1 /* 2 * fs/libfs.c 3 * Library for filesystems writers. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/export.h> 8 #include <linux/pagemap.h> 9 #include <linux/slab.h> 10 #include <linux/mount.h> 11 #include <linux/vfs.h> 12 #include <linux/quotaops.h> 13 #include <linux/mutex.h> 14 #include <linux/namei.h> 15 #include <linux/exportfs.h> 16 #include <linux/writeback.h> 17 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 18 19 #include <asm/uaccess.h> 20 21 #include "internal.h" 22 23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry, 24 struct kstat *stat) 25 { 26 struct inode *inode = d_inode(dentry); 27 generic_fillattr(inode, stat); 28 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 29 return 0; 30 } 31 EXPORT_SYMBOL(simple_getattr); 32 33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 34 { 35 buf->f_type = dentry->d_sb->s_magic; 36 buf->f_bsize = PAGE_SIZE; 37 buf->f_namelen = NAME_MAX; 38 return 0; 39 } 40 EXPORT_SYMBOL(simple_statfs); 41 42 /* 43 * Retaining negative dentries for an in-memory filesystem just wastes 44 * memory and lookup time: arrange for them to be deleted immediately. 45 */ 46 int always_delete_dentry(const struct dentry *dentry) 47 { 48 return 1; 49 } 50 EXPORT_SYMBOL(always_delete_dentry); 51 52 const struct dentry_operations simple_dentry_operations = { 53 .d_delete = always_delete_dentry, 54 }; 55 EXPORT_SYMBOL(simple_dentry_operations); 56 57 /* 58 * Lookup the data. This is trivial - if the dentry didn't already 59 * exist, we know it is negative. Set d_op to delete negative dentries. 60 */ 61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 62 { 63 if (dentry->d_name.len > NAME_MAX) 64 return ERR_PTR(-ENAMETOOLONG); 65 if (!dentry->d_sb->s_d_op) 66 d_set_d_op(dentry, &simple_dentry_operations); 67 d_add(dentry, NULL); 68 return NULL; 69 } 70 EXPORT_SYMBOL(simple_lookup); 71 72 int dcache_dir_open(struct inode *inode, struct file *file) 73 { 74 static struct qstr cursor_name = QSTR_INIT(".", 1); 75 76 file->private_data = d_alloc(file->f_path.dentry, &cursor_name); 77 78 return file->private_data ? 0 : -ENOMEM; 79 } 80 EXPORT_SYMBOL(dcache_dir_open); 81 82 int dcache_dir_close(struct inode *inode, struct file *file) 83 { 84 dput(file->private_data); 85 return 0; 86 } 87 EXPORT_SYMBOL(dcache_dir_close); 88 89 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 90 { 91 struct dentry *dentry = file->f_path.dentry; 92 switch (whence) { 93 case 1: 94 offset += file->f_pos; 95 case 0: 96 if (offset >= 0) 97 break; 98 default: 99 return -EINVAL; 100 } 101 if (offset != file->f_pos) { 102 file->f_pos = offset; 103 if (file->f_pos >= 2) { 104 struct list_head *p; 105 struct dentry *cursor = file->private_data; 106 loff_t n = file->f_pos - 2; 107 108 spin_lock(&dentry->d_lock); 109 /* d_lock not required for cursor */ 110 list_del(&cursor->d_child); 111 p = dentry->d_subdirs.next; 112 while (n && p != &dentry->d_subdirs) { 113 struct dentry *next; 114 next = list_entry(p, struct dentry, d_child); 115 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 116 if (simple_positive(next)) 117 n--; 118 spin_unlock(&next->d_lock); 119 p = p->next; 120 } 121 list_add_tail(&cursor->d_child, p); 122 spin_unlock(&dentry->d_lock); 123 } 124 } 125 return offset; 126 } 127 EXPORT_SYMBOL(dcache_dir_lseek); 128 129 /* Relationship between i_mode and the DT_xxx types */ 130 static inline unsigned char dt_type(struct inode *inode) 131 { 132 return (inode->i_mode >> 12) & 15; 133 } 134 135 /* 136 * Directory is locked and all positive dentries in it are safe, since 137 * for ramfs-type trees they can't go away without unlink() or rmdir(), 138 * both impossible due to the lock on directory. 