		if (file->f_pos >= 2) {
94 			struct list_head *p;
95 			struct dentry *cursor = file->private_data;
96 			loff_t n = file->f_pos - 2;
97 
98 			spin_lock(&dcache_lock);
99 			list_del(&cursor->d_u.d_child);
100 			p = file->f_path.dentry->d_subdirs.next;
101 			while (n && p != &file->f_path.dentry->d_subdirs) {
102 				struct dentry *next;
103 				next = list_entry(p, struct dentry, d_u.d_child);
104 				if (!d_unhashed(next) && next->d_inode)
105 					n--;
106 				p = p->next;
107 			}
108 			list_add_tail(&cursor->d_u.d_child, p);
109 			spin_unlock(&dcache_lock);
110 		}
111 	}
112 	mutex_unlock(&file->f_path.dentry->d_inode->i_mutex);
113 	return offset;
114 }
115 
116 /* Relationship between i_mode and the DT_xxx types */
117 static inline unsigned char dt_type(struct inode *inode)
118 {
119 	return (inode->i_mode >> 12) & 15;
120 }
121 
122 /*
123  * Directory is locked and all positive dentries in it are safe, since
124  * for ramfs-type trees they can't go away without unlink() or rmdir(),
125  * both impossible due to the lock on directory.
126  */
127 
128 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
129 {
130 	struct dentry *dentry = filp->f_path.dentry;
131 	struct dentry *cursor = filp->private_data;
132 	struct list_head *p, *q = &cursor->d_u.d_child;
133 	ino_t ino;
134 	int i = filp->f_pos;
135 
136 	switch (i) {
137 		case 0:
138 			ino = dentry->d_inode->i_ino;
139 			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
140 				break;
141 			filp->f_pos++;
142 			i++;
143 			/* fallthrough */
144 		case 1:
145 			ino = parent_ino(dentry);
146 			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
147 				break;
148 			filp->f_pos++;
149 			i++;
150 			/* fallthrough */
151 		default:
152 			spin_lock(&dcache_lock);
153 			if (filp->f_pos == 2)
154 				list_move(q, &dentry->d_subdirs);
155 
156 			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
157 				struct dentry *next;
158 				next = list_entry(p, struct dentry, d_u.d_child);
159 				if (d_unhashed(next) || !next->d_inode)
160 					continue;
161 
162 				spin_unlock(&dcache_lock);
163 				if (filldir(dirent, next->d_name.name,
164 					    next->d_name.len, filp->f_pos,
165 					    next->d_inode->i_ino,
166 					    dt_type(next->d_inode)) < 0)
167 					return 0;
168 				spin_lock(&dcache_lock);
169 				/* next is still alive */
170 				list_move(q, p);
171 				p = q;
172 				filp->f_pos++;
173 			}
174 			spin_unlock(&dcache_lock);
175 	}
176 	return 0;
177 }
178 
179 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
180 {
181 	return -EISDIR;
182 }
183 
184 const struct file_operations simple_dir_operations = {
185 	.open		= dcache_dir_open,
186 	.release	= dcache_dir_close,
187 	.llseek		= dcache_dir_lseek,
188 	.read		= generic_read_dir,
189 	.readdir	= dcache_readdir,
190 	.fsync		= simple_sync_file,
191 };
192 
193 const struct inode_operations simple_dir_inode_operations = {
194 	.lookup		= simple_lookup,
195 };
196 
197 static const struct super_operations simple_super_operations = {
198 	.statfs		= simple_statfs,
199 };
200 
201 /*
202  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
203  * will never be mountable)
204  */
205 int get_sb_pseudo(struct file_system_type *fs_type, char *name,
206 	const struct super_operations *ops, unsigned long magic,
207 	struct vfsmount *mnt)
208 {
209 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
210 	struct dentry *dentry;
211 	struct inode *root;
212 	struct qstr d_name = {.name = name, .len = strlen(name)};
213 
214 	if (IS_ERR(s))
215 		return PTR_ERR(s);
216 
217 	s->s_flags = MS_NOUSER;
218 	s->s_maxbytes = ~0ULL;
219 	s->s_blocksize = PAGE_SIZE;
220 	s->s_blocksize_bits = PAGE_SHIFT;
221 	s->s_magic = magic;
222 	s->s_op = ops ? ops : &simple_super_operations;
223 	s->s_time_gran = 1;
224 	root = new_inode(s);
225 	if (!root)
226 		goto Enomem;
227 	/*
228 	 * since this is the first inode, make it number 1. New inodes created
229 	 * after this must take care not to collide with it (by passing
230 	 * max_reserved of 1 to iunique).
