1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/export.h> 8 #include <linux/pagemap.h> 9 #include <linux/slab.h> 10 #include <linux/mount.h> 11 #include <linux/vfs.h> 12 #include <linux/quotaops.h> 13 #include <linux/mutex.h> 14 #include <linux/namei.h> 15 #include <linux/exportfs.h> 16 #include <linux/writeback.h> 17 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 18 19 #include <asm/uaccess.h> 20 21 #include "internal.h" 22 23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 24 struct kstat *stat) 25 { 26 struct inode *inode = d_inode(dentry); 27 generic_fillattr(inode, stat); 28 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 29 return 0; 30 } 31 EXPORT_SYMBOL(simple_getattr); 32 33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 34 { 35 buf->f_type = dentry->d_sb->s_magic; 36 buf->f_bsize = PAGE_SIZE; 37 buf->f_namelen = NAME_MAX; 38 return 0; 39 } 40 EXPORT_SYMBOL(simple_statfs); 41 42 /* 43 * Retaining negative dentries for an in-memory filesystem just wastes 44 * memory and lookup time: arrange for them to be deleted immediately. 45 */ 46 int always_delete_dentry(const struct dentry *dentry) 47 { 48 return 1; 49 } 50 EXPORT_SYMBOL(always_delete_dentry); 51 52 const struct dentry_operations simple_dentry_operations = { 53 .d_delete = always_delete_dentry, 54 }; 55 EXPORT_SYMBOL(simple_dentry_operations); 56 57 /* 58 * Lookup the data. This is trivial - if the dentry didn't already 59 * exist, we know it is negative. Set d_op to delete negative dentries. 60 */ 61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 62 { 63 if (dentry->d_name.len > NAME_MAX) 64 return ERR_PTR(-ENAMETOOLONG); 65 if (!dentry->d_sb->s_d_op) 66 d_set_d_op(dentry, &simple_dentry_operations); 67 d_add(dentry, NULL); 68 return NULL; 69 } 70 EXPORT_SYMBOL(simple_lookup); 71 72 int dcache_dir_open(struct inode *inode, struct file *file) 73 { 74 file->private_data = d_alloc_cursor(file->f_path.dentry); 75 76 return file->private_data ? 0 : -ENOMEM; 77 } 78 EXPORT_SYMBOL(dcache_dir_open); 79 80 int dcache_dir_close(struct inode *inode, struct file *file) 81 { 82 dput(file->private_data); 83 return 0; 84 } 85 EXPORT_SYMBOL(dcache_dir_close); 86 87 /* parent is locked at least shared */ 88 static struct dentry *next_positive(struct dentry *parent, 89 struct list_head *from, 90 int count) 91 { 92 unsigned *seq = &parent->d_inode->i_dir_seq, n; 93 struct dentry *res; 94 struct list_head *p; 95 bool skipped; 96 int i; 97 98 retry: 99 i = count; 100 skipped = false; 101 n = smp_load_acquire(seq) & ~1; 102 res = NULL; 103 rcu_read_lock(); 104 for (p = from->next; p != &parent->d_subdirs; p = p->next) { 105 struct dentry *d = list_entry(p, struct dentry, d_child); 106 if (!simple_positive(d)) { 107 skipped = true; 108 } else if (!--i) { 109 res = d; 110 break; 111 } 112 } 113 rcu_read_unlock(); 114 if (skipped) { 115 smp_rmb(); 116 if (unlikely(*seq != n)) 117 goto retry; 118 } 119 return res; 120 } 121 122 static void move_cursor(struct dentry *cursor, struct list_head *after) 123 { 124 struct dentry *parent = cursor->d_parent; 125 unsigned n, *seq = &parent->d_inode->i_dir_seq; 126 spin_lock(&parent->d_lock); 127 for (;;) { 128 n = *seq; 129 if (!(n & 1) && cmpxchg(seq, n, n + 1) == n) 130 break; 131 cpu_relax(); 132 } 133 __list_del(cursor->d_child.prev, cursor->d_child.next); 134 if (after) 135 list_add(&cursor->d_child, after); 136 else 137 list_add_tail(&cursor->d_child, &parent->d_subdirs); 138 smp_store_release(seq, n + 2); 139 spin_unlock(&parent->d_lock); 140 } 141 142 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 143 { 144 struct dentry *dentry = file->f_path.dentry; 145 switch (whence) { 146 case 1: 147 offset += file->f_pos; 148 case 0: 149 if (offset >= 0) 150 break; 151 default: 152 return -EINVAL; 153 } 154 if (offset != file->f_pos) { 155 file->f_pos = offset; 156 if (file->f_pos >= 2) { 157 struct dentry *cursor = file->private_data; 158 struct dentry *to; 159 loff_t n = file->f_pos - 2; 160 161 inode_lock_shared(dentry->d_inode); 162 to = next_positive(dentry, &dentry->d_subdirs, n); 163 move_cursor(cursor, to ? &to->d_child : NULL); 164 inode_unlock_shared(dentry->d_inode); 165 } 166 } 167 return offset; 168 } 169 EXPORT_SYMBOL(dcache_dir_lseek); 170 171 /* Relationship between i_mode and the DT_xxx types */ 172 static inline unsigned char dt_type(struct inode *inode) 173 { 174 return (inode->i_mode >> 12) & 15; 175 } 176 177 /* 178 * Directory is locked and all positive dentries in it are safe, since 179 * for ramfs-type trees they can't go away without unlink() or rmdir(), 180 * both impossible due to the lock on directory. 