xref: /openbmc/linux/fs/libfs.c (revision 75f25bd3)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h>
16 
17 #include <asm/uaccess.h>
18 
19 #include "internal.h"
20 
21 static inline int simple_positive(struct dentry *dentry)
22 {
23 	return dentry->d_inode && !d_unhashed(dentry);
24 }
25 
26 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
27 		   struct kstat *stat)
28 {
29 	struct inode *inode = dentry->d_inode;
30 	generic_fillattr(inode, stat);
31 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
32 	return 0;
33 }
34 
35 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
36 {
37 	buf->f_type = dentry->d_sb->s_magic;
38 	buf->f_bsize = PAGE_CACHE_SIZE;
39 	buf->f_namelen = NAME_MAX;
40 	return 0;
41 }
42 
43 /*
44  * Retaining negative dentries for an in-memory filesystem just wastes
45  * memory and lookup time: arrange for them to be deleted immediately.
46  */
47 static int simple_delete_dentry(const struct dentry *dentry)
48 {
49 	return 1;
50 }
51 
52 /*
53  * Lookup the data. This is trivial - if the dentry didn't already
54  * exist, we know it is negative.  Set d_op to delete negative dentries.
55  */
56 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
57 {
58 	static const struct dentry_operations simple_dentry_operations = {
59 		.d_delete = simple_delete_dentry,
60 	};
61 
62 	if (dentry->d_name.len > NAME_MAX)
63 		return ERR_PTR(-ENAMETOOLONG);
64 	d_set_d_op(dentry, &simple_dentry_operations);
65 	d_add(dentry, NULL);
66 	return NULL;
67 }
68 
69 int dcache_dir_open(struct inode *inode, struct file *file)
70 {
71 	static struct qstr cursor_name = {.len = 1, .name = "."};
72 
73 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
74 
75 	return file->private_data ? 0 : -ENOMEM;
76 }
77 
78 int dcache_dir_close(struct inode *inode, struct file *file)
79 {
80 	dput(file->private_data);
81 	return 0;
82 }
83 
84 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
85 {
86 	struct dentry *dentry = file->f_path.dentry;
87 	mutex_lock(&dentry->d_inode->i_mutex);
88 	switch (origin) {
89 		case 1:
90 			offset += file->f_pos;
91 		case 0:
92 			if (offset >= 0)
93 				break;
94 		default:
95 			mutex_unlock(&dentry->d_inode->i_mutex);
96 			return -EINVAL;
97 	}
98 	if (offset != file->f_pos) {
99 		file->f_pos = offset;
100 		if (file->f_pos >= 2) {
101 			struct list_head *p;
102 			struct dentry *cursor = file->private_data;
103 			loff_t n = file->f_pos - 2;
104 
105 			spin_lock(&dentry->d_lock);
106 			/* d_lock not required for cursor */
107 			list_del(&cursor->d_u.d_child);
108 			p = dentry->d_subdirs.next;
109 			while (n && p != &dentry->d_subdirs) {
110 				struct dentry *next;
111 				next = list_entry(p, struct dentry, d_u.d_child);
112 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
113 				if (simple_positive(next))
114 					n--;
115 				spin_unlock(&next->d_lock);
116 				p = p->next;
117 			}
118 			list_add_tail(&cursor->d_u.d_child, p);
119 			spin_unlock(&dentry->d_lock);
120 		}
121 	}
122 	mutex_unlock(&dentry->d_inode->i_mutex);
123 	return offset;
124 }
125 
126 /* Relationship between i_mode and the DT_xxx types */
127 static inline unsigned char dt_type(struct inode *inode)
128 {
129 	return (inode->i_mode >> 12) & 15;
130 }
131 
132 /*
133  * Directory is locked and all positive dentries in it are safe, since
134  * for ramfs-type trees they can't go away without unlink() or rmdir(),
135  * both impossible due to the lock on directory.