231 	 */
232 	root->i_ino = 1;
233 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
234 	root->i_uid = root->i_gid = 0;
235 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
236 	dentry = d_alloc(NULL, &d_name);
237 	if (!dentry) {
238 		iput(root);
239 		goto Enomem;
240 	}
241 	dentry->d_sb = s;
242 	dentry->d_parent = dentry;
243 	d_instantiate(dentry, root);
244 	s->s_root = dentry;
245 	s->s_flags |= MS_ACTIVE;
246 	return simple_set_mnt(mnt, s);
247 
248 Enomem:
249 	up_write(&s->s_umount);
250 	deactivate_super(s);
251 	return -ENOMEM;
252 }
253 
254 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
255 {
256 	struct inode *inode = old_dentry->d_inode;
257 
258 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
259 	inc_nlink(inode);
260 	atomic_inc(&inode->i_count);
261 	dget(dentry);
262 	d_instantiate(dentry, inode);
263 	return 0;
264 }
265 
266 static inline int simple_positive(struct dentry *dentry)
267 {
268 	return dentry->d_inode && !d_unhashed(dentry);
269 }
270 
271 int simple_empty(struct dentry *dentry)
272 {
273 	struct dentry *child;
274 	int ret = 0;
275 
276 	spin_lock(&dcache_lock);
277 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child)
278 		if (simple_positive(child))
279 			goto out;
280 	ret = 1;
281 out:
282 	spin_unlock(&dcache_lock);
283 	return ret;
284 }
285 
286 int simple_unlink(struct inode *dir, struct dentry *dentry)
287 {
288 	struct inode *inode = dentry->d_inode;
289 
290 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
291 	drop_nlink(inode);
292 	dput(dentry);
293 	return 0;
294 }
295 
296 int simple_rmdir(struct inode *dir, struct dentry *dentry)
297 {
298 	if (!simple_empty(dentry))
299 		return -ENOTEMPTY;
300 
301 	drop_nlink(dentry->d_inode);
302 	simple_unlink(dir, dentry);
303 	drop_nlink(dir);
304 	return 0;
305 }
306 
307 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
308 		struct inode *new_dir, struct dentry *new_dentry)
309 {
310 	struct inode *inode = old_dentry->d_inode;
311 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
312 
313 	if (!simple_empty(new_dentry))
314 		return -ENOTEMPTY;
315 
316 	if (new_dentry->d_inode) {
317 		simple_unlink(new_dir, new_dentry);
318 		if (they_are_dirs)
319 			drop_nlink(old_dir);
320 	} else if (they_are_dirs) {
321 		drop_nlink(old_dir);
322 		inc_nlink(new_dir);
323 	}
324 
325 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
326 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
327 
328 	return 0;
329 }
330 
331 int simple_readpage(struct file *file, struct page *page)
332 {
333 	clear_highpage(page);
334 	flush_dcache_page(page);
335 	SetPageUptodate(page);
336 	unlock_page(page);
337 	return 0;
338 }
339 
340 int simple_prepare_write(struct file *file, struct page *page,
341 			unsigned from, unsigned to)
342 {
343 	if (!PageUptodate(page)) {
344 		if (to - from != PAGE_CACHE_SIZE)
345 			zero_user_segments(page,
346 				0, from,
347 				to, PAGE_CACHE_SIZE);
348 	}
349 	return 0;
350 }
351 
352 int simple_write_begin(struct file *file, struct address_space *mapping,
353 			loff_t pos, unsigned len, unsigned flags,
354 			struct page **pagep, void **fsdata)
355 {
356 	struct page *page;
357 	pgoff_t index;
358 	unsigned from;
359 
360 	index = pos >> PAGE_CACHE_SHIFT;
361 	from = pos & (PAGE_CACHE_SIZE - 1);
362 
363 	page = __grab_cache_page(mapping, index);
364 	if (!page)
365 		return -ENOMEM;
366 
367 	*pagep = page;
368 
369 	return simple_prepare_write(file, page, from, from+len);
370 }
371 
372 static int simple_commit_write(struct file *file, struct page *page,
373 			       unsigned from, unsigned to)
374 {
375 	struct inode *inode = page->mapping->host;
376 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
377 
378 	if (!PageUptodate(page))
379 		SetPageUptodate(page);
380 	/*
381 	 * No need to use i_size_read() here, the i_size
382 	 * cannot change under us because we hold the i_mutex.