181 */ 182 183 int dcache_readdir(struct file *file, struct dir_context *ctx) 184 { 185 struct dentry *dentry = file->f_path.dentry; 186 struct dentry *cursor = file->private_data; 187 struct list_head *p = &cursor->d_child; 188 struct dentry *next; 189 bool moved = false; 190 191 if (!dir_emit_dots(file, ctx)) 192 return 0; 193 194 if (ctx->pos == 2) 195 p = &dentry->d_subdirs; 196 while ((next = next_positive(dentry, p, 1)) != NULL) { 197 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 198 d_inode(next)->i_ino, dt_type(d_inode(next)))) 199 break; 200 moved = true; 201 p = &next->d_child; 202 ctx->pos++; 203 } 204 if (moved) 205 move_cursor(cursor, p); 206 return 0; 207 } 208 EXPORT_SYMBOL(dcache_readdir); 209 210 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 211 { 212 return -EISDIR; 213 } 214 EXPORT_SYMBOL(generic_read_dir); 215 216 const struct file_operations simple_dir_operations = { 217 .open = dcache_dir_open, 218 .release = dcache_dir_close, 219 .llseek = dcache_dir_lseek, 220 .read = generic_read_dir, 221 .iterate_shared = dcache_readdir, 222 .fsync = noop_fsync, 223 }; 224 EXPORT_SYMBOL(simple_dir_operations); 225 226 const struct inode_operations simple_dir_inode_operations = { 227 .lookup = simple_lookup, 228 }; 229 EXPORT_SYMBOL(simple_dir_inode_operations); 230 231 static const struct super_operations simple_super_operations = { 232 .statfs = simple_statfs, 233 }; 234 235 /* 236 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 237 * will never be mountable) 238 */ 239 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name, 240 const struct super_operations *ops, 241 const struct dentry_operations *dops, unsigned long magic) 242 { 243 struct super_block *s; 244 struct dentry *dentry; 245 struct inode *root; 246 struct qstr d_name = QSTR_INIT(name, strlen(name)); 247 248 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL); 249 if (IS_ERR(s)) 250 return ERR_CAST(s); 251 252 s->s_maxbytes = MAX_LFS_FILESIZE; 253 s->s_blocksize = PAGE_SIZE; 254 s->s_blocksize_bits = PAGE_SHIFT; 255 s->s_magic = magic; 256 s->s_op = ops ? ops : &simple_super_operations; 257 s->s_time_gran = 1; 258 root = new_inode(s); 259 if (!root) 260 goto Enomem; 261 /* 262 * since this is the first inode, make it number 1. New inodes created 263 * after this must take care not to collide with it (by passing 264 * max_reserved of 1 to iunique). 265 */ 266 root->i_ino = 1; 267 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 268 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 269 dentry = __d_alloc(s, &d_name); 270 if (!dentry) { 271 iput(root); 272 goto Enomem; 273 } 274 d_instantiate(dentry, root); 275 s->s_root = dentry; 276 s->s_d_op = dops; 277 s->s_flags |= MS_ACTIVE; 278 return dget(s->s_root); 279 280 Enomem: 281 deactivate_locked_super(s); 282 return ERR_PTR(-ENOMEM); 283 } 284 EXPORT_SYMBOL(mount_pseudo); 285 286 int simple_open(struct inode *inode, struct file *file) 287 { 288 if (inode->i_private) 289 file->private_data = inode->i_private; 290 return 0; 291 } 292 EXPORT_SYMBOL(simple_open); 293 294 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 295 { 296 struct inode *inode = d_inode(old_dentry); 297 298 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 299 inc_nlink(inode); 300 ihold(inode); 301 dget(dentry); 302 d_instantiate(dentry, inode); 303 return 0; 304 } 305 EXPORT_SYMBOL(simple_link); 306 307 int simple_empty(struct dentry *dentry) 308 { 309 struct dentry *child; 310 int ret = 0; 311 312 spin_lock(&dentry->d_lock); 313 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 314 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 315 if (simple_positive(child)) { 316 spin_unlock(&child->d_lock); 317 goto out; 318 } 319 spin_unlock(&child->d_lock); 320 } 321 ret = 1; 322 out: 323 spin_unlock(&dentry->d_lock); 324 return ret; 325 } 326 EXPORT_SYMBOL(simple_empty); 327 328 int simple_unlink(struct