1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 32 struct kstat *stat, u32 request_mask, 33 unsigned int query_flags) 34 { 35 struct inode *inode = d_inode(path->dentry); 36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 38 return 0; 39 } 40 EXPORT_SYMBOL(simple_getattr); 41 42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 43 { 44 buf->f_type = dentry->d_sb->s_magic; 45 buf->f_bsize = PAGE_SIZE; 46 buf->f_namelen = NAME_MAX; 47 return 0; 48 } 49 EXPORT_SYMBOL(simple_statfs); 50 51 /* 52 * Retaining negative dentries for an in-memory filesystem just wastes 53 * memory and lookup time: arrange for them to be deleted immediately. 54 */ 55 int always_delete_dentry(const struct dentry *dentry) 56 { 57 return 1; 58 } 59 EXPORT_SYMBOL(always_delete_dentry); 60 61 const struct dentry_operations simple_dentry_operations = { 62 .d_delete = always_delete_dentry, 63 }; 64 EXPORT_SYMBOL(simple_dentry_operations); 65 66 /* 67 * Lookup the data. This is trivial - if the dentry didn't already 68 * exist, we know it is negative. Set d_op to delete negative dentries. 69 */ 70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 71 { 72 if (dentry->d_name.len > NAME_MAX) 73 return ERR_PTR(-ENAMETOOLONG); 74 if (!dentry->d_sb->s_d_op) 75 d_set_d_op(dentry, &simple_dentry_operations); 76 d_add(dentry, NULL); 77 return NULL; 78 } 79 EXPORT_SYMBOL(simple_lookup); 80 81 int dcache_dir_open(struct inode *inode, struct file *file) 82 { 83 file->private_data = d_alloc_cursor(file->f_path.dentry); 84 85 return file->private_data ? 0 : -ENOMEM; 86 } 87 EXPORT_SYMBOL(dcache_dir_open); 88 89 int dcache_dir_close(struct inode *inode, struct file *file) 90 { 91 dput(file->private_data); 92 return 0; 93 } 94 EXPORT_SYMBOL(dcache_dir_close); 95 96 /* parent is locked at least shared */ 97 /* 98 * Returns an element of siblings' list. 99 * We are looking for <count>th positive after <p>; if 100 * found, dentry is grabbed and returned to caller. 101 * If no such element exists, NULL is returned. 102 */ 103 static struct dentry *scan_positives(struct dentry *cursor, 104 struct list_head *p, 105 loff_t count, 106 struct dentry *last) 107 { 108 struct dentry *dentry = cursor->d_parent, *found = NULL; 109 110 spin_lock(&dentry->d_lock); 111 while ((p = p->next) != &dentry->d_subdirs) { 112 struct dentry *d = list_entry(p, struct dentry, d_child); 113 // we must at least skip cursors, to avoid livelocks 114 if (d->d_flags & DCACHE_DENTRY_CURSOR) 115 continue; 116 if (simple_positive(d) && !--count) { 117 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 118 if (simple_positive(d)) 119 found = dget_dlock(d); 120 spin_unlock(&d->d_lock); 121 if (likely(found)) 122 break; 123 count = 1; 124 } 125 if (need_resched()) { 126 list_move(&cursor->d_child, p); 127 p = &cursor->d_child; 128 spin_unlock(&dentry->d_lock); 129 cond_resched(); 130 spin_lock(&dentry->d_lock); 131 } 132 } 133 spin_unlock(&dentry->d_lock); 134 dput(last); 135 return found; 136 } 137 138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 139 { 140 struct dentry *dentry = file->f_path.dentry; 141 switch (whence) { 142 case 1: 143 offset += file->f_pos; 144 fallthrough; 145 case 0: 146 if (offset >= 0) 147 break; 148 fallthrough; 149 default: 150 return -EINVAL; 151 } 152 if (offset != file->f_pos) { 153 struct dentry *cursor = file->private_data; 154 struct dentry *to = NULL; 155 156 inode_lock_shared(dentry->d_inode); 157 158 if (offset > 2) 159 to = scan_positives(cursor, &dentry->d_subdirs, 160 offset - 2, NULL); 161 spin_lock(&dentry->d_lock); 162 if (to) 163 list_move(&cursor->d_child, &to->d_child); 164 else 165 list_del_init(&cursor->d_child); 166 spin_unlock(&dentry->d_lock); 167 dput(to); 168 169 file->f_pos = offset; 170 171 inode_unlock_shared(dentry->d_inode); 172 } 173 return offset; 174 } 175 EXPORT_SYMBOL(dcache_dir_lseek); 176 177 /* 178 * Directory is locked and all positive dentries in it are safe, since 179 * for ramfs-type trees they can't go away without unlink() or rmdir(), 180 * both impossible due to the lock on directory. 