1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/export.h> 7 #include <linux/pagemap.h> 8 #include <linux/slab.h> 9 #include <linux/mount.h> 10 #include <linux/vfs.h> 11 #include <linux/quotaops.h> 12 #include <linux/mutex.h> 13 #include <linux/exportfs.h> 14 #include <linux/writeback.h> 15 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 16 17 #include <asm/uaccess.h> 18 19 #include "internal.h" 20 21 static inline int simple_positive(struct dentry *dentry) 22 { 23 return dentry->d_inode && !d_unhashed(dentry); 24 } 25 26 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 27 struct kstat *stat) 28 { 29 struct inode *inode = dentry->d_inode; 30 generic_fillattr(inode, stat); 31 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9); 32 return 0; 33 } 34 35 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 36 { 37 buf->f_type = dentry->d_sb->s_magic; 38 buf->f_bsize = PAGE_CACHE_SIZE; 39 buf->f_namelen = NAME_MAX; 40 return 0; 41 } 42 43 /* 44 * Retaining negative dentries for an in-memory filesystem just wastes 45 * memory and lookup time: arrange for them to be deleted immediately. 46 */ 47 static int simple_delete_dentry(const struct dentry *dentry) 48 { 49 return 1; 50 } 51 52 /* 53 * Lookup the data. This is trivial - if the dentry didn't already 54 * exist, we know it is negative. Set d_op to delete negative dentries. 55 */ 56 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 57 { 58 static const struct dentry_operations simple_dentry_operations = { 59 .d_delete = simple_delete_dentry, 60 }; 61 62 if (dentry->d_name.len > NAME_MAX) 63 return ERR_PTR(-ENAMETOOLONG); 64 d_set_d_op(dentry, &simple_dentry_operations); 65 d_add(dentry, NULL); 66 return NULL; 67 } 68 69 int dcache_dir_open(struct inode *inode, struct file *file) 70 { 71 static struct qstr cursor_name = QSTR_INIT(".", 1); 72 73 file->private_data = d_alloc(file->f_path.dentry, &cursor_name); 74 75 return file->private_data ? 0 : -ENOMEM; 76 } 77 78 int dcache_dir_close(struct inode *inode, struct file *file) 79 { 80 dput(file->private_data); 81 return 0; 82 } 83 84 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 85 { 86 struct dentry *dentry = file->f_path.dentry; 87 mutex_lock(&dentry->d_inode->i_mutex); 88 switch (whence) { 89 case 1: 90 offset += file->f_pos; 91 case 0: 92 if (offset >= 0) 93 break; 94 default: 95 mutex_unlock(&dentry->d_inode->i_mutex); 96 return -EINVAL; 97 } 98 if (offset != file->f_pos) { 99 file->f_pos = offset; 100 if (file->f_pos >= 2) { 101 struct list_head *p; 102 struct dentry *cursor = file->private_data; 103 loff_t n = file->f_pos - 2; 104 105 spin_lock(&dentry->d_lock); 106 /* d_lock not required for cursor */ 107 list_del(&cursor->d_u.d_child); 108 p = dentry->d_subdirs.next; 109 while (n && p != &dentry->d_subdirs) { 110 struct dentry *next; 111 next = list_entry(p, struct dentry, d_u.d_child); 112 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 113 if (simple_positive(next)) 114 n--; 115 spin_unlock(&next->d_lock); 116 p = p->next; 117 } 118 list_add_tail(&cursor->d_u.d_child, p); 119 spin_unlock(&dentry->d_lock); 120 } 121 } 122 mutex_unlock(&dentry->d_inode->i_mutex); 123 return offset; 124 } 125 126 /* Relationship between i_mode and the DT_xxx types */ 127 static inline unsigned char dt_type(struct inode *inode) 128 { 129 return (inode->i_mode >> 12) & 15; 130 } 131 132 /* 133 * Directory is locked and all positive dentries in it are safe, since 134 * for ramfs-type trees they can't go away without unlink() or rmdir(), 135 * both impossible due to the lock on directory. 