inode *dir, struct dentry *dentry) 329 { 330 struct inode *inode = d_inode(dentry); 331 332 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 333 drop_nlink(inode); 334 dput(dentry); 335 return 0; 336 } 337 EXPORT_SYMBOL(simple_unlink); 338 339 int simple_rmdir(struct inode *dir, struct dentry *dentry) 340 { 341 if (!simple_empty(dentry)) 342 return -ENOTEMPTY; 343 344 drop_nlink(d_inode(dentry)); 345 simple_unlink(dir, dentry); 346 drop_nlink(dir); 347 return 0; 348 } 349 EXPORT_SYMBOL(simple_rmdir); 350 351 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 352 struct inode *new_dir, struct dentry *new_dentry) 353 { 354 struct inode *inode = d_inode(old_dentry); 355 int they_are_dirs = d_is_dir(old_dentry); 356 357 if (!simple_empty(new_dentry)) 358 return -ENOTEMPTY; 359 360 if (d_really_is_positive(new_dentry)) { 361 simple_unlink(new_dir, new_dentry); 362 if (they_are_dirs) { 363 drop_nlink(d_inode(new_dentry)); 364 drop_nlink(old_dir); 365 } 366 } else if (they_are_dirs) { 367 drop_nlink(old_dir); 368 inc_nlink(new_dir); 369 } 370 371 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 372 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 373 374 return 0; 375 } 376 EXPORT_SYMBOL(simple_rename); 377 378 /** 379 * simple_setattr - setattr for simple filesystem 380 * @dentry: dentry 381 * @iattr: iattr structure 382 * 383 * Returns 0 on success, -error on failure. 384 * 385 * simple_setattr is a simple ->setattr implementation without a proper 386 * implementation of size changes. 387 * 388 * It can either be used for in-memory filesystems or special files 389 * on simple regular filesystems. Anything that needs to change on-disk 390 * or wire state on size changes needs its own setattr method. 391 */ 392 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 393 { 394 struct inode *inode = d_inode(dentry); 395 int error; 396 397 error = inode_change_ok(inode, iattr); 398 if (error) 399 return error; 400 401 if (iattr->ia_valid & ATTR_SIZE) 402 truncate_setsize(inode, iattr->ia_size); 403 setattr_copy(inode, iattr); 404 mark_inode_dirty(inode); 405 return 0; 406 } 407 EXPORT_SYMBOL(simple_setattr); 408 409 int simple_readpage(struct file *file, struct page *page) 410 { 411 clear_highpage(page); 412 flush_dcache_page(page); 413 SetPageUptodate(page); 414 unlock_page(page); 415 return 0; 416 } 417 EXPORT_SYMBOL(simple_readpage); 418 419 int simple_write_begin(struct file *file, struct address_space *mapping, 420 loff_t pos, unsigned len, unsigned flags, 421 struct page **pagep, void **fsdata) 422 { 423 struct page *page; 424 pgoff_t index; 425 426 index = pos >> PAGE_SHIFT; 427 428 page = grab_cache_page_write_begin(mapping, index, flags); 429 if (!page) 430 return -ENOMEM; 431 432 *pagep = page; 433 434 if (!PageUptodate(page) && (len != PAGE_SIZE)) { 435 unsigned from = pos & (PAGE_SIZE - 1); 436 437 zero_user_segments(page, 0, from, from + len, PAGE_SIZE); 438 } 439 return 0; 440 } 441 EXPORT_SYMBOL(simple_write_begin); 442 443 /** 444 * simple_write_end - .write_end helper for non-block-device FSes 445 * @available: See .write_end of address_space_operations 446 * @file: " 447 * @mapping: " 448 * @pos: " 449 * @len: " 450 * @copied: " 451 * @page: " 452 * @fsdata: " 453 * 454 * simple_write_end does the minimum needed for updating a page after writing is 455 * done. It has the same API signature as the .write_end of 456 * address_space_operations vector. So it can just be set onto .write_end for 457 * FSes that don't need any other processing. i_mutex is assumed to be held. 458 * Block based filesystems should use generic_write_end(). 459 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 460 * is not called, so a filesystem that actually does store data in .write_inode 461 * should extend on what's done here with a call to mark_inode_dirty() in the 462 * case that i_size has changed. 463 */ 464 int simple_write_end(struct file *file, struct address_space *mapping, 465 loff_t pos, unsigned len, unsigned copied, 466 struct page *page, void *fsdata) 467 { 468 struct inode *inode = page->mapping->host; 469 loff_t last_pos = pos + copied; 470 471 /* zero the stale part of the page if we did a short copy */ 472 if (copied < len) { 473 unsigned from = pos & (PAGE_SIZE - 1); 474 475 zero_user(page, from + copied, len - copied); 476 } 477 478 if (!PageUptodate(page)) 479 SetPageUptodate(page); 480 /* 481 * No need to use i_size_read() here, the i_size 482 * cannot change under us because we hold the i_mutex. 