383 	 */
384 	if (pos > inode->i_size)
385 		i_size_write(inode, pos);
386 	set_page_dirty(page);
387 	return 0;
388 }
389 
390 int simple_write_end(struct file *file, struct address_space *mapping,
391 			loff_t pos, unsigned len, unsigned copied,
392 			struct page *page, void *fsdata)
393 {
394 	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
395 
396 	/* zero the stale part of the page if we did a short copy */
397 	if (copied < len) {
398 		void *kaddr = kmap_atomic(page, KM_USER0);
399 		memset(kaddr + from + copied, 0, len - copied);
400 		flush_dcache_page(page);
401 		kunmap_atomic(kaddr, KM_USER0);
402 	}
403 
404 	simple_commit_write(file, page, from, from+copied);
405 
406 	unlock_page(page);
407 	page_cache_release(page);
408 
409 	return copied;
410 }
411 
412 /*
413  * the inodes created here are not hashed. If you use iunique to generate
414  * unique inode values later for this filesystem, then you must take care
415  * to pass it an appropriate max_reserved value to avoid collisions.
416  */
417 int simple_fill_super(struct super_block *s, int magic, struct tree_descr *files)
418 {
419 	struct inode *inode;
420 	struct dentry *root;
421 	struct dentry *dentry;
422 	int i;
423 
424 	s->s_blocksize = PAGE_CACHE_SIZE;
425 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
426 	s->s_magic = magic;
427 	s->s_op = &simple_super_operations;
428 	s->s_time_gran = 1;
429 
430 	inode = new_inode(s);
431 	if (!inode)
432 		return -ENOMEM;
433 	/*
434 	 * because the root inode is 1, the files array must not contain an
435 	 * entry at index 1
436 	 */
437 	inode->i_ino = 1;
438 	inode->i_mode = S_IFDIR | 0755;
439 	inode->i_uid = inode->i_gid = 0;
440 	inode->i_blocks = 0;
441 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
442 	inode->i_op = &simple_dir_inode_operations;
443 	inode->i_fop = &simple_dir_operations;
444 	inode->i_nlink = 2;
445 	root = d_alloc_root(inode);
446 	if (!root) {
447 		iput(inode);
448 		return -ENOMEM;
449 	}
450 	for (i = 0; !files->name || files->name[0]; i++, files++) {
451 		if (!files->name)
452 			continue;
453 
454 		/* warn if it tries to conflict with the root inode */
455 		if (unlikely(i == 1))
456 			printk(KERN_WARNING "%s: %s passed in a files array"
457 				"with an index of 1!\n", __func__,
458 				s->s_type->name);
459 
460 		dentry = d_alloc_name(root, files->name);
461 		if (!dentry)
462 			goto out;
463 		inode = new_inode(s);
464 		if (!inode)
465 			goto out;
466 		inode->i_mode = S_IFREG | files->mode;
467 		inode->i_uid = inode->i_gid = 0;
468 		inode->i_blocks = 0;
469 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
470 		inode->i_fop = files->ops;
471 		inode->i_ino = i;
472 		d_add(dentry, inode);
473 	}
474 	s->s_root = root;
475 	return 0;
476 out:
477 	d_genocide(root);
478 	dput(root);
479 	return -ENOMEM;
480 }
481 
482 static DEFINE_SPINLOCK(pin_fs_lock);
483 
484 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