136 */ 137 138 int dcache_readdir(struct file *file, struct dir_context *ctx) 139 { 140 struct dentry *dentry = file->f_path.dentry; 141 struct dentry *cursor = file->private_data; 142 struct list_head *p, *q = &cursor->d_u.d_child; 143 144 if (!dir_emit_dots(file, ctx)) 145 return 0; 146 spin_lock(&dentry->d_lock); 147 if (ctx->pos == 2) 148 list_move(q, &dentry->d_subdirs); 149 150 for (p = q->next; p != &dentry->d_subdirs; p = p->next) { 151 struct dentry *next = list_entry(p, struct dentry, d_u.d_child); 152 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 153 if (!simple_positive(next)) { 154 spin_unlock(&next->d_lock); 155 continue; 156 } 157 158 spin_unlock(&next->d_lock); 159 spin_unlock(&dentry->d_lock); 160 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 161 next->d_inode->i_ino, dt_type(next->d_inode))) 162 return 0; 163 spin_lock(&dentry->d_lock); 164 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 165 /* next is still alive */ 166 list_move(q, p); 167 spin_unlock(&next->d_lock); 168 p = q; 169 ctx->pos++; 170 } 171 spin_unlock(&dentry->d_lock); 172 return 0; 173 } 174 175 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 176 { 177 return -EISDIR; 178 } 179 180 const struct file_operations simple_dir_operations = { 181 .open = dcache_dir_open, 182 .release = dcache_dir_close, 183 .llseek = dcache_dir_lseek, 184 .read = generic_read_dir, 185 .iterate = dcache_readdir, 186 .fsync = noop_fsync, 187 }; 188 189 const struct inode_operations simple_dir_inode_operations = { 190 .lookup = simple_lookup, 191 }; 192 193 static const struct super_operations simple_super_operations = { 194 .statfs = simple_statfs, 195 }; 196 197 /* 198 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 199 * will never be mountable) 200 */ 201 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name, 202 const struct super_operations *ops, 203 const struct dentry_operations *dops, unsigned long magic) 204 { 205 struct super_block *s; 206 struct dentry *dentry; 207 struct inode *root; 208 struct qstr d_name = QSTR_INIT(name, strlen(name)); 209 210 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL); 211 if (IS_ERR(s)) 212 return ERR_CAST(s); 213 214 s->s_maxbytes = MAX_LFS_FILESIZE; 215 s->s_blocksize = PAGE_SIZE; 216 s->s_blocksize_bits = PAGE_SHIFT; 217 s->s_magic = magic; 218 s->s_op = ops ? ops : &simple_super_operations; 219 s->s_time_gran = 1; 220 root = new_inode(s); 221 if (!root) 222 goto Enomem; 223 /* 224 * since this is the first inode, make it number 1. New inodes created 225 * after this must take care not to collide with it (by passing 226 * max_reserved of 1 to iunique). 227 */ 228 root->i_ino = 1; 229 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 230 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 231 dentry = __d_alloc(s, &d_name); 232 if (!dentry) { 233 iput(root); 234 goto Enomem; 235 } 236 d_instantiate(dentry, root); 237 s->s_root = dentry; 238 s->s_d_op = dops; 239 s->s_flags |= MS_ACTIVE; 240 return dget(s->s_root); 241 242 Enomem: 243 deactivate_locked_super(s); 244 return ERR_PTR(-ENOMEM); 245 } 246 247 int simple_open(struct inode *inode, struct file *file) 248 { 249 if (inode->i_private) 250 file->private_data = inode->i_private; 251 return 0; 252 } 253 254 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 255 { 256 struct inode *inode = old_dentry->d_inode; 257 258 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 259 inc_nlink(inode); 260 ihold(inode); 261 dget(dentry); 262 d_instantiate(dentry, inode); 263 return 0; 264 } 265 266 int simple_empty(struct dentry *dentry) 267 { 268 struct dentry *child; 269 int ret = 0; 270 271 spin_lock(&dentry->d_lock); 272 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) { 273 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 274 if (simple_positive(child)) { 275 spin_unlock(&child->d_lock); 276 goto out; 277 } 278 spin_unlock(&child->d_lock); 279 } 280 ret = 1; 281 out: 282 spin_unlock(&dentry->d_lock); 283 return ret; 284 } 285 286 int simple_unlink(struct inode *dir, struct dentry *dentry) 287 { 288 struct inode *inode = dentry->d_inode; 289 290 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 291 drop_nlink(inode); 292 dput(dentry); 293 return 0; 294 } 295 296 int simple_rmdir(struct inode *dir, struct dentry *dentry) 297 { 298 if (!simple_empty(dentry)) 299 return -ENOTEMPTY; 300 301 drop_nlink(dentry->d_inode); 302 simple_unlink(dir, dentry); 