483 */ 484 if (last_pos > inode->i_size) 485 i_size_write(inode, last_pos); 486 487 set_page_dirty(page); 488 unlock_page(page); 489 put_page(page); 490 491 return copied; 492 } 493 EXPORT_SYMBOL(simple_write_end); 494 495 /* 496 * the inodes created here are not hashed. If you use iunique to generate 497 * unique inode values later for this filesystem, then you must take care 498 * to pass it an appropriate max_reserved value to avoid collisions. 499 */ 500 int simple_fill_super(struct super_block *s, unsigned long magic, 501 struct tree_descr *files) 502 { 503 struct inode *inode; 504 struct dentry *root; 505 struct dentry *dentry; 506 int i; 507 508 s->s_blocksize = PAGE_SIZE; 509 s->s_blocksize_bits = PAGE_SHIFT; 510 s->s_magic = magic; 511 s->s_op = &simple_super_operations; 512 s->s_time_gran = 1; 513 514 inode = new_inode(s); 515 if (!inode) 516 return -ENOMEM; 517 /* 518 * because the root inode is 1, the files array must not contain an 519 * entry at index 1 520 */ 521 inode->i_ino = 1; 522 inode->i_mode = S_IFDIR | 0755; 523 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 524 inode->i_op = &simple_dir_inode_operations; 525 inode->i_fop = &simple_dir_operations; 526 set_nlink(inode, 2); 527 root = d_make_root(inode); 528 if (!root) 529 return -ENOMEM; 530 for (i = 0; !files->name || files->name[0]; i++, files++) { 531 if (!files->name) 532 continue; 533 534 /* warn if it tries to conflict with the root inode */ 535 if (unlikely(i == 1)) 536 printk(KERN_WARNING "%s: %s passed in a files array" 537 "with an index of 1!\n", __func__, 538 s->s_type->name); 539 540 dentry = d_alloc_name(root, files->name); 541 if (!dentry) 542 goto out; 543 inode = new_inode(s); 544 if (!inode) { 545 dput(dentry); 546 goto out; 547 } 548 inode->i_mode = S_IFREG | files->mode; 549 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 550 inode->i_fop = files->ops; 551 inode->i_ino = i; 552 d_add(dentry, inode); 553 } 554 s->s_root = root; 555 return 0; 556 out: 557 d_genocide(root); 558 shrink_dcache_parent(root); 559 dput(root); 560 return -ENOMEM; 561 } 562 EXPORT_SYMBOL(simple_fill_super); 563 564 static DEFINE_SPINLOCK(pin_fs_lock); 565 566 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 567 { 568 struct vfsmount *mnt = NULL; 569 spin_lock(&pin_fs_lock); 570 if (unlikely(!*mount)) { 571 spin_unlock(&pin_fs_lock); 572 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL); 573 if (IS_ERR(mnt)) 574 return PTR_ERR(mnt); 575 spin_lock(&pin_fs_lock); 576 if (!*mount) 577 *mount = mnt; 578 } 579 mntget(*mount); 580 ++*count; 581 spin_unlock(&pin_fs_lock); 582 mntput(mnt); 583 return 0; 584 } 585 EXPORT_SYMBOL(simple_pin_fs); 586 587 void simple_release_fs(struct vfsmount **mount, int *count) 588 { 589 struct vfsmount *mnt; 590 spin_lock(&pin_fs_lock); 591 mnt = *mount; 592 if (!--*count) 593 *mount = NULL; 594 spin_unlock(&pin_fs_lock); 595 mntput(mnt); 596 } 597 EXPORT_SYMBOL(simple_release_fs); 598 599 /** 600 * simple_read_from_buffer - copy data from the buffer to user space 601 * @to: the user space buffer to read to 602 * @count: the maximum number of bytes to read 603 * @ppos: the current position in the buffer 604 * @from: the buffer to read from 605 * @available: the size of the buffer 606 * 607 * The simple_read_from_buffer() function reads up to @count bytes from the 608 * buffer @from at offset @ppos into the user space address starting at @to. 609 * 610 * On success, the number of bytes read is returned and the offset @ppos is 611 * advanced by this number, or negative value is returned on error. 