181 */ 182 183 int dcache_readdir(struct file *file, struct dir_context *ctx) 184 { 185 struct dentry *dentry = file->f_path.dentry; 186 struct dentry *cursor = file->private_data; 187 struct list_head *anchor = &dentry->d_subdirs; 188 struct dentry *next = NULL; 189 struct list_head *p; 190 191 if (!dir_emit_dots(file, ctx)) 192 return 0; 193 194 if (ctx->pos == 2) 195 p = anchor; 196 else if (!list_empty(&cursor->d_child)) 197 p = &cursor->d_child; 198 else 199 return 0; 200 201 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 202 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 203 d_inode(next)->i_ino, 204 fs_umode_to_dtype(d_inode(next)->i_mode))) 205 break; 206 ctx->pos++; 207 p = &next->d_child; 208 } 209 spin_lock(&dentry->d_lock); 210 if (next) 211 list_move_tail(&cursor->d_child, &next->d_child); 212 else 213 list_del_init(&cursor->d_child); 214 spin_unlock(&dentry->d_lock); 215 dput(next); 216 217 return 0; 218 } 219 EXPORT_SYMBOL(dcache_readdir); 220 221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 222 { 223 return -EISDIR; 224 } 225 EXPORT_SYMBOL(generic_read_dir); 226 227 const struct file_operations simple_dir_operations = { 228 .open = dcache_dir_open, 229 .release = dcache_dir_close, 230 .llseek = dcache_dir_lseek, 231 .read = generic_read_dir, 232 .iterate_shared = dcache_readdir, 233 .fsync = noop_fsync, 234 }; 235 EXPORT_SYMBOL(simple_dir_operations); 236 237 const struct inode_operations simple_dir_inode_operations = { 238 .lookup = simple_lookup, 239 }; 240 EXPORT_SYMBOL(simple_dir_inode_operations); 241 242 static void offset_set(struct dentry *dentry, u32 offset) 243 { 244 dentry->d_fsdata = (void *)((uintptr_t)(offset)); 245 } 246 247 static u32 dentry2offset(struct dentry *dentry) 248 { 249 return (u32)((uintptr_t)(dentry->d_fsdata)); 250 } 251 252 static struct lock_class_key simple_offset_xa_lock; 253 254 /** 255 * simple_offset_init - initialize an offset_ctx 256 * @octx: directory offset map to be initialized 257 * 258 */ 259 void simple_offset_init(struct offset_ctx *octx) 260 { 261 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1); 262 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock); 263 264 /* 0 is '.', 1 is '..', so always start with offset 2 */ 265 octx->next_offset = 2; 266 } 267 268 /** 269 * simple_offset_add - Add an entry to a directory's offset map 270 * @octx: directory offset ctx to be updated 271 * @dentry: new dentry being added 272 * 273 * Returns zero on success. @so_ctx and the dentry offset are updated. 274 * Otherwise, a negative errno value is returned. 275 */ 276 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 277 { 278 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX); 279 u32 offset; 280 int ret; 281 282 if (dentry2offset(dentry) != 0) 283 return -EBUSY; 284 285 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit, 286 &octx->next_offset, GFP_KERNEL); 287 if (ret < 0) 288 return ret; 289 290 offset_set(dentry, offset); 291 return 0; 292 } 293 294 /** 295 * simple_offset_remove - Remove an entry to a directory's offset map 296 * @octx: directory offset ctx to be updated 297 * @dentry: dentry being removed 298 * 299 */ 300 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 301 { 302 u32 offset; 303 304 offset = dentry2offset(dentry); 305 if (offset == 0) 306 return; 307 308 xa_erase(&octx->xa, offset); 309 offset_set(dentry, 0); 310 } 311 312 /** 313 * simple_offset_rename_exchange - exchange rename with directory offsets 314 * @old_dir: parent of dentry being moved 315 * @old_dentry: dentry being moved 316 * @new_dir: destination parent 317 * @new_dentry: destination dentry 318 * 319 * Returns zero on success. Otherwise a negative errno is returned and the 320 * rename is rolled back. 321 */ 322 int simple_offset_rename_exchange(struct inode *old_dir, 323 struct dentry *old_dentry, 324 struct inode *new_dir, 325 struct dentry *new_dentry) 326 { 327 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 328 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 329 u32 old_index = dentry2offset(old_dentry); 330 u32 new_index = dentry2offset(new_dentry); 331 int ret; 332 333 simple_offset_remove(old_ctx, old_dentry); 334 simple_offset_remove(new_ctx, new_dentry); 335 336 ret = simple_offset_add(new_ctx, old_dentry); 337 if (ret) 338 goto out_restore; 339 340 ret = simple_offset_add(old_ctx, new_dentry); 341 if (ret) { 342 simple_offset_remove(new_ctx, old_dentry); 343 goto out_restore; 344 } 345 346 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 347 if (ret) { 348 simple_offset_remove(new_ctx, old_dentry); 349 simple_offset_remove(old_ctx, new_dentry); 350 goto out_restore; 351 } 352 return 0; 353 354 out_restore: 355 offset_set(old_dentry, old_index); 356 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL); 357 offset_set(new_dentry, new_index); 358 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL); 359 return ret; 360 } 361 362 /** 363 * simple_offset_destroy - Release offset map 364 * @octx: directory offset ctx that is about to be destroyed 365 * 366 * During fs teardown (eg. umount), a directory's offset map might still 367 * contain entries. xa_destroy() cleans out anything that remains. 