303 drop_nlink(dir); 304 return 0; 305 } 306 307 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 308 struct inode *new_dir, struct dentry *new_dentry) 309 { 310 struct inode *inode = old_dentry->d_inode; 311 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode); 312 313 if (!simple_empty(new_dentry)) 314 return -ENOTEMPTY; 315 316 if (new_dentry->d_inode) { 317 simple_unlink(new_dir, new_dentry); 318 if (they_are_dirs) { 319 drop_nlink(new_dentry->d_inode); 320 drop_nlink(old_dir); 321 } 322 } else if (they_are_dirs) { 323 drop_nlink(old_dir); 324 inc_nlink(new_dir); 325 } 326 327 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 328 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 329 330 return 0; 331 } 332 333 /** 334 * simple_setattr - setattr for simple filesystem 335 * @dentry: dentry 336 * @iattr: iattr structure 337 * 338 * Returns 0 on success, -error on failure. 339 * 340 * simple_setattr is a simple ->setattr implementation without a proper 341 * implementation of size changes. 342 * 343 * It can either be used for in-memory filesystems or special files 344 * on simple regular filesystems. Anything that needs to change on-disk 345 * or wire state on size changes needs its own setattr method. 346 */ 347 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 348 { 349 struct inode *inode = dentry->d_inode; 350 int error; 351 352 error = inode_change_ok(inode, iattr); 353 if (error) 354 return error; 355 356 if (iattr->ia_valid & ATTR_SIZE) 357 truncate_setsize(inode, iattr->ia_size); 358 setattr_copy(inode, iattr); 359 mark_inode_dirty(inode); 360 return 0; 361 } 362 EXPORT_SYMBOL(simple_setattr); 363 364 int simple_readpage(struct file *file, struct page *page) 365 { 366 clear_highpage(page); 367 flush_dcache_page(page); 368 SetPageUptodate(page); 369 unlock_page(page); 370 return 0; 371 } 372 373 int simple_write_begin(struct file *file, struct address_space *mapping, 374 loff_t pos, unsigned len, unsigned flags, 375 struct page **pagep, void **fsdata) 376 { 377 struct page *page; 378 pgoff_t index; 379 380 index = pos >> PAGE_CACHE_SHIFT; 381 382 page = grab_cache_page_write_begin(mapping, index, flags); 383 if (!page) 384 return -ENOMEM; 385 386 *pagep = page; 387 388 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) { 389 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 390 391 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE); 392 } 393 return 0; 394 } 395 396 /** 397 * simple_write_end - .write_end helper for non-block-device FSes 398 * @available: See .write_end of address_space_operations 399 * @file: " 400 * @mapping: " 401 * @pos: " 402 * @len: " 403 * @copied: " 404 * @page: " 405 * @fsdata: " 406 * 407 * simple_write_end does the minimum needed for updating a page after writing is 408 * done. It has the same API signature as the .write_end of 409 * address_space_operations vector. So it can just be set onto .write_end for 410 * FSes that don't need any other processing. i_mutex is assumed to be held. 411 * Block based filesystems should use generic_write_end(). 412 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 413 * is not called, so a filesystem that actually does store data in .write_inode 414 * should extend on what's done here with a call to mark_inode_dirty() in the 415 * case that i_size has changed. 416 */ 417 int simple_write_end(struct file *file, struct address_space *mapping, 418 loff_t pos, unsigned len, unsigned copied, 419 struct page *page, void *fsdata) 420 { 421 struct inode *inode = page->mapping->host; 422 loff_t last_pos = pos + copied; 423 424 /* zero the stale part of the page if we did a short copy */ 425 if (copied < len) { 426 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 427 428 zero_user(page, from + copied, len - copied); 429 } 430 431 if (!PageUptodate(page)) 432 SetPageUptodate(page); 433 /* 434 * No need to use i_size_read() here, the i_size 435 * cannot change under us because we hold the i_mutex. 