139 */ 140 141 int dcache_readdir(struct file *file, struct dir_context *ctx) 142 { 143 struct dentry *dentry = file->f_path.dentry; 144 struct dentry *cursor = file->private_data; 145 struct list_head *p, *q = &cursor->d_child; 146 147 if (!dir_emit_dots(file, ctx)) 148 return 0; 149 spin_lock(&dentry->d_lock); 150 if (ctx->pos == 2) 151 list_move(q, &dentry->d_subdirs); 152 153 for (p = q->next; p != &dentry->d_subdirs; p = p->next) { 154 struct dentry *next = list_entry(p, struct dentry, d_child); 155 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 156 if (!simple_positive(next)) { 157 spin_unlock(&next->d_lock); 158 continue; 159 } 160 161 spin_unlock(&next->d_lock); 162 spin_unlock(&dentry->d_lock); 163 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 164 d_inode(next)->i_ino, dt_type(d_inode(next)))) 165 return 0; 166 spin_lock(&dentry->d_lock); 167 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED); 168 /* next is still alive */ 169 list_move(q, p); 170 spin_unlock(&next->d_lock); 171 p = q; 172 ctx->pos++; 173 } 174 spin_unlock(&dentry->d_lock); 175 return 0; 176 } 177 EXPORT_SYMBOL(dcache_readdir); 178 179 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 180 { 181 return -EISDIR; 182 } 183 EXPORT_SYMBOL(generic_read_dir); 184 185 const struct file_operations simple_dir_operations = { 186 .open = dcache_dir_open, 187 .release = dcache_dir_close, 188 .llseek = dcache_dir_lseek, 189 .read = generic_read_dir, 190 .iterate_shared = dcache_readdir, 191 .fsync = noop_fsync, 192 }; 193 EXPORT_SYMBOL(simple_dir_operations); 194 195 const struct inode_operations simple_dir_inode_operations = { 196 .lookup = simple_lookup, 197 }; 198 EXPORT_SYMBOL(simple_dir_inode_operations); 199 200 static const struct super_operations simple_super_operations = { 201 .statfs = simple_statfs, 202 }; 203 204 /* 205 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 206 * will never be mountable) 207 */ 208 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name, 209 const struct super_operations *ops, 210 const struct dentry_operations *dops, unsigned long magic) 211 { 212 struct super_block *s; 213 struct dentry *dentry; 214 struct inode *root; 215 struct qstr d_name = QSTR_INIT(name, strlen(name)); 216 217 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL); 218 if (IS_ERR(s)) 219 return ERR_CAST(s); 220 221 s->s_maxbytes = MAX_LFS_FILESIZE; 222 s->s_blocksize = PAGE_SIZE; 223 s->s_blocksize_bits = PAGE_SHIFT; 224 s->s_magic = magic; 225 s->s_op = ops ? ops : &simple_super_operations; 226 s->s_time_gran = 1; 227 root = new_inode(s); 228 if (!root) 229 goto Enomem; 230 /* 231 * since this is the first inode, make it number 1. New inodes created 232 * after this must take care not to collide with it (by passing 233 * max_reserved of 1 to iunique). 234 */ 235 root->i_ino = 1; 236 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 237 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME; 238 dentry = __d_alloc(s, &d_name); 239 if (!dentry) { 240 iput(root); 241 goto Enomem; 242 } 243 d_instantiate(dentry, root); 244 s->s_root = dentry; 245 s->s_d_op = dops; 246 s->s_flags |= MS_ACTIVE; 247 return dget(s->s_root); 248 249 Enomem: 250 deactivate_locked_super(s); 251 return ERR_PTR(-ENOMEM); 252 } 253 EXPORT_SYMBOL(mount_pseudo); 254 255 int simple_open(struct inode *inode, struct file *file) 256 { 257 if (inode->i_private) 258 file->private_data = inode->i_private; 259 return 0; 260 } 261 EXPORT_SYMBOL(simple_open); 262 263 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 264 { 265 struct inode *inode = d_inode(old_dentry); 266 267 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 268 inc_nlink(inode); 269 ihold(inode); 270 dget(dentry); 271 d_instantiate(dentry, inode); 272 return 0; 273 } 274 EXPORT_SYMBOL(simple_link); 275 276 int simple_empty(struct dentry *dentry) 277 { 278 struct dentry *child; 279 int ret = 0; 280 281 spin_lock(&dentry->d_lock); 282 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 283 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 284 if (simple_positive(child)) { 285 spin_unlock(&child->d_lock); 286 goto out; 287 } 288 spin_unlock(&child->d_lock); 289 } 290 ret = 1; 291 out: 292 spin_unlock(&dentry->d_lock); 293 return ret; 294 } 295 EXPORT_SYMBOL(simple_empty); 296 297 int simple_unlink(struct inode *dir, struct dentry *dentry) 298 { 299 struct inode *inode = d_inode(dentry); 300 301 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME; 302 drop_nlink(inode); 303 dput(dentry); 304 return 0; 305 } 306 EXPORT_SYMBOL(simple_unlink); 307 308 int simple_rmdir(struct inode *dir, struct dentry *dentry) 309 { 310 if (!simple_empty(dentry)) 311 return -ENOTEMPTY; 312 313 