136  */
137 
138 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
139 {
140 	struct dentry *dentry = filp->f_path.dentry;
141 	struct dentry *cursor = filp->private_data;
142 	struct list_head *p, *q = &cursor->d_u.d_child;
143 	ino_t ino;
144 	int i = filp->f_pos;
145 
146 	switch (i) {
147 		case 0:
148 			ino = dentry->d_inode->i_ino;
149 			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
150 				break;
151 			filp->f_pos++;
152 			i++;
153 			/* fallthrough */
154 		case 1:
155 			ino = parent_ino(dentry);
156 			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
157 				break;
158 			filp->f_pos++;
159 			i++;
160 			/* fallthrough */
161 		default:
162 			spin_lock(&dentry->d_lock);
163 			if (filp->f_pos == 2)
164 				list_move(q, &dentry->d_subdirs);
165 
166 			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
167 				struct dentry *next;
168 				next = list_entry(p, struct dentry, d_u.d_child);
169 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
170 				if (!simple_positive(next)) {
171 					spin_unlock(&next->d_lock);
172 					continue;
173 				}
174 
175 				spin_unlock(&next->d_lock);
176 				spin_unlock(&dentry->d_lock);
177 				if (filldir(dirent, next->d_name.name,
178 					    next->d_name.len, filp->f_pos,
179 					    next->d_inode->i_ino,
180 					    dt_type(next->d_inode)) < 0)
181 					return 0;
182 				spin_lock(&dentry->d_lock);
183 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
184 				/* next is still alive */
185 				list_move(q, p);
186 				spin_unlock(&next->d_lock);
187 				p = q;
188 				filp->f_pos++;
189 			}
190 			spin_unlock(&dentry->d_lock);
191 	}
192 	return 0;
193 }
194 
195 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
196 {
197 	return -EISDIR;
198 }
199 
200 const struct file_operations simple_dir_operations = {
201 	.open		= dcache_dir_open,
202 	.release	= dcache_dir_close,
203 	.llseek		= dcache_dir_lseek,
204 	.read		= generic_read_dir,
205 	.readdir	= dcache_readdir,
206 	.fsync		= noop_fsync,
207 };
208 
209 const struct inode_operations simple_dir_inode_operations = {
210 	.lookup		= simple_lookup,
211 };
212 
213 static const struct super_operations simple_super_operations = {
214 	.statfs		= simple_statfs,
215 };
216 
217 /*
218  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
219  * will never be mountable)
220  */
221 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
222 	const struct super_operations *ops,
223 	const struct dentry_operations *dops, unsigned long magic)
224 {
225 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
226 	struct dentry *dentry;
227 	struct inode *root;
228 	struct qstr d_name = {.name = name, .len = strlen(name)};
229 
230 	if (IS_ERR(s))
231 		return ERR_CAST(s);
232 
233 	s->s_flags = MS_NOUSER;
234 	s->s_maxbytes = MAX_LFS_FILESIZE;
235 	s->s_blocksize = PAGE_SIZE;
236 	s->s_blocksize_bits = PAGE_SHIFT;
237 	s->s_magic = magic;
238 	s->s_op = ops ? ops : &simple_super_operations;
239 	s->s_time_gran = 1;
240 	root = new_inode(s);
241 	if (!root)
242 		goto Enomem;
243 	/*
244 	 * since this is the first inode, make it number 1. New inodes created
245 	 * after this must take care not to collide with it (by passing
246 	 * max_reserved of 1 to iunique).