436 */ 437 if (last_pos > inode->i_size) 438 i_size_write(inode, last_pos); 439 440 set_page_dirty(page); 441 unlock_page(page); 442 page_cache_release(page); 443 444 return copied; 445 } 446 447 /* 448 * the inodes created here are not hashed. If you use iunique to generate 449 * unique inode values later for this filesystem, then you must take care 450 * to pass it an appropriate max_reserved value to avoid collisions. 451 */ 452 int simple_fill_super(struct super_block *s, unsigned long magic, 453 struct tree_descr *files) 454 { 455 struct inode *inode; 456 struct dentry *root; 457 struct dentry *dentry; 458 int i; 459 460 s->s_blocksize = PAGE_CACHE_SIZE; 461 s->s_blocksize_bits = PAGE_CACHE_SHIFT; 462 s->s_magic = magic; 463 s->s_op = &simple_super_operations; 464 s->s_time_gran = 1; 465 466 inode = new_inode(s); 467 if (!inode) 468 return -ENOMEM; 469 /* 470 * because the root inode is 1, the files array must not contain an 471 * entry at index 1 472 */ 473 inode->i_ino = 1; 474 inode->i_mode = S_IFDIR | 0755; 475 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 476 inode->i_op = &simple_dir_inode_operations; 477 inode->i_fop = &simple_dir_operations; 478 set_nlink(inode, 2); 479 root = d_make_root(inode); 480 if (!root) 481 return -ENOMEM; 482 for (i = 0; !files->name || files->name[0]; i++, files++) { 483 if (!files->name) 484 continue; 485 486 /* warn if it tries to conflict with the root inode */ 487 if (unlikely(i == 1)) 488 printk(KERN_WARNING "%s: %s passed in a files array" 489 "with an index of 1!\n", __func__, 490 s->s_type->name); 491 492 dentry = d_alloc_name(root, files->name); 493 if (!dentry) 494 goto out; 495 inode = new_inode(s); 496 if (!inode) { 497 dput(dentry); 498 goto out; 499 } 500 inode->i_mode = S_IFREG | files->mode; 501 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 502 inode->i_fop = files->ops; 503 inode->i_ino = i; 504 d_add(dentry, inode); 505 } 506 s->s_root = root; 507 return 0; 508 out: 509 d_genocide(root); 510 shrink_dcache_parent(root); 511 dput(root); 512 return -ENOMEM; 513 } 514 515 static DEFINE_SPINLOCK(pin_fs_lock); 516 517 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 518 { 519 struct vfsmount *mnt = NULL; 520 spin_lock(&pin_fs_lock); 521 if (unlikely(!*mount)) { 522 spin_unlock(&pin_fs_lock); 523 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL); 524 if (IS_ERR(mnt)) 525 return PTR_ERR(mnt); 526 spin_lock(&pin_fs_lock); 527 if (!*mount) 528 *mount = mnt; 529 } 530 mntget(*mount); 531 ++*count; 532 spin_unlock(&pin_fs_lock); 533 mntput(mnt); 534 return 0; 535 } 536 537 void simple_release_fs(struct vfsmount **mount, int *count) 538 { 539 struct vfsmount *mnt; 540 spin_lock(&pin_fs_lock); 541 mnt = *mount; 542 if (!--*count) 543 *mount = NULL; 544 spin_unlock(&pin_fs_lock); 545 mntput(mnt); 546 } 547 548 /** 549 * simple_read_from_buffer - copy data from the buffer to user space 550 * @to: the user space buffer to read to 551 * @count: the maximum number of bytes to read 552 * @ppos: the current position in the buffer 553 * @from: the buffer to read from 554 * @available: the size of the buffer 555 * 556 * The simple_read_from_buffer() function reads up to @count bytes from the 557 * buffer @from at offset @ppos into the user space address starting at @to. 558 * 559 * On success, the number of bytes read is returned and the offset @ppos is 560 * advanced by this number, or negative value is returned on error. 561 **/ 562 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 563 const void *from, size_t available) 564 { 565 loff_t pos = *ppos; 566 size_t ret; 567 568 if (pos < 0) 569 return -EINVAL; 570 if (pos >= available || !count) 571 return 0; 572 if (count > available - pos) 573 count = available - pos; 574 ret = copy_to_user(to, from + pos, count); 575 if (ret == count) 576 return -EFAULT; 577 count -= ret; 578 *ppos = pos + count; 579 return count; 580 } 581 582 /** 583 * simple_write_to_buffer - copy data from user space to the buffer 584 * @to: the buffer to write to 585 * @available: the size of the buffer 586 * @ppos: the current position in the buffer 587 * @from: the user space buffer to read from 588 * @count: the maximum number of bytes to read 589 * 590 * The simple_write_to_buffer() function reads up to @count bytes from the user 591 * space address starting at @from into the buffer @to at offset @ppos. 592 * 593 * On success, the number of bytes written is returned and the offset @ppos is 594 * advanced by this number, or negative value is returned on error. 