612 **/ 613 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 614 const void *from, size_t available) 615 { 616 loff_t pos = *ppos; 617 size_t ret; 618 619 if (pos < 0) 620 return -EINVAL; 621 if (pos >= available || !count) 622 return 0; 623 if (count > available - pos) 624 count = available - pos; 625 ret = copy_to_user(to, from + pos, count); 626 if (ret == count) 627 return -EFAULT; 628 count -= ret; 629 *ppos = pos + count; 630 return count; 631 } 632 EXPORT_SYMBOL(simple_read_from_buffer); 633 634 /** 635 * simple_write_to_buffer - copy data from user space to the buffer 636 * @to: the buffer to write to 637 * @available: the size of the buffer 638 * @ppos: the current position in the buffer 639 * @from: the user space buffer to read from 640 * @count: the maximum number of bytes to read 641 * 642 * The simple_write_to_buffer() function reads up to @count bytes from the user 643 * space address starting at @from into the buffer @to at offset @ppos. 644 * 645 * On success, the number of bytes written is returned and the offset @ppos is 646 * advanced by this number, or negative value is returned on error. 647 **/ 648 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 649 const void __user *from, size_t count) 650 { 651 loff_t pos = *ppos; 652 size_t res; 653 654 if (pos < 0) 655 return -EINVAL; 656 if (pos >= available || !count) 657 return 0; 658 if (count > available - pos) 659 count = available - pos; 660 res = copy_from_user(to + pos, from, count); 661 if (res == count) 662 return -EFAULT; 663 count -= res; 664 *ppos = pos + count; 665 return count; 666 } 667 EXPORT_SYMBOL(simple_write_to_buffer); 668 669 /** 670 * memory_read_from_buffer - copy data from the buffer 671 * @to: the kernel space buffer to read to 672 * @count: the maximum number of bytes to read 673 * @ppos: the current position in the buffer 674 * @from: the buffer to read from 675 * @available: the size of the buffer 676 * 677 * The memory_read_from_buffer() function reads up to @count bytes from the 678 * buffer @from at offset @ppos into the kernel space address starting at @to. 679 * 680 * On success, the number of bytes read is returned and the offset @ppos is 681 * advanced by this number, or negative value is returned on error. 682 **/ 683 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 684 const void *from, size_t available) 685 { 686 loff_t pos = *ppos; 687 688 if (pos < 0) 689 return -EINVAL; 690 if (pos >= available) 691 return 0; 692 if (count > available - pos) 693 count = available - pos; 694 memcpy(to, from + pos, count); 695 *ppos = pos + count; 696 697 return count; 698 } 699 EXPORT_SYMBOL(memory_read_from_buffer); 700 701 /* 702 * Transaction based IO. 703 * The file expects a single write which triggers the transaction, and then 704 * possibly a read which collects the result - which is stored in a 705 * file-local buffer. 706 */ 707 708 void simple_transaction_set(struct file *file, size_t n) 709 { 710 struct simple_transaction_argresp *ar = file->private_data; 711 712 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 713 714 /* 715 * The barrier ensures that ar->size will really remain zero until 716 * ar->data is ready for reading. 717 */ 718 smp_mb(); 719 ar->size = n; 720 } 721 EXPORT_SYMBOL(simple_transaction_set); 722 723 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 724 { 725 struct simple_transaction_argresp *ar; 726 static DEFINE_SPINLOCK(simple_transaction_lock); 727 728 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 729 return ERR_PTR(-EFBIG); 730 731 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 732 if (!ar) 733 return ERR_PTR(-ENOMEM); 734 735 spin_lock(&simple_transaction_lock); 736 737 /* only one write allowed per open */ 738 if (file->private_data) { 739 spin_unlock(&simple_transaction_lock); 740 free_page((unsigned long)ar); 741 return ERR_PTR(-EBUSY); 742 } 743 744 file->private_data = ar; 745 746 spin_unlock(&simple_transaction_lock); 747 748 if (copy_from_user(ar->data, buf, size)) 749 return ERR_PTR(-EFAULT); 750 751 return ar->data; 752 } 753 EXPORT_SYMBOL(simple_transaction_get); 754 755 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 756 { 757 struct simple_transaction_argresp *ar = file->private_data; 758 759 if (!ar) 760 return 0; 761 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 762 } 763 EXPORT_SYMBOL(simple_transaction_read); 764 765 int simple_transaction_release(struct inode *inode, struct file *file) 766 { 767 free_page((unsigned long)file->private_data); 768 return 0; 769 } 770 EXPORT_SYMBOL(simple_transaction_release); 771 772 /* Simple attribute files */ 773 774 struct simple_attr { 775 int (*get)(void *, u64 *); 776 int (*set)(void *, u64); 777 