drop_nlink(d_inode(dentry)); 314 simple_unlink(dir, dentry); 315 drop_nlink(dir); 316 return 0; 317 } 318 EXPORT_SYMBOL(simple_rmdir); 319 320 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 321 struct inode *new_dir, struct dentry *new_dentry) 322 { 323 struct inode *inode = d_inode(old_dentry); 324 int they_are_dirs = d_is_dir(old_dentry); 325 326 if (!simple_empty(new_dentry)) 327 return -ENOTEMPTY; 328 329 if (d_really_is_positive(new_dentry)) { 330 simple_unlink(new_dir, new_dentry); 331 if (they_are_dirs) { 332 drop_nlink(d_inode(new_dentry)); 333 drop_nlink(old_dir); 334 } 335 } else if (they_are_dirs) { 336 drop_nlink(old_dir); 337 inc_nlink(new_dir); 338 } 339 340 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 341 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME; 342 343 return 0; 344 } 345 EXPORT_SYMBOL(simple_rename); 346 347 /** 348 * simple_setattr - setattr for simple filesystem 349 * @dentry: dentry 350 * @iattr: iattr structure 351 * 352 * Returns 0 on success, -error on failure. 353 * 354 * simple_setattr is a simple ->setattr implementation without a proper 355 * implementation of size changes. 356 * 357 * It can either be used for in-memory filesystems or special files 358 * on simple regular filesystems. Anything that needs to change on-disk 359 * or wire state on size changes needs its own setattr method. 360 */ 361 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 362 { 363 struct inode *inode = d_inode(dentry); 364 int error; 365 366 error = inode_change_ok(inode, iattr); 367 if (error) 368 return error; 369 370 if (iattr->ia_valid & ATTR_SIZE) 371 truncate_setsize(inode, iattr->ia_size); 372 setattr_copy(inode, iattr); 373 mark_inode_dirty(inode); 374 return 0; 375 } 376 EXPORT_SYMBOL(simple_setattr); 377 378 int simple_readpage(struct file *file, struct page *page) 379 { 380 clear_highpage(page); 381 flush_dcache_page(page); 382 SetPageUptodate(page); 383 unlock_page(page); 384 return 0; 385 } 386 EXPORT_SYMBOL(simple_readpage); 387 388 int simple_write_begin(struct file *file, struct address_space *mapping, 389 loff_t pos, unsigned len, unsigned flags, 390 struct page **pagep, void **fsdata) 391 { 392 struct page *page; 393 pgoff_t index; 394 395 index = pos >> PAGE_SHIFT; 396 397 page = grab_cache_page_write_begin(mapping, index, flags); 398 if (!page) 399 return -ENOMEM; 400 401 *pagep = page; 402 403 if (!PageUptodate(page) && (len != PAGE_SIZE)) { 404 unsigned from = pos & (PAGE_SIZE - 1); 405 406 zero_user_segments(page, 0, from, from + len, PAGE_SIZE); 407 } 408 return 0; 409 } 410 EXPORT_SYMBOL(simple_write_begin); 411 412 /** 413 * simple_write_end - .write_end helper for non-block-device FSes 414 * @available: See .write_end of address_space_operations 415 * @file: " 416 * @mapping: " 417 * @pos: " 418 * @len: " 419 * @copied: " 420 * @page: " 421 * @fsdata: " 422 * 423 * simple_write_end does the minimum needed for updating a page after writing is 424 * done. It has the same API signature as the .write_end of 425 * address_space_operations vector. So it can just be set onto .write_end for 426 * FSes that don't need any other processing. i_mutex is assumed to be held. 427 * Block based filesystems should use generic_write_end(). 428 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 429 * is not called, so a filesystem that actually does store data in .write_inode 430 * should extend on what's done here with a call to mark_inode_dirty() in the 431 * case that i_size has changed. 432 */ 433 int simple_write_end(struct file *file, struct address_space *mapping, 434 loff_t pos, unsigned len, unsigned copied, 435 struct page *page, void *fsdata) 436 { 437 struct inode *inode = page->mapping->host; 438 loff_t last_pos = pos + copied; 439 440 /* zero the stale part of the page if we did a short copy */ 441 if (copied < len) { 442 unsigned from = pos & (PAGE_SIZE - 1); 443 444 zero_user(page, from + copied, len - copied); 445 } 446 447 if (!PageUptodate(page)) 448 SetPageUptodate(page); 449 /* 450 * No need to use i_size_read() here, the i_size 451 * cannot change under us because we hold the i_mutex. 