595 **/ 596 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 597 const void __user *from, size_t count) 598 { 599 loff_t pos = *ppos; 600 size_t res; 601 602 if (pos < 0) 603 return -EINVAL; 604 if (pos >= available || !count) 605 return 0; 606 if (count > available - pos) 607 count = available - pos; 608 res = copy_from_user(to + pos, from, count); 609 if (res == count) 610 return -EFAULT; 611 count -= res; 612 *ppos = pos + count; 613 return count; 614 } 615 616 /** 617 * memory_read_from_buffer - copy data from the buffer 618 * @to: the kernel space buffer to read to 619 * @count: the maximum number of bytes to read 620 * @ppos: the current position in the buffer 621 * @from: the buffer to read from 622 * @available: the size of the buffer 623 * 624 * The memory_read_from_buffer() function reads up to @count bytes from the 625 * buffer @from at offset @ppos into the kernel space address starting at @to. 626 * 627 * On success, the number of bytes read is returned and the offset @ppos is 628 * advanced by this number, or negative value is returned on error. 629 **/ 630 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 631 const void *from, size_t available) 632 { 633 loff_t pos = *ppos; 634 635 if (pos < 0) 636 return -EINVAL; 637 if (pos >= available) 638 return 0; 639 if (count > available - pos) 640 count = available - pos; 641 memcpy(to, from + pos, count); 642 *ppos = pos + count; 643 644 return count; 645 } 646 647 /* 648 * Transaction based IO. 649 * The file expects a single write which triggers the transaction, and then 650 * possibly a read which collects the result - which is stored in a 651 * file-local buffer. 652 */ 653 654 void simple_transaction_set(struct file *file, size_t n) 655 { 656 struct simple_transaction_argresp *ar = file->private_data; 657 658 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 659 660 /* 661 * The barrier ensures that ar->size will really remain zero until 662 * ar->data is ready for reading. 663 */ 664 smp_mb(); 665 ar->size = n; 666 } 667 668 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 669 { 670 struct simple_transaction_argresp *ar; 671 static DEFINE_SPINLOCK(simple_transaction_lock); 672 673 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 674 return ERR_PTR(-EFBIG); 675 676 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 677 if (!ar) 678 return ERR_PTR(-ENOMEM); 679 680 spin_lock(&simple_transaction_lock); 681 682 /* only one write allowed per open */ 683 if (file->private_data) { 684 spin_unlock(&simple_transaction_lock); 685 free_page((unsigned long)ar); 686 return ERR_PTR(-EBUSY); 687 } 688 689 file->private_data = ar; 690 691 spin_unlock(&simple_transaction_lock); 692 693 if (copy_from_user(ar->data, buf, size)) 694 return ERR_PTR(-EFAULT); 695 696 return ar->data; 697 } 698 699 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 700 { 701 struct simple_transaction_argresp *ar = file->private_data; 702 703 if (!ar) 704 return 0; 705 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 706 } 707 708 int simple_transaction_release(struct inode *inode, struct file *file) 709 { 710 free_page((unsigned long)file->private_data); 711 return 0; 712 } 713 714 /* Simple attribute files */ 715 716 struct simple_attr { 717 int (*get)(void *, u64 *); 718 int (*set)(void *, u64); 719 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 720 char set_buf[24]; 721 void *data; 722 const char *fmt; /* format for read operation */ 723 struct mutex mutex; /* protects access to