247 	 */
248 	root->i_ino = 1;
249 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
250 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
251 	dentry = __d_alloc(s, &d_name);
252 	if (!dentry) {
253 		iput(root);
254 		goto Enomem;
255 	}
256 	d_instantiate(dentry, root);
257 	s->s_root = dentry;
258 	s->s_d_op = dops;
259 	s->s_flags |= MS_ACTIVE;
260 	return dget(s->s_root);
261 
262 Enomem:
263 	deactivate_locked_super(s);
264 	return ERR_PTR(-ENOMEM);
265 }
266 
267 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
268 {
269 	struct inode *inode = old_dentry->d_inode;
270 
271 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
272 	inc_nlink(inode);
273 	ihold(inode);
274 	dget(dentry);
275 	d_instantiate(dentry, inode);
276 	return 0;
277 }
278 
279 int simple_empty(struct dentry *dentry)
280 {
281 	struct dentry *child;
282 	int ret = 0;
283 
284 	spin_lock(&dentry->d_lock);
285 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
286 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
287 		if (simple_positive(child)) {
288 			spin_unlock(&child->d_lock);
289 			goto out;
290 		}
291 		spin_unlock(&child->d_lock);
292 	}
293 	ret = 1;
294 out:
295 	spin_unlock(&dentry->d_lock);
296 	return ret;
297 }
298 
299 int simple_unlink(struct inode *dir, struct dentry *dentry)
300 {
301 	struct inode *inode = dentry->d_inode;
302 
303 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
304 	drop_nlink(inode);
305 	dput(dentry);
306 	return 0;
307 }
308 
309 int simple_rmdir(struct inode *dir, struct dentry *dentry)
310 {
311 	if (!simple_empty(dentry))
312 		return -ENOTEMPTY;
313 
314 	drop_nlink(dentry->d_inode);
315 	simple_unlink(dir, dentry);
316 	drop_nlink(dir);
317 	return 0;
318 }
319 
320 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
321 		struct inode *new_dir, struct dentry *new_dentry)
322 {
323 	struct inode *inode = old_dentry->d_inode;
324 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
325 
326 	if (!simple_empty(new_dentry))
327 		return -ENOTEMPTY;
328 
329 	if (new_dentry->d_inode) {
330 		simple_unlink(new_dir, new_dentry);
331 		if (they_are_dirs) {
332 			drop_nlink(new_dentry->d_inode);
333 			drop_nlink(old_dir);
334 		}
335 	} else if (they_are_dirs) {
336 		drop_nlink(old_dir);
337 		inc_nlink(new_dir);
338 	}
339 
340 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
341 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
342 
343 	return 0;
344 }
345 
346 /**
347  * simple_setattr - setattr for simple filesystem
348  * @dentry: dentry
349  * @iattr: iattr structure
350  *
351  * Returns 0 on success, -error on failure.
352  *
353  * simple_setattr is a simple ->setattr implementation without a proper
354  * implementation of size changes.
355  *
356  * It can either be used for in-memory filesystems or special files
357  * on simple regular filesystems.  Anything that needs to change on-disk
358  * or wire state on size changes needs its own setattr method.
359  */
360 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
361 {
362 	struct inode *inode = dentry->d_inode;
363 	int error;
364 
365 	WARN_ON_ONCE(inode->i_op->truncate);
366 
367 	error = inode_change_ok(inode, iattr);
368 	if (error)
369 		return error;
370 
371 	if (iattr->ia_valid & ATTR_SIZE)
372 		truncate_setsize(inode, iattr->ia_size);
373 	setattr_copy(inode, iattr);
374 	mark_inode_dirty(inode);
375 	return 0;
376 }
377 EXPORT_SYMBOL(simple_setattr);
378 
379 int simple_readpage(struct file *file, struct page *page)
380 {
381 	clear_highpage(page);
382 	flush_dcache_page(page);
383 	SetPageUptodate(page);
384 	unlock_page(page);
385 	return 0;
386 }
387 
388 int simple_write_begin(struct file *file, struct address_space *mapping,
389 			loff_t pos, unsigned len, unsigned flags,
390 			struct page **pagep, void **fsdata)
391 {
392 	struct page *page;
393 	pgoff_t index;
394 
395 	index = pos >> PAGE_CACHE_SHIFT;
396 
397 	page = grab_cache_page_write_begin(mapping, index, flags);
398 	if (!page)
399 		return -ENOMEM;
400 
401 	*pagep = page;
402 
403 	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
404 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
405 
406 		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
407 	}
408 	return 0;
409 }
410 
411 /**
412  * simple_write_end - .write_end helper for non-block-device FSes
413  * @available: See .write_end of address_space_operations
414  * @file: 		"
415  * @mapping: 		"
416  * @pos: 		"
417  * @len: 		"
418  * @copied: 		"
419  * @page: 		"
420  * @fsdata: 		"
421  *
422  * simple_write_end does the minimum needed for updating a page after writing is
423  * done. It has the same API signature as the .write_end of
424  * address_space_operations vector. So it can just be set onto .write_end for
425  * FSes that don't need any other processing. i_mutex is assumed to be held.