485 {
486 	struct vfsmount *mnt = NULL;
487 	spin_lock(&pin_fs_lock);
488 	if (unlikely(!*mount)) {
489 		spin_unlock(&pin_fs_lock);
490 		mnt = vfs_kern_mount(type, 0, type->name, NULL);
491 		if (IS_ERR(mnt))
492 			return PTR_ERR(mnt);
493 		spin_lock(&pin_fs_lock);
494 		if (!*mount)
495 			*mount = mnt;
496 	}
497 	mntget(*mount);
498 	++*count;
499 	spin_unlock(&pin_fs_lock);
500 	mntput(mnt);
501 	return 0;
502 }
503 
504 void simple_release_fs(struct vfsmount **mount, int *count)
505 {
506 	struct vfsmount *mnt;
507 	spin_lock(&pin_fs_lock);
508 	mnt = *mount;
509 	if (!--*count)
510 		*mount = NULL;
511 	spin_unlock(&pin_fs_lock);
512 	mntput(mnt);
513 }
514 
515 /**
516  * simple_read_from_buffer - copy data from the buffer to user space
517  * @to: the user space buffer to read to
518  * @count: the maximum number of bytes to read
519  * @ppos: the current position in the buffer
520  * @from: the buffer to read from
521  * @available: the size of the buffer
522  *
523  * The simple_read_from_buffer() function reads up to @count bytes from the
524  * buffer @from at offset @ppos into the user space address starting at @to.
525  *
526  * On success, the number of bytes read is returned and the offset @ppos is
527  * advanced by this number, or negative value is returned on error.
528  **/
529 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
530 				const void *from, size_t available)
531 {
532 	loff_t pos = *ppos;
533 	if (pos < 0)
534 		return -EINVAL;
535 	if (pos >= available)
536 		return 0;
537 	if (count > available - pos)
538 		count = available - pos;
539 	if (copy_to_user(to, from + pos, count))
540 		return -EFAULT;
541 	*ppos = pos + count;
542 	return count;
543 }
544 
545 /**
546  * memory_read_from_buffer - copy data from the buffer
547  * @to: the kernel space buffer to read to
548  * @count: the maximum number of bytes to read
549  * @ppos: the current position in the buffer
550  * @from: the buffer to read from
551  * @available: the size of the buffer
552  *
553  * The memory_read_from_buffer() function reads up to @count bytes from the
554  * buffer @from at offset @ppos into the kernel space address starting at @to.
555  *
556  * On success, the number of bytes read is returned and the offset @ppos is
557  * advanced by this number, or negative value is returned on error.
558  **/
559 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
560 				const void *from, size_t available)
561 {
562 	loff_t pos = *ppos;
563 
564 	if (pos < 0)
565 		return -EINVAL;
566 	if (pos >= available)
567 		return 0;
568 	if (count > available - pos)
569 		count = available - pos;
570 	memcpy(to, from + pos, count);
571 	*ppos = pos + count;
572 
573 	return count;
574 }
575 
576 /*
577  * Transaction based IO.
578  * The file expects a single write which triggers the transaction, and then
579  * possibly a read which collects the result - which is stored in a
580  * file-local buffer.