these buffers */ 724 }; 725 726 /* simple_attr_open is called by an actual attribute open file operation 727 * to set the attribute specific access operations. */ 728 int simple_attr_open(struct inode *inode, struct file *file, 729 int (*get)(void *, u64 *), int (*set)(void *, u64), 730 const char *fmt) 731 { 732 struct simple_attr *attr; 733 734 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 735 if (!attr) 736 return -ENOMEM; 737 738 attr->get = get; 739 attr->set = set; 740 attr->data = inode->i_private; 741 attr->fmt = fmt; 742 mutex_init(&attr->mutex); 743 744 file->private_data = attr; 745 746 return nonseekable_open(inode, file); 747 } 748 749 int simple_attr_release(struct inode *inode, struct file *file) 750 { 751 kfree(file->private_data); 752 return 0; 753 } 754 755 /* read from the buffer that is filled with the get function */ 756 ssize_t simple_attr_read(struct file *file, char __user *buf, 757 size_t len, loff_t *ppos) 758 { 759 struct simple_attr *attr; 760 size_t size; 761 ssize_t ret; 762 763 attr = file->private_data; 764 765 if (!attr->get) 766 return -EACCES; 767 768 ret = mutex_lock_interruptible(&attr->mutex); 769 if (ret) 770 return ret; 771 772 if (*ppos) { /* continued read */ 773 size = strlen(attr->get_buf); 774 } else { /* first read */ 775 u64 val; 776 ret = attr->get(attr->data, &val); 777 if (ret) 778 goto out; 779 780 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 781 attr->fmt, (unsigned long long)val); 782 } 783 784 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 785 out: 786 mutex_unlock(&attr->mutex); 787 return ret; 788 } 789 790 /* interpret the buffer as a number to call the set function with */ 791 ssize_t simple_attr_write(struct file *file, const char __user *buf, 792 size_t len, loff_t *ppos) 793 { 794 struct simple_attr *attr; 795 u64 val; 796 size_t size; 797 ssize_t ret; 798 799 attr = file->private_data; 800 if (!attr->set) 801 return -EACCES; 802 803 ret = mutex_lock_interruptible(&attr->mutex); 804 if (ret) 805 return ret; 806 807 ret = -EFAULT; 808 size = min(sizeof(attr->set_buf) - 1, len); 809 if (copy_from_user(attr->set_buf, buf, size)) 810 goto out; 811 812 attr->set_buf[size] = '\0'; 813 val = simple_strtoll(attr->set_buf, NULL, 0); 814 ret = attr->set(attr->data, val); 815 if (ret == 0) 816 ret = len; /* on success, claim we got the whole input */ 817 out: 818 mutex_unlock(&attr->mutex); 819 return ret; 820 } 821 822 /** 823 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 824 * @sb: filesystem to do the file handle conversion on 825 * @fid: file handle to convert 826 * @fh_len: length of the file handle in bytes 827 * @fh_type: type of file handle 828 * @get_inode: filesystem callback to retrieve inode 829 * 830 * This function decodes @fid as long as it has one of the well-known 831 * Linux filehandle types and calls @get_inode on it to retrieve the 832 * inode for the object specified in the file handle. 833 */ 834 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 835 int fh_len, int fh_type, struct inode *(*get_inode) 836 (struct super_block *sb, u64 ino, u32 gen)) 837 { 838 struct inode *inode = NULL; 839 840 if (fh_len < 2) 841 return NULL; 842 843 switch (fh_type) { 844 case FILEID_INO32_GEN: 845 case FILEID_INO32_GEN_PARENT: 846 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 847 break; 848 } 849 850 return d_obtain_alias(inode); 851 } 852 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 853 854 /** 855 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 856 * @sb: filesystem to do the file handle conversion on 857 * @fid: file handle to convert 858 * @fh_len: length of the file handle in bytes 859 * @fh_type: type of file handle 860 * @get_inode: filesystem callback to retrieve inode 861 * 862 * This function decodes @fid as long as it has one of the well-known 863 * Linux filehandle types and calls @get_inode on it to retrieve the 864 * inode for the _parent_ object specified in the file handle if it 865 * is specified in the file handle, or NULL otherwise. 