426  * Block based filesystems should use generic_write_end().
427  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
428  * is not called, so a filesystem that actually does store data in .write_inode
429  * should extend on what's done here with a call to mark_inode_dirty() in the
430  * case that i_size has changed.
431  */
432 int simple_write_end(struct file *file, struct address_space *mapping,
433 			loff_t pos, unsigned len, unsigned copied,
434 			struct page *page, void *fsdata)
435 {
436 	struct inode *inode = page->mapping->host;
437 	loff_t last_pos = pos + copied;
438 
439 	/* zero the stale part of the page if we did a short copy */
440 	if (copied < len) {
441 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
442 
443 		zero_user(page, from + copied, len - copied);
444 	}
445 
446 	if (!PageUptodate(page))
447 		SetPageUptodate(page);
448 	/*
449 	 * No need to use i_size_read() here, the i_size
450 	 * cannot change under us because we hold the i_mutex.
451 	 */
452 	if (last_pos > inode->i_size)
453 		i_size_write(inode, last_pos);
454 
455 	set_page_dirty(page);
456 	unlock_page(page);
457 	page_cache_release(page);
458 
459 	return copied;
460 }
461 
462 /*
463  * the inodes created here are not hashed. If you use iunique to generate
464  * unique inode values later for this filesystem, then you must take care
465  * to pass it an appropriate max_reserved value to avoid collisions.
466  */
467 int simple_fill_super(struct super_block *s, unsigned long magic,
468 		      struct tree_descr *files)
469 {
470 	struct inode *inode;
471 	struct dentry *root;
472 	struct dentry *dentry;
473 	int i;
474 
475 	s->s_blocksize = PAGE_CACHE_SIZE;
476 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
477 	s->s_magic = magic;
478 	s->s_op = &simple_super_operations;
479 	s->s_time_gran = 1;
480 
481 	inode = new_inode(s);
482 	if (!inode)
483 		return -ENOMEM;
484 	/*
485 	 * because the root inode is 1, the files array must not contain an
486 	 * entry at index 1
487 	 */
488 	inode->i_ino = 1;
489 	inode->i_mode = S_IFDIR | 0755;
490 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
491 	inode->i_op = &simple_dir_inode_operations;
492 	inode->i_fop = &simple_dir_operations;
493 	inode->i_nlink = 2;
494 	root = d_alloc_root(inode);
495 	if (!root) {
496 		iput(inode);
497 		return -ENOMEM;
498 	}
499 	for (i = 0; !files->name || files->name[0]; i++, files++) {
500 		if (!files->name)
501 			continue;
502 
503 		/* warn if it tries to conflict with the root inode */
504 		if (unlikely(i == 1))
505 			printk(KERN_WARNING "%s: %s passed in a files array"
506 				"with an index of 1!\n", __func__,
507 				s->s_type->name);
508 
509 		dentry = d_alloc_name(root, files->name);
510 		if (!dentry)
511 			goto out;
512 		inode = new_inode(s);
513 		if (!inode)
514 			goto out;
515 		inode->i_mode = S_IFREG | files->mode;
516 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
517 		inode->i_fop = files->ops;
518 		inode->i_ino = i;
519 		d_add(dentry, inode);
520 	}
521 	s->s_root = root;
522 	return 0;
523 out:
524 	d_genocide(root);
525 	dput(root);
526 	return -ENOMEM;
527 }
528 
529 static DEFINE_SPINLOCK(pin_fs_lock);
530 
531 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
532 {
533 	struct vfsmount *mnt = NULL;
534 	spin_lock(&pin_fs_lock);