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 778 char set_buf[24]; 779 void *data; 780 const char *fmt; /* format for read operation */ 781 struct mutex mutex; /* protects access to these buffers */ 782 }; 783 784 /* simple_attr_open is called by an actual attribute open file operation 785 * to set the attribute specific access operations. */ 786 int simple_attr_open(struct inode *inode, struct file *file, 787 int (*get)(void *, u64 *), int (*set)(void *, u64), 788 const char *fmt) 789 { 790 struct simple_attr *attr; 791 792 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 793 if (!attr) 794 return -ENOMEM; 795 796 attr->get = get; 797 attr->set = set; 798 attr->data = inode->i_private; 799 attr->fmt = fmt; 800 mutex_init(&attr->mutex); 801 802 file->private_data = attr; 803 804 return nonseekable_open(inode, file); 805 } 806 EXPORT_SYMBOL_GPL(simple_attr_open); 807 808 int simple_attr_release(struct inode *inode, struct file *file) 809 { 810 kfree(file->private_data); 811 return 0; 812 } 813 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 814 815 /* read from the buffer that is filled with the get function */ 816 ssize_t simple_attr_read(struct file *file, char __user *buf, 817 size_t len, loff_t *ppos) 818 { 819 struct simple_attr *attr; 820 size_t size; 821 ssize_t ret; 822 823 attr = file->private_data; 824 825 if (!attr->get) 826 return -EACCES; 827 828 ret = mutex_lock_interruptible(&attr->mutex); 829 if (ret) 830 return ret; 831 832 if (*ppos) { /* continued read */ 833 size = strlen(attr->get_buf); 834 } else { /* first read */ 835 u64 val; 836 ret = attr->get(attr->data, &val); 837 if (ret) 838 goto out; 839 840 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 841 attr->fmt, (unsigned long long)val); 842 } 843 844 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 845 out: 846 mutex_unlock(&attr->mutex); 847 return ret; 848 } 849 EXPORT_SYMBOL_GPL(simple_attr_read); 850 851 /* interpret the buffer as a number to call the set function with */ 852 ssize_t simple_attr_write(struct file *file, const char __user *buf, 853 size_t len, loff_t *ppos) 854 { 855 struct simple_attr *attr; 856 u64 val; 857 size_t size; 858 ssize_t ret; 859 860 attr = file->private_data; 861 if (!attr->set) 862 return -EACCES; 863 864 ret = mutex_lock_interruptible(&attr->mutex); 865 if (ret) 866 return ret; 867 868 ret = -EFAULT; 869 size = min(sizeof(attr->set_buf) - 1, len); 870 if (copy_from_user(attr->set_buf, buf, size)) 871 goto out; 872 873 attr->set_buf[size] = '\0'; 874 val = simple_strtoll(attr->set_buf, NULL, 0); 875 ret = attr->set(attr->data, val); 876 if (ret == 0) 877 ret = len; /* on success, claim we got the whole input */ 878 out: 879 mutex_unlock(&attr->mutex); 880 return ret; 881 } 882 EXPORT_SYMBOL_GPL(simple_attr_write); 883 884 /** 885 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 886 * @sb: filesystem to do the file handle conversion on 887 * @fid: file handle to convert 888 * @fh_len: length of the file handle in bytes 889 * @fh_type: type of file handle 890 * @get_inode: filesystem callback to retrieve inode 891 * 892 * This function decodes @fid as long as it has one of the well-known 893 * Linux filehandle types and calls @get_inode on it to retrieve the 894 * inode for the object specified in the file handle. 895 */ 896 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 897 int fh_len, int fh_type, struct inode *(*get_inode) 898 (struct super_block *sb, u64 ino, u32 gen)) 899 { 900 struct inode *inode = NULL; 901 902 if (fh_len < 2) 903 return NULL; 904 905 switch (fh_type) { 906 case FILEID_INO32_GEN: 907 case FILEID_INO32_GEN_PARENT: 908 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 909 break; 910 } 911 912 return d_obtain_alias(inode); 913 } 914 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 915 916 /** 917 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 918 * @sb: filesystem to do the file handle conversion on 919 * @fid: file handle to convert 920 * @fh_len: length of the file handle in bytes 921 * @fh_type: type of file handle 922 * @get_inode: filesystem callback to retrieve inode 923 * 924 * This function decodes @fid as long as it has one of the well-known 925 * Linux filehandle types and calls @get_inode on it to retrieve the 926 * inode for the _parent_ object specified in the file handle if it 927 * is specified in the file handle, or NULL otherwise. 