452 */ 453 if (last_pos > inode->i_size) 454 i_size_write(inode, last_pos); 455 456 set_page_dirty(page); 457 unlock_page(page); 458 put_page(page); 459 460 return copied; 461 } 462 EXPORT_SYMBOL(simple_write_end); 463 464 /* 465 * the inodes created here are not hashed. If you use iunique to generate 466 * unique inode values later for this filesystem, then you must take care 467 * to pass it an appropriate max_reserved value to avoid collisions. 468 */ 469 int simple_fill_super(struct super_block *s, unsigned long magic, 470 struct tree_descr *files) 471 { 472 struct inode *inode; 473 struct dentry *root; 474 struct dentry *dentry; 475 int i; 476 477 s->s_blocksize = PAGE_SIZE; 478 s->s_blocksize_bits = PAGE_SHIFT; 479 s->s_magic = magic; 480 s->s_op = &simple_super_operations; 481 s->s_time_gran = 1; 482 483 inode = new_inode(s); 484 if (!inode) 485 return -ENOMEM; 486 /* 487 * because the root inode is 1, the files array must not contain an 488 * entry at index 1 489 */ 490 inode->i_ino = 1; 491 inode->i_mode = S_IFDIR | 0755; 492 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 493 inode->i_op = &simple_dir_inode_operations; 494 inode->i_fop = &simple_dir_operations; 495 set_nlink(inode, 2); 496 root = d_make_root(inode); 497 if (!root) 498 return -ENOMEM; 499 for (i = 0; !files->name || files->name[0]; i++, files++) { 500 if (!files->name) 501 continue; 502 503 /* warn if it tries to conflict with the root inode */ 504 if (unlikely(i == 1)) 505 printk(KERN_WARNING "%s: %s passed in a files array" 506 "with an index of 1!\n", __func__, 507 s->s_type->name); 508 509 dentry = d_alloc_name(root, files->name); 510 if (!dentry) 511 goto out; 512 inode = new_inode(s); 513 if (!inode) { 514 dput(dentry); 515 goto out; 516 } 517 inode->i_mode = S_IFREG | files->mode; 518 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 519 inode->i_fop = files->ops; 520 inode->i_ino = i; 521 d_add(dentry, inode); 522 } 523 s->s_root = root; 524 return 0; 525 out: 526 d_genocide(root); 527 shrink_dcache_parent(root); 528 dput(root); 529 return -ENOMEM; 530 } 531 EXPORT_SYMBOL(simple_fill_super); 532 533 static DEFINE_SPINLOCK(pin_fs_lock); 534 535 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 536 { 537 struct vfsmount *mnt = NULL; 538 spin_lock(&pin_fs_lock); 539 if (unlikely(!*mount)) { 540 spin_unlock(&pin_fs_lock); 541 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL); 542 if (IS_ERR(mnt)) 543 return PTR_ERR(mnt); 544 spin_lock(&pin_fs_lock); 545 if (!*mount) 546 *mount = mnt; 547 } 548 mntget(*mount); 549 ++*count; 550 spin_unlock(&pin_fs_lock); 551 mntput(mnt); 552 return 0; 553 } 554 EXPORT_SYMBOL(simple_pin_fs); 555 556 void simple_release_fs(struct vfsmount **mount, int *count) 557 { 558 struct vfsmount *mnt; 559 spin_lock(&pin_fs_lock); 560 mnt = *mount; 561 if (!--*count) 562 *mount = NULL; 563 spin_unlock(&pin_fs_lock); 564 mntput(mnt); 565 } 566 EXPORT_SYMBOL(simple_release_fs); 567 568 /** 569 * simple_read_from_buffer - copy data from the buffer to user space 570 * @to: the user space buffer to read to 571 * @count: the maximum number of bytes to read 572 * @ppos: the current position in the buffer 573 * @from: the buffer to read from 574 * @available: the size of the buffer 575 * 576 * The simple_read_from_buffer() function reads up to @count bytes from the 577 * buffer @from at offset @ppos into the user space address starting at @to. 578 * 579 * On success, the number of bytes read is returned and the offset @ppos is 580 * advanced by this number, or negative value is returned on error. 581 **/ 582 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 583 const void *from, size_t available) 584 { 585 loff_t pos = *ppos; 586 size_t ret; 587 588 if (pos < 0) 589 return -EINVAL; 590 if (pos >= available || !count) 591 return 0; 592 if (count > available - pos) 593 count = available - pos; 594 ret = copy_to_user(to, from + pos, count); 595 if (ret == count) 596 return -EFAULT; 597 count -= ret; 598 *ppos = pos + count; 599 return count; 600 } 601 EXPORT_SYMBOL(simple_read_from_buffer); 602 603 /** 604 * simple_write_to_buffer - copy data from user space to the buffer 605 * @to: the buffer to write to 606 * @available: the size of the buffer 607 * @ppos: the current position in the buffer 608 * @from: the user space buffer to read from 609 * @count: the maximum number of bytes to read 610 * 611 * The simple_write_to_buffer() function reads up to @count bytes from the user 612 * space address starting at @from into the buffer @to at offset @ppos. 613 * 614 * On success, the number of bytes written is returned and the offset @ppos is 615 * advanced by this number, or negative value is returned on error. 