581  */
582 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
583 {
584 	struct simple_transaction_argresp *ar;
585 	static DEFINE_SPINLOCK(simple_transaction_lock);
586 
587 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
588 		return ERR_PTR(-EFBIG);
589 
590 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
591 	if (!ar)
592 		return ERR_PTR(-ENOMEM);
593 
594 	spin_lock(&simple_transaction_lock);
595 
596 	/* only one write allowed per open */
597 	if (file->private_data) {
598 		spin_unlock(&simple_transaction_lock);
599 		free_page((unsigned long)ar);
600 		return ERR_PTR(-EBUSY);
601 	}
602 
603 	file->private_data = ar;
604 
605 	spin_unlock(&simple_transaction_lock);
606 
607 	if (copy_from_user(ar->data, buf, size))
608 		return ERR_PTR(-EFAULT);
609 
610 	return ar->data;
611 }
612 
613 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
614 {
615 	struct simple_transaction_argresp *ar = file->private_data;
616 
617 	if (!ar)
618 		return 0;
619 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
620 }
621 
622 int simple_transaction_release(struct inode *inode, struct file *file)
623 {
624 	free_page((unsigned long)file->private_data);
625 	return 0;
626 }
627 
628 /* Simple attribute files */
629 
630 struct simple_attr {
631 	int (*get)(void *, u64 *);
632 	int (*set)(void *, u64);
633 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
634 	char set_buf[24];
635 	void *data;
636 	const char *fmt;	/* format for read operation */
637 	struct mutex mutex;	/* protects access to these buffers */
638 };
639 
640 /* simple_attr_open is called by an actual attribute open file operation
641  * to set the attribute specific access operations. */
642 int simple_attr_open(struct inode *inode, struct file *file,
643 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
644 		     const char *fmt)
645 {
646 	struct simple_attr *attr;
647 
648 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
649 	if (!attr)
650 		return -ENOMEM;
651 
652 	attr->get = get;
653 	attr->set = set;
654 	attr->data = inode->i_private;
655 	attr->fmt = fmt;
656 	mutex_init(&attr->mutex);
657 
658 	file->private_data = attr;
659 
660 	return nonseekable_open(inode, file);
661 }
662 
663 int simple_attr_release(struct inode *inode, struct file *file)
664 {
665 	kfree(file->private_data);
666 	return 0;
667 }
668 
669 /* read from the buffer that is filled with the get function */
670 ssize_t simple_attr_read(struct file *file, char __user *buf,
671 			 size_t len, loff_t *ppos)
672 {
673 	struct simple_attr *attr;
674 	size_t size;
675 	ssize_t ret;
676 
677 	attr = file->private_data;
678 
679 	if (!attr->get)
680 		return -EACCES;
681 
682 	ret = mutex_lock_interruptible(&attr->mutex);
683 	if (ret)
684 		return ret;
685 
686 	if (*ppos) {		/* continued read */
687 		size = strlen(attr->get_buf);
688 	} else {		/* first read */
689 		u64 val;
690 		ret = attr->get(attr->data, &val);
691 		if (ret)
692 			goto out;
693 
694 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
695 				 attr->fmt, (unsigned long long)val);
696 	}
697 
698 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
699 out:
700 	mutex_unlock(&attr->mutex);
701 	return ret;
702 }
703 
704 /* interpret the buffer as a number to call the set function with */
705 ssize_t simple_attr_write(struct file *file, const char __user *buf,
706 			  size_t len, loff_t *ppos)
707 {
708 	struct simple_attr *attr;
709 	u64 val;
710 	size_t size;
711 	ssize_t ret;
712 
713 	attr = file->private_data;
714 	if (!attr->set)
715 		return -EACCES;
716 
717 	ret = mutex_lock_interruptible(&attr->mutex);
718 	if (ret)
719 		return ret;
720 
721 	ret = -EFAULT;
722 	size = min(sizeof(attr->set_buf) - 1, len);
723 	if (copy_from_user(attr->set_buf, buf, size))
724 		goto out;
725 
726 	ret = len; /* claim we got the whole input */
727 	attr->set_buf[size] = '\0';
728 	val = simple_strtol(attr->set_buf, NULL, 0);
729 	attr->set(attr->data, val);
730 out:
731 	mutex_unlock(&attr->mutex);
732 	return ret;
733 }
734 
735 /**
736  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
737  * @sb:		filesystem to do the file handle conversion on
738  * @fid:	file handle to convert
739  * @fh_len:	length of the file handle in bytes
740  * @fh_type:	type of file handle
741  * @get_inode:	filesystem callback to retrieve inode
742  *
743  * This function decodes @fid as long as it has one of the well-known
744  * Linux filehandle types and calls @get_inode on it to retrieve the
745  * inode for the object specified in the file handle.