368 */ 369 void simple_offset_destroy(struct offset_ctx *octx) 370 { 371 xa_destroy(&octx->xa); 372 } 373 374 /** 375 * offset_dir_llseek - Advance the read position of a directory descriptor 376 * @file: an open directory whose position is to be updated 377 * @offset: a byte offset 378 * @whence: enumerator describing the starting position for this update 379 * 380 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 381 * 382 * Returns the updated read position if successful; otherwise a 383 * negative errno is returned and the read position remains unchanged. 384 */ 385 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 386 { 387 switch (whence) { 388 case SEEK_CUR: 389 offset += file->f_pos; 390 fallthrough; 391 case SEEK_SET: 392 if (offset >= 0) 393 break; 394 fallthrough; 395 default: 396 return -EINVAL; 397 } 398 399 /* In this case, ->private_data is protected by f_pos_lock */ 400 file->private_data = NULL; 401 return vfs_setpos(file, offset, U32_MAX); 402 } 403 404 static struct dentry *offset_find_next(struct xa_state *xas) 405 { 406 struct dentry *child, *found = NULL; 407 408 rcu_read_lock(); 409 child = xas_next_entry(xas, U32_MAX); 410 if (!child) 411 goto out; 412 spin_lock(&child->d_lock); 413 if (simple_positive(child)) 414 found = dget_dlock(child); 415 spin_unlock(&child->d_lock); 416 out: 417 rcu_read_unlock(); 418 return found; 419 } 420 421 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 422 { 423 u32 offset = dentry2offset(dentry); 424 struct inode *inode = d_inode(dentry); 425 426 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, 427 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 428 } 429 430 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx) 431 { 432 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode); 433 XA_STATE(xas, &so_ctx->xa, ctx->pos); 434 struct dentry *dentry; 435 436 while (true) { 437 dentry = offset_find_next(&xas); 438 if (!dentry) 439 return ERR_PTR(-ENOENT); 440 441 if (!offset_dir_emit(ctx, dentry)) { 442 dput(dentry); 443 break; 444 } 445 446 dput(dentry); 447 ctx->pos = xas.xa_index + 1; 448 } 449 return NULL; 450 } 451 452 /** 453 * offset_readdir - Emit entries starting at offset @ctx->pos 454 * @file: an open directory to iterate over 455 * @ctx: directory iteration context 456 * 457 * Caller must hold @file's i_rwsem to prevent insertion or removal of 458 * entries during this call. 459 * 460 * On entry, @ctx->pos contains an offset that represents the first entry 461 * to be read from the directory. 462 * 463 * The operation continues until there are no more entries to read, or 464 * until the ctx->actor indicates there is no more space in the caller's 465 * output buffer. 466 * 467 * On return, @ctx->pos contains an offset that will read the next entry 468 * in this directory when offset_readdir() is called again with @ctx. 469 * 470 * Return values: 471 * %0 - Complete 472 */ 473 static int offset_readdir(struct file *file, struct dir_context *ctx) 474 { 475 struct dentry *dir = file->f_path.dentry; 476 477 lockdep_assert_held(&d_inode(dir)->i_rwsem); 478 479 if (!dir_emit_dots(file, ctx)) 480 return 0; 481 482 /* In this case, ->private_data is protected by f_pos_lock */ 483 if (ctx->pos == 2) 484 file->private_data = NULL; 485 else if (file->private_data == ERR_PTR(-ENOENT)) 486 return 0; 487 file->private_data = offset_iterate_dir(d_inode(dir), ctx); 488 return 0; 489 } 490 491 const struct file_operations simple_offset_dir_operations = { 492 .llseek = offset_dir_llseek, 493 .iterate_shared = offset_readdir, 494 .read = generic_read_dir, 495 .fsync = noop_fsync, 496 }; 497 498 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 499 { 500 struct dentry *child = NULL; 501 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs; 502 503 