616 **/ 617 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 618 const void __user *from, size_t count) 619 { 620 loff_t pos = *ppos; 621 size_t res; 622 623 if (pos < 0) 624 return -EINVAL; 625 if (pos >= available || !count) 626 return 0; 627 if (count > available - pos) 628 count = available - pos; 629 res = copy_from_user(to + pos, from, count); 630 if (res == count) 631 return -EFAULT; 632 count -= res; 633 *ppos = pos + count; 634 return count; 635 } 636 EXPORT_SYMBOL(simple_write_to_buffer); 637 638 /** 639 * memory_read_from_buffer - copy data from the buffer 640 * @to: the kernel space buffer to read to 641 * @count: the maximum number of bytes to read 642 * @ppos: the current position in the buffer 643 * @from: the buffer to read from 644 * @available: the size of the buffer 645 * 646 * The memory_read_from_buffer() function reads up to @count bytes from the 647 * buffer @from at offset @ppos into the kernel space address starting at @to. 648 * 649 * On success, the number of bytes read is returned and the offset @ppos is 650 * advanced by this number, or negative value is returned on error. 651 **/ 652 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 653 const void *from, size_t available) 654 { 655 loff_t pos = *ppos; 656 657 if (pos < 0) 658 return -EINVAL; 659 if (pos >= available) 660 return 0; 661 if (count > available - pos) 662 count = available - pos; 663 memcpy(to, from + pos, count); 664 *ppos = pos + count; 665 666 return count; 667 } 668 EXPORT_SYMBOL(memory_read_from_buffer); 669 670 /* 671 * Transaction based IO. 672 * The file expects a single write which triggers the transaction, and then 673 * possibly a read which collects the result - which is stored in a 674 * file-local buffer. 675 */ 676 677 void simple_transaction_set(struct file *file, size_t n) 678 { 679 struct simple_transaction_argresp *ar = file->private_data; 680 681 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 682 683 /* 684 * The barrier ensures that ar->size will really remain zero until 685 * ar->data is ready for reading. 686 */ 687 smp_mb(); 688 ar->size = n; 689 } 690 EXPORT_SYMBOL(simple_transaction_set); 691 692 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 693 { 694 struct simple_transaction_argresp *ar; 695 static DEFINE_SPINLOCK(simple_transaction_lock); 696 697 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 698 return ERR_PTR(-EFBIG); 699 700 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 701 if (!ar) 702 return ERR_PTR(-ENOMEM); 703 704 spin_lock(&simple_transaction_lock); 705 706 /* only one write allowed per open */ 707 if (file->private_data) { 708 spin_unlock(&simple_transaction_lock); 709 free_page((unsigned long)ar); 710 return ERR_PTR(-EBUSY); 711 } 712 713 file->private_data = ar; 714 715 spin_unlock(&simple_transaction_lock); 716 717 if (copy_from_user(ar->data, buf, size)) 718 return ERR_PTR(-EFAULT); 719 720 return ar->data; 721 } 722 EXPORT_SYMBOL(simple_transaction_get); 723 724 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 725 { 726 struct simple_transaction_argresp *ar = file->private_data; 727 728 if (!ar) 729 return 0; 730 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 731 } 732 EXPORT_SYMBOL(simple_transaction_read); 733 734 int simple_transaction_release(struct inode *inode, struct file *file) 735 { 736 free_page((unsigned long)file->private_data); 737 return 0; 738 } 739 EXPORT_SYMBOL(simple_transaction_release); 740 741 /* Simple attribute files */ 742 743 struct simple_attr { 744 int (*get)(void *, u64 *); 745 int (*set)(void *, u64); 746 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 747 char set_buf[24]; 748 void *data; 749 const char *fmt; /* format for read operation */ 750 struct mutex mutex; /* protects access to