535 	if (unlikely(!*mount)) {
536 		spin_unlock(&pin_fs_lock);
537 		mnt = vfs_kern_mount(type, 0, type->name, NULL);
538 		if (IS_ERR(mnt))
539 			return PTR_ERR(mnt);
540 		spin_lock(&pin_fs_lock);
541 		if (!*mount)
542 			*mount = mnt;
543 	}
544 	mntget(*mount);
545 	++*count;
546 	spin_unlock(&pin_fs_lock);
547 	mntput(mnt);
548 	return 0;
549 }
550 
551 void simple_release_fs(struct vfsmount **mount, int *count)
552 {
553 	struct vfsmount *mnt;
554 	spin_lock(&pin_fs_lock);
555 	mnt = *mount;
556 	if (!--*count)
557 		*mount = NULL;
558 	spin_unlock(&pin_fs_lock);
559 	mntput(mnt);
560 }
561 
562 /**
563  * simple_read_from_buffer - copy data from the buffer to user space
564  * @to: the user space buffer to read to
565  * @count: the maximum number of bytes to read
566  * @ppos: the current position in the buffer
567  * @from: the buffer to read from
568  * @available: the size of the buffer
569  *
570  * The simple_read_from_buffer() function reads up to @count bytes from the
571  * buffer @from at offset @ppos into the user space address starting at @to.
572  *
573  * On success, the number of bytes read is returned and the offset @ppos is
574  * advanced by this number, or negative value is returned on error.
575  **/
576 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
577 				const void *from, size_t available)
578 {
579 	loff_t pos = *ppos;
580 	size_t ret;
581 
582 	if (pos < 0)
583 		return -EINVAL;
584 	if (pos >= available || !count)
585 		return 0;
586 	if (count > available - pos)
587 		count = available - pos;
588 	ret = copy_to_user(to, from + pos, count);
589 	if (ret == count)
590 		return -EFAULT;
591 	count -= ret;
592 	*ppos = pos + count;
593 	return count;
594 }
595 
596 /**
597  * simple_write_to_buffer - copy data from user space to the buffer
598  * @to: the buffer to write to
599  * @available: the size of the buffer
600  * @ppos: the current position in the buffer
601  * @from: the user space buffer to read from
602  * @count: the maximum number of bytes to read
603  *
604  * The simple_write_to_buffer() function reads up to @count bytes from the user
605  * space address starting at @from into the buffer @to at offset @ppos.
606  *
607  * On success, the number of bytes written is returned and the offset @ppos is
608  * advanced by this number, or negative value is returned on error.
609  **/
610 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
611 		const void __user *from, size_t count)
612 {
613 	loff_t pos = *ppos;
614 	size_t res;
615 
616 	if (pos < 0)
617 		return -EINVAL;
618 	if (pos >= available || !count)
619 		return 0;
620 	if (count > available - pos)
621 		count = available - pos;
622 	res = copy_from_user(to + pos, from, count);
623 	if (res == count)
624 		return -EFAULT;
625 	count -= res;
626 	*ppos = pos + count;
627 	return count;
628 }
629 
630 /**
631  * memory_read_from_buffer - copy data from the buffer
632  * @to: the kernel space buffer to read to
633  * @count: the maximum number of bytes to read
634  * @ppos: the current position in the buffer
635  * @from: the buffer to read from
636  * @available: the size of the buffer
637  *
638  * The memory_read_from_buffer() function reads up to @count bytes from the
639  * buffer @from at offset @ppos into the kernel space address starting at @to.