746  */
747 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
748 		int fh_len, int fh_type, struct inode *(*get_inode)
749 			(struct super_block *sb, u64 ino, u32 gen))
750 {
751 	struct inode *inode = NULL;
752 
753 	if (fh_len < 2)
754 		return NULL;
755 
756 	switch (fh_type) {
757 	case FILEID_INO32_GEN:
758 	case FILEID_INO32_GEN_PARENT:
759 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
760 		break;
761 	}
762 
763 	return d_obtain_alias(inode);
764 }
765 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
766 
767 /**
768  * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
769  * @sb:		filesystem to do the file handle conversion on
770  * @fid:	file handle to convert
771  * @fh_len:	length of the file handle in bytes
772  * @fh_type:	type of file handle
773  * @get_inode:	filesystem callback to retrieve inode
774  *
775  * This function decodes @fid as long as it has one of the well-known
776  * Linux filehandle types and calls @get_inode on it to retrieve the
777  * inode for the _parent_ object specified in the file handle if it
778  * is specified in the file handle, or NULL otherwise.
779  */
780 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
781 		int fh_len, int fh_type, struct inode *(*get_inode)
782 			(struct super_block *sb, u64 ino, u32 gen))
783 {
784 	struct inode *inode = NULL;
785 
786 	if (fh_len <= 2)
787 		return NULL;
788 
789 	switch (fh_type) {
790 	case FILEID_INO32_GEN_PARENT:
791 		inode = get_inode(sb, fid->i32.parent_ino,
792 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
793 		break;
794 	}
795 
796 	return d_obtain_alias(inode);
797 }
798 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
799 
800 EXPORT_SYMBOL(dcache_dir_close);
801 EXPORT_SYMBOL(dcache_dir_lseek);
802 EXPORT_SYMBOL(dcache_dir_open);
803 EXPORT_SYMBOL(dcache_readdir);
804 EXPORT_SYMBOL(generic_read_dir);
805 EXPORT_SYMBOL(get_sb_pseudo);
806 EXPORT_SYMBOL(simple_write_begin);
807 EXPORT_SYMBOL(simple_write_end);
808 EXPORT_SYMBOL(simple_dir_inode_operations);
809 EXPORT_SYMBOL(simple_dir_operations);
810 EXPORT_SYMBOL(simple_empty);
811 EXPORT_SYMBOL(d_alloc_name);
812 EXPORT_SYMBOL(simple_fill_super);
813 EXPORT_SYMBOL(simple_getattr);
814 EXPORT_SYMBOL(simple_link);
815 EXPORT_SYMBOL(simple_lookup);
816 EXPORT_SYMBOL(simple_pin_fs);
817 EXPORT_UNUSED_SYMBOL(simple_prepare_write);
818 EXPORT_SYMBOL(simple_readpage);
819 EXPORT_SYMBOL(simple_release_fs);
820 EXPORT_SYMBOL(simple_rename);
821 EXPORT_SYMBOL(simple_rmdir);
822 EXPORT_SYMBOL(simple_statfs);
823 EXPORT_SYMBOL(simple_sync_file);
824 EXPORT_SYMBOL(simple_unlink);
825 EXPORT_SYMBOL(simple_read_from_buffer);
826 EXPORT_SYMBOL(memory_read_from_buffer);
827 EXPORT_SYMBOL(simple_transaction_get);
828 EXPORT_SYMBOL(simple_transaction_read);
829 EXPORT_SYMBOL(simple_transaction_release);
830 EXPORT_SYMBOL_GPL(simple_attr_open);
831 EXPORT_SYMBOL_GPL(simple_attr_release);
832 EXPORT_SYMBOL_GPL(simple_attr_read);
833 EXPORT_SYMBOL_GPL(simple_attr_write);
834