these buffers */ 751 }; 752 753 /* simple_attr_open is called by an actual attribute open file operation 754 * to set the attribute specific access operations. */ 755 int simple_attr_open(struct inode *inode, struct file *file, 756 int (*get)(void *, u64 *), int (*set)(void *, u64), 757 const char *fmt) 758 { 759 struct simple_attr *attr; 760 761 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 762 if (!attr) 763 return -ENOMEM; 764 765 attr->get = get; 766 attr->set = set; 767 attr->data = inode->i_private; 768 attr->fmt = fmt; 769 mutex_init(&attr->mutex); 770 771 file->private_data = attr; 772 773 return nonseekable_open(inode, file); 774 } 775 EXPORT_SYMBOL_GPL(simple_attr_open); 776 777 int simple_attr_release(struct inode *inode, struct file *file) 778 { 779 kfree(file->private_data); 780 return 0; 781 } 782 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 783 784 /* read from the buffer that is filled with the get function */ 785 ssize_t simple_attr_read(struct file *file, char __user *buf, 786 size_t len, loff_t *ppos) 787 { 788 struct simple_attr *attr; 789 size_t size; 790 ssize_t ret; 791 792 attr = file->private_data; 793 794 if (!attr->get) 795 return -EACCES; 796 797 ret = mutex_lock_interruptible(&attr->mutex); 798 if (ret) 799 return ret; 800 801 if (*ppos) { /* continued read */ 802 size = strlen(attr->get_buf); 803 } else { /* first read */ 804 u64 val; 805 ret = attr->get(attr->data, &val); 806 if (ret) 807 goto out; 808 809 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 810 attr->fmt, (unsigned long long)val); 811 } 812 813 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 814 out: 815 mutex_unlock(&attr->mutex); 816 return ret; 817 } 818 EXPORT_SYMBOL_GPL(simple_attr_read); 819 820 /* interpret the buffer as a number to call the set function with */ 821 ssize_t simple_attr_write(struct file *file, const char __user *buf, 822 size_t len, loff_t *ppos) 823 { 824 struct simple_attr *attr; 825 u64 val; 826 size_t size; 827 ssize_t ret; 828 829 attr = file->private_data; 830 if (!attr->set) 831 return -EACCES; 832 833 ret = mutex_lock_interruptible(&attr->mutex); 834 if (ret) 835 return ret; 836 837 ret = -EFAULT; 838 size = min(sizeof(attr->set_buf) - 1, len); 839 if (copy_from_user(attr->set_buf, buf, size)) 840 goto out; 841 842 attr->set_buf[size] = '\0'; 843 val = simple_strtoll(attr->set_buf, NULL, 0); 844 ret = attr->set(attr->data, val); 845 if (ret == 0) 846 ret = len; /* on success, claim we got the whole input */ 847 out: 848 mutex_unlock(&attr->mutex); 849 return ret; 850 } 851 EXPORT_SYMBOL_GPL(simple_attr_write); 852 853 /** 854 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 855 * @sb: filesystem to do the file handle conversion on 856 * @fid: file handle to convert 857 * @fh_len: length of the file handle in bytes 858 * @fh_type: type of file handle 859 * @get_inode: filesystem callback to retrieve inode 860 * 861 * This function decodes @fid as long as it has one of the well-known 862 * Linux filehandle types and calls @get_inode on it to retrieve the 863 * inode for the object specified in the file handle. 864 */ 865 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 866 int fh_len, int fh_type, struct inode *(*get_inode) 867 (struct super_block *sb, u64 ino, u32 gen)) 868 { 869 struct inode *inode = NULL; 870 871 if (fh_len < 2) 872 return NULL; 873 874 switch (fh_type) { 875 case FILEID_INO32_GEN: 876 case FILEID_INO32_GEN_PARENT: 877 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 878 break; 879 } 880 881 return d_obtain_alias(inode); 882 } 883 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 884 885 /** 886 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 887 * @sb: filesystem to do the file handle conversion on 888 * @fid: file handle to convert 889 * @fh_len: length of the file handle in bytes 890 * @fh_type: type of file handle 891 * @get_inode: filesystem callback to retrieve inode 892 * 893 * This function decodes @fid as long as it has one of the well-known 894 * Linux filehandle types and calls @get_inode on it to retrieve the 895 * inode for the _parent_ object specified in the file handle if it 896 * is specified in the file handle, or NULL otherwise. 