866 */ 867 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 868 int fh_len, int fh_type, struct inode *(*get_inode) 869 (struct super_block *sb, u64 ino, u32 gen)) 870 { 871 struct inode *inode = NULL; 872 873 if (fh_len <= 2) 874 return NULL; 875 876 switch (fh_type) { 877 case FILEID_INO32_GEN_PARENT: 878 inode = get_inode(sb, fid->i32.parent_ino, 879 (fh_len > 3 ? fid->i32.parent_gen : 0)); 880 break; 881 } 882 883 return d_obtain_alias(inode); 884 } 885 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 886 887 /** 888 * generic_file_fsync - generic fsync implementation for simple filesystems 889 * @file: file to synchronize 890 * @datasync: only synchronize essential metadata if true 891 * 892 * This is a generic implementation of the fsync method for simple 893 * filesystems which track all non-inode metadata in the buffers list 894 * hanging off the address_space structure. 895 */ 896 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 897 int datasync) 898 { 899 struct inode *inode = file->f_mapping->host; 900 int err; 901 int ret; 902 903 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 904 if (err) 905 return err; 906 907 mutex_lock(&inode->i_mutex); 908 ret = sync_mapping_buffers(inode->i_mapping); 909 if (!(inode->i_state & I_DIRTY)) 910 goto out; 911 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 912 goto out; 913 914 err = sync_inode_metadata(inode, 1); 915 if (ret == 0) 916 ret = err; 917 out: 918 mutex_unlock(&inode->i_mutex); 919 return ret; 920 } 921 EXPORT_SYMBOL(generic_file_fsync); 922 923 /** 924 * generic_check_addressable - Check addressability of file system 925 * @blocksize_bits: log of file system block size 926 * @num_blocks: number of blocks in file system 927 * 928 * Determine whether a file system with @num_blocks blocks (and a 929 * block size of 2**@blocksize_bits) is addressable by the sector_t 930 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 931 */ 932 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 933 { 934 u64 last_fs_block = num_blocks - 1; 935 u64 last_fs_page = 936 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits); 937 938 if (unlikely(num_blocks == 0)) 939 return 0; 940 941 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT)) 942 return -EINVAL; 943 944 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 945 (last_fs_page > (pgoff_t)(~0ULL))) { 946 return -EFBIG; 947 } 948 return 0; 949 } 950 EXPORT_SYMBOL(generic_check_addressable); 951 952 /* 953 * No-op implementation of ->fsync for in-memory filesystems. 954 */ 955 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 956 { 957 return 0; 958 } 959 960 EXPORT_SYMBOL(dcache_dir_close); 961 EXPORT_SYMBOL(dcache_dir_lseek); 962 EXPORT_SYMBOL(dcache_dir_open); 963 EXPORT_SYMBOL(dcache_readdir); 964 EXPORT_SYMBOL(generic_read_dir); 965 EXPORT_SYMBOL(mount_pseudo); 966 EXPORT_SYMBOL(simple_write_begin); 967 EXPORT_SYMBOL(simple_write_end); 968 EXPORT_SYMBOL(simple_dir_inode_operations); 969 EXPORT_SYMBOL(simple_dir_operations); 970 EXPORT_SYMBOL(simple_empty); 971 EXPORT_SYMBOL(simple_fill_super); 972 EXPORT_SYMBOL(simple_getattr); 973 EXPORT_SYMBOL(simple_open); 974 EXPORT_SYMBOL(simple_link); 975 EXPORT_SYMBOL(simple_lookup); 976 EXPORT_SYMBOL(simple_pin_fs); 977 EXPORT_SYMBOL(simple_readpage); 978 EXPORT_SYMBOL(simple_release_fs); 979 EXPORT_SYMBOL(simple_rename); 980 EXPORT_SYMBOL(simple_rmdir); 981 EXPORT_SYMBOL(simple_statfs); 982 EXPORT_SYMBOL(noop_fsync); 983 EXPORT_SYMBOL(simple_unlink); 984 EXPORT_SYMBOL(simple_read_from_buffer); 985 EXPORT_SYMBOL(simple_write_to_buffer); 986 EXPORT_SYMBOL(memory_read_from_buffer); 987 EXPORT_SYMBOL(simple_transaction_set); 988 EXPORT_SYMBOL(simple_transaction_get); 989 EXPORT_SYMBOL(simple_transaction_read); 990 EXPORT_SYMBOL(simple_transaction_release); 991 EXPORT_SYMBOL_GPL(simple_attr_open); 992 EXPORT_SYMBOL_GPL(simple_attr_release); 993 EXPORT_SYMBOL_GPL(simple_attr_read); 994 EXPORT_SYMBOL_GPL(simple_attr_write); 995