640  *
641  * On success, the number of bytes read is returned and the offset @ppos is
642  * advanced by this number, or negative value is returned on error.
643  **/
644 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
645 				const void *from, size_t available)
646 {
647 	loff_t pos = *ppos;
648 
649 	if (pos < 0)
650 		return -EINVAL;
651 	if (pos >= available)
652 		return 0;
653 	if (count > available - pos)
654 		count = available - pos;
655 	memcpy(to, from + pos, count);
656 	*ppos = pos + count;
657 
658 	return count;
659 }
660 
661 /*
662  * Transaction based IO.
663  * The file expects a single write which triggers the transaction, and then
664  * possibly a read which collects the result - which is stored in a
665  * file-local buffer.
666  */
667 
668 void simple_transaction_set(struct file *file, size_t n)
669 {
670 	struct simple_transaction_argresp *ar = file->private_data;
671 
672 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
673 
674 	/*
675 	 * The barrier ensures that ar->size will really remain zero until
676 	 * ar->data is ready for reading.
677 	 */
678 	smp_mb();
679 	ar->size = n;
680 }
681 
682 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
683 {
684 	struct simple_transaction_argresp *ar;
685 	static DEFINE_SPINLOCK(simple_transaction_lock);
686 
687 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
688 		return ERR_PTR(-EFBIG);
689 
690 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
691 	if (!ar)
692 		return ERR_PTR(-ENOMEM);
693 
694 	spin_lock(&simple_transaction_lock);
695 
696 	/* only one write allowed per open */
697 	if (file->private_data) {
698 		spin_unlock(&simple_transaction_lock);
699 		free_page((unsigned long)ar);
700 		return ERR_PTR(-EBUSY);
701 	}
702 
703 	file->private_data = ar;
704 
705 	spin_unlock(&simple_transaction_lock);
706 
707 	if (copy_from_user(ar->data, buf, size))
708 		return ERR_PTR(-EFAULT);
709 
710 	return ar->data;
711 }
712 
713 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
714 {
715 	struct simple_transaction_argresp *ar = file->private_data;
716 
717 	if (!ar)
718 		return 0;
719 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
720 }
721 
722 int simple_transaction_release(struct inode *inode, struct file *file)
723 {
724 	free_page((unsigned long)file->private_data);
725 	return 0;
726 }
727 
728 /* Simple attribute files */
729 
730 struct simple_attr {
731 	int (*get)(void *, u64 *);
732 	int (*set)(void *, u64);
733 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
734 	char set_buf[24];
735 	void *data;
736 	const char *fmt;	/* format for read operation */
737 	struct mutex mutex;	/* protects access to these buffers */
738 };
739 
740 /* simple_attr_open is called by an actual attribute open file operation
741  * to set the attribute specific access operations. */
742 int simple_attr_open(struct inode *inode, struct file *file,
743 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
744 		     const char *fmt)
745 {
746 	struct simple_attr *attr;
747 
748 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
749 	if (!attr)
750 		return -ENOMEM;
751 
752 	attr->get = get;
753 	attr->set = set;
754 	attr->data = inode->i_private;
755 	attr->fmt = fmt;
756 	mutex_init(&attr->mutex);
757 
758 	file->private_data = attr;
759 
760 	return nonseekable_open(inode, file);
761 }
762 
763 int simple_attr_release(struct inode *inode, struct file *file)
764 {
765 	kfree(file->private_data);
766 	return 0;
767 }
768 
769 /* read from the buffer that is filled with the get function */
770 ssize_t simple_attr_read(struct file *file, char __user *buf,
771 			 size_t len, loff_t *ppos)
772 {
773 	struct simple_attr *attr;
774 	size_t size;
775 	ssize_t ret;
776 
777 	attr = file->private_data;
778 
779 	if (!attr->get)
780 		return -EACCES;
781 
782 	ret = mutex_lock_interruptible(&attr->mutex);
783 	if (ret)
784 		return ret;