897 */ 898 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 899 int fh_len, int fh_type, struct inode *(*get_inode) 900 (struct super_block *sb, u64 ino, u32 gen)) 901 { 902 struct inode *inode = NULL; 903 904 if (fh_len <= 2) 905 return NULL; 906 907 switch (fh_type) { 908 case FILEID_INO32_GEN_PARENT: 909 inode = get_inode(sb, fid->i32.parent_ino, 910 (fh_len > 3 ? fid->i32.parent_gen : 0)); 911 break; 912 } 913 914 return d_obtain_alias(inode); 915 } 916 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 917 918 /** 919 * __generic_file_fsync - generic fsync implementation for simple filesystems 920 * 921 * @file: file to synchronize 922 * @start: start offset in bytes 923 * @end: end offset in bytes (inclusive) 924 * @datasync: only synchronize essential metadata if true 925 * 926 * This is a generic implementation of the fsync method for simple 927 * filesystems which track all non-inode metadata in the buffers list 928 * hanging off the address_space structure. 929 */ 930 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 931 int datasync) 932 { 933 struct inode *inode = file->f_mapping->host; 934 int err; 935 int ret; 936 937 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 938 if (err) 939 return err; 940 941 inode_lock(inode); 942 ret = sync_mapping_buffers(inode->i_mapping); 943 if (!(inode->i_state & I_DIRTY_ALL)) 944 goto out; 945 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 946 goto out; 947 948 err = sync_inode_metadata(inode, 1); 949 if (ret == 0) 950 ret = err; 951 952 out: 953 inode_unlock(inode); 954 return ret; 955 } 956 EXPORT_SYMBOL(__generic_file_fsync); 957 958 /** 959 * generic_file_fsync - generic fsync implementation for simple filesystems 960 * with flush 961 * @file: file to synchronize 962 * @start: start offset in bytes 963 * @end: end offset in bytes (inclusive) 964 * @datasync: only synchronize essential metadata if true 965 * 966 */ 967 968 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 969 int datasync) 970 { 971 struct inode *inode = file->f_mapping->host; 972 int err; 973 974 err = __generic_file_fsync(file, start, end, datasync); 975 if (err) 976 return err; 977 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 978 } 979 EXPORT_SYMBOL(generic_file_fsync); 980 981 /** 982 * generic_check_addressable - Check addressability of file system 983 * @blocksize_bits: log of file system block size 984 * @num_blocks: number of blocks in file system 985 * 986 * Determine whether a file system with @num_blocks blocks (and a 987 * block size of 2**@blocksize_bits) is addressable by the sector_t 988 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 989 */ 990 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 991 { 992 u64 last_fs_block = num_blocks - 1; 993 u64 last_fs_page = 994 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 995 996 if (unlikely(num_blocks == 0)) 997 return 0; 998 999 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1000 return -EINVAL; 1001 1002 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1003 (last_fs_page > (pgoff_t)(~0ULL))) { 1004 return -EFBIG; 1005 } 1006 return 0; 1007 } 1008 EXPORT_SYMBOL(generic_check_addressable); 1009 1010 /* 1011 * No-op implementation of ->fsync for in-memory filesystems. 1012 */ 1013 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1014 { 1015 return 0; 1016 } 1017 EXPORT_SYMBOL(noop_fsync); 1018 1019 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1020 void kfree_link(void *p) 1021 { 1022 kfree(p); 1023 } 1024 EXPORT_SYMBOL(kfree_link); 1025 1026 /* 1027 * nop .set_page_dirty method so that people can use .page_mkwrite on 1028 * anon inodes. 