928 */ 929 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 930 int fh_len, int fh_type, struct inode *(*get_inode) 931 (struct super_block *sb, u64 ino, u32 gen)) 932 { 933 struct inode *inode = NULL; 934 935 if (fh_len <= 2) 936 return NULL; 937 938 switch (fh_type) { 939 case FILEID_INO32_GEN_PARENT: 940 inode = get_inode(sb, fid->i32.parent_ino, 941 (fh_len > 3 ? fid->i32.parent_gen : 0)); 942 break; 943 } 944 945 return d_obtain_alias(inode); 946 } 947 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 948 949 /** 950 * __generic_file_fsync - generic fsync implementation for simple filesystems 951 * 952 * @file: file to synchronize 953 * @start: start offset in bytes 954 * @end: end offset in bytes (inclusive) 955 * @datasync: only synchronize essential metadata if true 956 * 957 * This is a generic implementation of the fsync method for simple 958 * filesystems which track all non-inode metadata in the buffers list 959 * hanging off the address_space structure. 960 */ 961 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 962 int datasync) 963 { 964 struct inode *inode = file->f_mapping->host; 965 int err; 966 int ret; 967 968 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 969 if (err) 970 return err; 971 972 inode_lock(inode); 973 ret = sync_mapping_buffers(inode->i_mapping); 974 if (!(inode->i_state & I_DIRTY_ALL)) 975 goto out; 976 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 977 goto out; 978 979 err = sync_inode_metadata(inode, 1); 980 if (ret == 0) 981 ret = err; 982 983 out: 984 inode_unlock(inode); 985 return ret; 986 } 987 EXPORT_SYMBOL(__generic_file_fsync); 988 989 /** 990 * generic_file_fsync - generic fsync implementation for simple filesystems 991 * with flush 992 * @file: file to synchronize 993 * @start: start offset in bytes 994 * @end: end offset in bytes (inclusive) 995 * @datasync: only synchronize essential metadata if true 996 * 997 */ 998 999 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1000 int datasync) 1001 { 1002 struct inode *inode = file->f_mapping->host; 1003 int err; 1004 1005 err = __generic_file_fsync(file, start, end, datasync); 1006 if (err) 1007 return err; 1008 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 1009 } 1010 EXPORT_SYMBOL(generic_file_fsync); 1011 1012 /** 1013 * generic_check_addressable - Check addressability of file system 1014 * @blocksize_bits: log of file system block size 1015 * @num_blocks: number of blocks in file system 1016 * 1017 * Determine whether a file system with @num_blocks blocks (and a 1018 * block size of 2**@blocksize_bits) is addressable by the sector_t 1019 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1020 */ 1021 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1022 { 1023 u64 last_fs_block = num_blocks - 1; 1024 u64 last_fs_page = 1025 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1026 1027 if (unlikely(num_blocks == 0)) 1028 return 0; 1029 1030 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1031 return -EINVAL; 1032 1033 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1034 (last_fs_page > (pgoff_t)(~0ULL))) { 1035 return -EFBIG; 1036 } 1037 return 0; 1038 } 1039 EXPORT_SYMBOL(generic_check_addressable); 1040 1041 /* 1042 * No-op implementation of ->fsync for in-memory filesystems. 1043 */ 1044 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1045 { 1046 return 0; 1047 } 1048 EXPORT_SYMBOL(noop_fsync); 1049 1050 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1051 void kfree_link(void *p) 1052 { 1053 kfree(p); 1054 } 1055 EXPORT_SYMBOL(kfree_link); 1056 1057 /* 1058 * nop .set_page_dirty method so that people can use .page_mkwrite on 1059 * anon inodes. 