785 
786 	if (*ppos) {		/* continued read */
787 		size = strlen(attr->get_buf);
788 	} else {		/* first read */
789 		u64 val;
790 		ret = attr->get(attr->data, &val);
791 		if (ret)
792 			goto out;
793 
794 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
795 				 attr->fmt, (unsigned long long)val);
796 	}
797 
798 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
799 out:
800 	mutex_unlock(&attr->mutex);
801 	return ret;
802 }
803 
804 /* interpret the buffer as a number to call the set function with */
805 ssize_t simple_attr_write(struct file *file, const char __user *buf,
806 			  size_t len, loff_t *ppos)
807 {
808 	struct simple_attr *attr;
809 	u64 val;
810 	size_t size;
811 	ssize_t ret;
812 
813 	attr = file->private_data;
814 	if (!attr->set)
815 		return -EACCES;
816 
817 	ret = mutex_lock_interruptible(&attr->mutex);
818 	if (ret)
819 		return ret;
820 
821 	ret = -EFAULT;
822 	size = min(sizeof(attr->set_buf) - 1, len);
823 	if (copy_from_user(attr->set_buf, buf, size))
824 		goto out;
825 
826 	attr->set_buf[size] = '\0';
827 	val = simple_strtoll(attr->set_buf, NULL, 0);
828 	ret = attr->set(attr->data, val);
829 	if (ret == 0)
830 		ret = len; /* on success, claim we got the whole input */
831 out:
832 	mutex_unlock(&attr->mutex);
833 	return ret;
834 }
835 
836 /**
837  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
838  * @sb:		filesystem to do the file handle conversion on
839  * @fid:	file handle to convert
840  * @fh_len:	length of the file handle in bytes
841  * @fh_type:	type of file handle
842  * @get_inode:	filesystem callback to retrieve inode
843  *
844  * This function decodes @fid as long as it has one of the well-known
845  * Linux filehandle types and calls @get_inode on it to retrieve the
846  * inode for the object specified in the file handle.
847  */
848 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
849 		int fh_len, int fh_type, struct inode *(*get_inode)
850 			(struct super_block *sb, u64 ino, u32 gen))
851 {
852 	struct inode *inode = NULL;
853 
854 	if (fh_len < 2)
855 		return NULL;
856 
857 	switch (fh_type) {
858 	case FILEID_INO32_GEN:
859 	case FILEID_INO32_GEN_PARENT:
860 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
861 		break;
862 	}
863 
864 	return d_obtain_alias(inode);
865 }
866 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
867 
868 /**
869  * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
870  * @sb:		filesystem to do the file handle conversion on
871  * @fid:	file handle to convert
872  * @fh_len:	length of the file handle in bytes
873  * @fh_type:	type of file handle
874  * @get_inode:	filesystem callback to retrieve inode
875  *
876  * This function decodes @fid as long as it has one of the well-known
877  * Linux filehandle types and calls @get_inode on it to retrieve the
878  * inode for the _parent_ object specified in the file handle if it
879  * is specified in the file handle, or NULL otherwise.
880  */
881 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
882 		int fh_len, int fh_type, struct inode *(*get_inode)
883 			(struct super_block *sb, u64 ino, u32 gen))
884 {
885 	struct inode *inode = NULL;
886 
887 	if (fh_len <= 2)
888 		return NULL;
889 
890 	switch (fh_type) {
891 	case FILEID_INO32_GEN_PARENT:
892 		inode = get_inode(sb, fid->i32.parent_ino,
893 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
894 		break;
895 	}
896 
897 	return d_obtain_alias(inode);
898 }
899 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
900 
901 /**
902  * generic_file_fsync - generic fsync implementation for simple filesystems
903  * @file:	file to synchronize
904  * @datasync:	only synchronize essential metadata if true
905  *
906  * This is a generic implementation of the fsync method for simple
907  * filesystems which track all non-inode metadata in the buffers list
908  * hanging off the address_space structure.