1029 */ 1030 static int anon_set_page_dirty(struct page *page) 1031 { 1032 return 0; 1033 }; 1034 1035 /* 1036 * A single inode exists for all anon_inode files. Contrary to pipes, 1037 * anon_inode inodes have no associated per-instance data, so we need 1038 * only allocate one of them. 1039 */ 1040 struct inode *alloc_anon_inode(struct super_block *s) 1041 { 1042 static const struct address_space_operations anon_aops = { 1043 .set_page_dirty = anon_set_page_dirty, 1044 }; 1045 struct inode *inode = new_inode_pseudo(s); 1046 1047 if (!inode) 1048 return ERR_PTR(-ENOMEM); 1049 1050 inode->i_ino = get_next_ino(); 1051 inode->i_mapping->a_ops = &anon_aops; 1052 1053 /* 1054 * Mark the inode dirty from the very beginning, 1055 * that way it will never be moved to the dirty 1056 * list because mark_inode_dirty() will think 1057 * that it already _is_ on the dirty list. 1058 */ 1059 inode->i_state = I_DIRTY; 1060 inode->i_mode = S_IRUSR | S_IWUSR; 1061 inode->i_uid = current_fsuid(); 1062 inode->i_gid = current_fsgid(); 1063 inode->i_flags |= S_PRIVATE; 1064 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME; 1065 return inode; 1066 } 1067 EXPORT_SYMBOL(alloc_anon_inode); 1068 1069 /** 1070 * simple_nosetlease - generic helper for prohibiting leases 1071 * @filp: file pointer 1072 * @arg: type of lease to obtain 1073 * @flp: new lease supplied for insertion 1074 * @priv: private data for lm_setup operation 1075 * 1076 * Generic helper for filesystems that do not wish to allow leases to be set. 1077 * All arguments are ignored and it just returns -EINVAL. 1078 */ 1079 int 1080 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp, 1081 void **priv) 1082 { 1083 return -EINVAL; 1084 } 1085 EXPORT_SYMBOL(simple_nosetlease); 1086 1087 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1088 struct delayed_call *done) 1089 { 1090 return inode->i_link; 1091 } 1092 EXPORT_SYMBOL(simple_get_link); 1093 1094 const struct inode_operations simple_symlink_inode_operations = { 1095 .get_link = simple_get_link, 1096 .readlink = generic_readlink 1097 }; 1098 EXPORT_SYMBOL(simple_symlink_inode_operations); 1099 1100 /* 1101 * Operations for a permanently empty directory. 1102 */ 1103 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1104 { 1105 return ERR_PTR(-ENOENT); 1106 } 1107 1108 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry, 1109 struct kstat *stat) 1110 { 1111 struct inode *inode = d_inode(dentry); 1112 generic_fillattr(inode, stat); 1113 return 0; 1114 } 1115 1116 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr) 1117 { 1118 return -EPERM; 1119 } 1120 1121 static int empty_dir_setxattr(struct dentry *dentry, struct inode *inode, 1122 const char *name, const void *value, 1123 size_t size, int flags) 1124 { 1125 return -EOPNOTSUPP; 1126 } 1127 1128 static ssize_t empty_dir_getxattr(struct dentry *dentry, struct inode *inode, 1129 const char *name, void *value, size_t size) 1130 { 1131 return -EOPNOTSUPP; 1132 } 1133 1134 static int empty_dir_removexattr(struct dentry *dentry, const char *name) 1135 { 1136 return -EOPNOTSUPP; 1137 } 1138 1139 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1140 { 1141 return -EOPNOTSUPP; 1142 } 1143 1144 static const struct inode_operations empty_dir_inode_operations = { 1145 .lookup = empty_dir_lookup, 1146 .permission = generic_permission, 1147 .setattr = empty_dir_setattr, 1148 .getattr = empty_dir_getattr, 1149 .setxattr = empty_dir_setxattr, 1150 .getxattr = empty_dir_getxattr, 1151 .removexattr = empty_dir_removexattr, 1152 .listxattr = empty_dir_listxattr, 1153 }; 1154 1155 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1156 { 1157 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1158 return generic_file_llseek_size(file, offset, whence, 2, 2); 1159 } 1160 1161 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1162 { 1163 dir_emit_dots(file, ctx); 1164 return 0; 1165 } 1166 1167 static const struct file_operations empty_dir_operations = { 1168 .llseek = empty_dir_llseek, 1169 .read = generic_read_dir, 1170 .iterate_shared = empty_dir_readdir, 1171 .fsync = noop_fsync, 1172 }; 1173 1174 1175 void make_empty_dir_inode(struct inode *inode) 1176 { 1177 set_nlink(inode, 2); 1178 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1179 inode->i_uid = GLOBAL_ROOT_UID; 1180 inode->i_gid = GLOBAL_ROOT_GID; 1181 inode->i_rdev = 0; 1182 inode->i_size = 0; 1183 inode->i_blkbits = PAGE_SHIFT; 1184 inode->i_blocks = 0; 1185 1186 inode->i_op = &empty_dir_inode_operations; 1187 inode->i_fop = &empty_dir_operations; 1188 } 1189 1190 bool is_empty_dir_inode(struct inode *inode) 1191 { 1192 return (inode->i_fop == &empty_dir_operations) && 1193 (inode->i_op == &empty_dir_inode_operations); 1194 } 1195