1060 */ 1061 static int anon_set_page_dirty(struct page *page) 1062 { 1063 return 0; 1064 }; 1065 1066 /* 1067 * A single inode exists for all anon_inode files. Contrary to pipes, 1068 * anon_inode inodes have no associated per-instance data, so we need 1069 * only allocate one of them. 1070 */ 1071 struct inode *alloc_anon_inode(struct super_block *s) 1072 { 1073 static const struct address_space_operations anon_aops = { 1074 .set_page_dirty = anon_set_page_dirty, 1075 }; 1076 struct inode *inode = new_inode_pseudo(s); 1077 1078 if (!inode) 1079 return ERR_PTR(-ENOMEM); 1080 1081 inode->i_ino = get_next_ino(); 1082 inode->i_mapping->a_ops = &anon_aops; 1083 1084 /* 1085 * Mark the inode dirty from the very beginning, 1086 * that way it will never be moved to the dirty 1087 * list because mark_inode_dirty() will think 1088 * that it already _is_ on the dirty list. 1089 */ 1090 inode->i_state = I_DIRTY; 1091 inode->i_mode = S_IRUSR | S_IWUSR; 1092 inode->i_uid = current_fsuid(); 1093 inode->i_gid = current_fsgid(); 1094 inode->i_flags |= S_PRIVATE; 1095 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1096 return inode; 1097 } 1098 EXPORT_SYMBOL(alloc_anon_inode); 1099 1100 /** 1101 * simple_nosetlease - generic helper for prohibiting leases 1102 * @filp: file pointer 1103 * @arg: type of lease to obtain 1104 * @flp: new lease supplied for insertion 1105 * @priv: private data for lm_setup operation 1106 * 1107 * Generic helper for filesystems that do not wish to allow leases to be set. 1108 * All arguments are ignored and it just returns -EINVAL. 1109 */ 1110 int 1111 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp, 1112 void **priv) 1113 { 1114 return -EINVAL; 1115 } 1116 EXPORT_SYMBOL(simple_nosetlease); 1117 1118 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1119 struct delayed_call *done) 1120 { 1121 return inode->i_link; 1122 } 1123 EXPORT_SYMBOL(simple_get_link); 1124 1125 const struct inode_operations simple_symlink_inode_operations = { 1126 .get_link = simple_get_link, 1127 .readlink = generic_readlink 1128 }; 1129 EXPORT_SYMBOL(simple_symlink_inode_operations); 1130 1131 /* 1132 * Operations for a permanently empty directory. 1133 */ 1134 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1135 { 1136 return ERR_PTR(-ENOENT); 1137 } 1138 1139 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry, 1140 struct kstat *stat) 1141 { 1142 struct inode *inode = d_inode(dentry); 1143 generic_fillattr(inode, stat); 1144 return 0; 1145 } 1146 1147 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr) 1148 { 1149 return -EPERM; 1150 } 1151 1152 static int empty_dir_setxattr(struct dentry *dentry, struct inode *inode, 1153 const char *name, const void *value, 1154 size_t size, int flags) 1155 { 1156 return -EOPNOTSUPP; 1157 } 1158 1159 static ssize_t empty_dir_getxattr(struct dentry *dentry, struct inode *inode, 1160 const char *name, void *value, size_t size) 1161 { 1162 return -EOPNOTSUPP; 1163 } 1164 1165 static int empty_dir_removexattr(struct dentry *dentry, const char *name) 1166 { 1167 return -EOPNOTSUPP; 1168 } 1169 1170 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1171 { 1172 return -EOPNOTSUPP; 1173 } 1174 1175 static const struct inode_operations empty_dir_inode_operations = { 1176 .lookup = empty_dir_lookup, 1177 .permission = generic_permission, 1178 .setattr = empty_dir_setattr, 1179 .getattr = empty_dir_getattr, 1180 .setxattr = empty_dir_setxattr, 1181 .getxattr = empty_dir_getxattr, 1182 .removexattr = empty_dir_removexattr, 1183 .listxattr = empty_dir_listxattr, 1184 }; 1185 1186 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1187 { 1188 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1189 return generic_file_llseek_size(file, offset, whence, 2, 2); 1190 } 1191 1192 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1193 { 1194 dir_emit_dots(file, ctx); 1195 return 0; 1196 } 1197 1198 static const struct file_operations empty_dir_operations = { 1199 .llseek = empty_dir_llseek, 1200 .read = generic_read_dir, 1201 .iterate_shared = empty_dir_readdir, 1202 .fsync = noop_fsync, 1203 }; 1204 1205 1206 void make_empty_dir_inode(struct inode *inode) 1207 { 1208 set_nlink(inode, 2); 1209 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1210 inode->i_uid = GLOBAL_ROOT_UID; 1211 inode->i_gid = GLOBAL_ROOT_GID; 1212 inode->i_rdev = 0; 1213 inode->i_size = 0; 1214 inode->i_blkbits = PAGE_SHIFT; 1215 inode->i_blocks = 0; 1216 1217 inode->i_op = &empty_dir_inode_operations; 1218 inode->i_fop = &empty_dir_operations; 1219 } 1220 1221 bool is_empty_dir_inode(struct inode *inode) 1222 { 1223 return (inode->i_fop == &empty_dir_operations) && 1224 (inode->i_op == &empty_dir_inode_operations); 1225 } 1226