909  */
910 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
911 		       int datasync)
912 {
913 	struct inode *inode = file->f_mapping->host;
914 	int err;
915 	int ret;
916 
917 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
918 	if (err)
919 		return err;
920 
921 	mutex_lock(&inode->i_mutex);
922 	ret = sync_mapping_buffers(inode->i_mapping);
923 	if (!(inode->i_state & I_DIRTY))
924 		goto out;
925 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
926 		goto out;
927 
928 	err = sync_inode_metadata(inode, 1);
929 	if (ret == 0)
930 		ret = err;
931 out:
932 	mutex_unlock(&inode->i_mutex);
933 	return ret;
934 }
935 EXPORT_SYMBOL(generic_file_fsync);
936 
937 /**
938  * generic_check_addressable - Check addressability of file system
939  * @blocksize_bits:	log of file system block size
940  * @num_blocks:		number of blocks in file system
941  *
942  * Determine whether a file system with @num_blocks blocks (and a
943  * block size of 2**@blocksize_bits) is addressable by the sector_t
944  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
945  */
946 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
947 {
948 	u64 last_fs_block = num_blocks - 1;
949 	u64 last_fs_page =
950 		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
951 
952 	if (unlikely(num_blocks == 0))
953 		return 0;
954 
955 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
956 		return -EINVAL;
957 
958 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
959 	    (last_fs_page > (pgoff_t)(~0ULL))) {
960 		return -EFBIG;
961 	}
962 	return 0;
963 }
964 EXPORT_SYMBOL(generic_check_addressable);
965 
966 /*
967  * No-op implementation of ->fsync for in-memory filesystems.
968  */
969 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
970 {
971 	return 0;
972 }
973 
974 EXPORT_SYMBOL(dcache_dir_close);
975 EXPORT_SYMBOL(dcache_dir_lseek);
976 EXPORT_SYMBOL(dcache_dir_open);
977 EXPORT_SYMBOL(dcache_readdir);
978 EXPORT_SYMBOL(generic_read_dir);
979 EXPORT_SYMBOL(mount_pseudo);
980 EXPORT_SYMBOL(simple_write_begin);
981 EXPORT_SYMBOL(simple_write_end);
982 EXPORT_SYMBOL(simple_dir_inode_operations);
983 EXPORT_SYMBOL(simple_dir_operations);
984 EXPORT_SYMBOL(simple_empty);
985 EXPORT_SYMBOL(simple_fill_super);
986 EXPORT_SYMBOL(simple_getattr);
987 EXPORT_SYMBOL(simple_link);
988 EXPORT_SYMBOL(simple_lookup);
989 EXPORT_SYMBOL(simple_pin_fs);
990 EXPORT_SYMBOL(simple_readpage);
991 EXPORT_SYMBOL(simple_release_fs);
992 EXPORT_SYMBOL(simple_rename);
993 EXPORT_SYMBOL(simple_rmdir);
994 EXPORT_SYMBOL(simple_statfs);
995 EXPORT_SYMBOL(noop_fsync);
996 EXPORT_SYMBOL(simple_unlink);
997 EXPORT_SYMBOL(simple_read_from_buffer);
998 EXPORT_SYMBOL(simple_write_to_buffer);
999 EXPORT_SYMBOL(memory_read_from_buffer);
1000 EXPORT_SYMBOL(simple_transaction_set);
1001 EXPORT_SYMBOL(simple_transaction_get);
1002 EXPORT_SYMBOL(simple_transaction_read);
1003 EXPORT_SYMBOL(simple_transaction_release);
1004 EXPORT_SYMBOL_GPL(simple_attr_open);
1005 EXPORT_SYMBOL_GPL(simple_attr_release);
1006 EXPORT_SYMBOL_GPL(simple_attr_read);
1007 EXPORT_SYMBOL_GPL(simple_attr_write);
1008