spin_lock(&parent->d_lock); 504 while ((p = p->next) != &parent->d_subdirs) { 505 struct dentry *d = container_of(p, struct dentry, d_child); 506 if (simple_positive(d)) { 507 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 508 if (simple_positive(d)) 509 child = dget_dlock(d); 510 spin_unlock(&d->d_lock); 511 if (likely(child)) 512 break; 513 } 514 } 515 spin_unlock(&parent->d_lock); 516 dput(prev); 517 return child; 518 } 519 520 void simple_recursive_removal(struct dentry *dentry, 521 void (*callback)(struct dentry *)) 522 { 523 struct dentry *this = dget(dentry); 524 while (true) { 525 struct dentry *victim = NULL, *child; 526 struct inode *inode = this->d_inode; 527 528 inode_lock(inode); 529 if (d_is_dir(this)) 530 inode->i_flags |= S_DEAD; 531 while ((child = find_next_child(this, victim)) == NULL) { 532 // kill and ascend 533 // update metadata while it's still locked 534 inode_set_ctime_current(inode); 535 clear_nlink(inode); 536 inode_unlock(inode); 537 victim = this; 538 this = this->d_parent; 539 inode = this->d_inode; 540 inode_lock(inode); 541 if (simple_positive(victim)) { 542 d_invalidate(victim); // avoid lost mounts 543 if (d_is_dir(victim)) 544 fsnotify_rmdir(inode, victim); 545 else 546 fsnotify_unlink(inode, victim); 547 if (callback) 548 callback(victim); 549 dput(victim); // unpin it 550 } 551 if (victim == dentry) { 552 inode->i_mtime = inode_set_ctime_current(inode); 553 if (d_is_dir(dentry)) 554 drop_nlink(inode); 555 inode_unlock(inode); 556 dput(dentry); 557 return; 558 } 559 } 560 inode_unlock(inode); 561 this = child; 562 } 563 } 564 EXPORT_SYMBOL(simple_recursive_removal); 565 566 static const struct super_operations simple_super_operations = { 567 .statfs = simple_statfs, 568 }; 569 570 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 571 { 572 struct pseudo_fs_context *ctx = fc->fs_private; 573 struct inode *root; 574 575 s->s_maxbytes = MAX_LFS_FILESIZE; 576 s->s_blocksize = PAGE_SIZE; 577 s->s_blocksize_bits = PAGE_SHIFT; 578 s->s_magic = ctx->magic; 579 s->s_op = ctx->ops ?: &simple_super_operations; 580 s->s_xattr = ctx->xattr; 581 s->s_time_gran = 1; 582 root = new_inode(s); 583 if (!root) 584 return -ENOMEM; 585 586 /* 587 * since this is the first inode, make it number 1. New inodes created 588 * after this must take care not to collide with it (by passing 589 * max_reserved of 1 to iunique). 590 */ 591 root->i_ino = 1; 592 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 593 root->i_atime = root->i_mtime = inode_set_ctime_current(root); 594 s->s_root = d_make_root(root); 595 if (!s->s_root) 596 return -ENOMEM; 597 s->s_d_op = ctx->dops; 598 return 0; 599 } 600 601 static int pseudo_fs_get_tree(struct fs_context *fc) 602 { 603 return get_tree_nodev(fc, pseudo_fs_fill_super); 604 } 605 606 static void pseudo_fs_free(struct fs_context *fc) 607 { 608 kfree(fc->fs_private); 609 } 610 611 static const struct fs_context_operations pseudo_fs_context_ops = { 612 .free = pseudo_fs_free, 613 .get_tree = pseudo_fs_get_tree, 614 }; 615 616 /* 617 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 618 * will never be mountable) 619 */ 620 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 621 unsigned long magic) 622 { 623 struct pseudo_fs_context *ctx; 624 625 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 626 if (likely(ctx)) { 627 ctx->magic = magic; 628 fc->fs_private = ctx; 629 fc->ops = &pseudo_fs_context_ops; 630 fc->sb_flags |= SB_NOUSER; 631 fc->global = true; 632 } 633 return ctx; 634 } 635 EXPORT_SYMBOL(init_pseudo); 636 637 int simple_open(struct inode *inode, struct file *file) 638 { 639 if (inode->i_private) 640 file->private_data = inode->i_private; 641 return 0; 642 } 643 EXPORT_SYMBOL(simple_open); 644 645 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 646 { 647 struct inode *inode = d_inode(old_dentry); 648 649 dir->i_mtime = inode_set_ctime_to_ts(dir, 650 inode_set_ctime_current(inode)); 651 inc_nlink(inode); 652 ihold(inode); 653 dget(dentry); 654 d_instantiate(dentry, inode); 655 return 0; 656 } 657 EXPORT_SYMBOL(simple_link); 658 659 int simple_empty(struct dentry *dentry) 660 { 661 struct dentry *child; 662 int ret = 0; 663 664 spin_lock(&dentry->d_lock); 665 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 666 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 667 if (simple_positive(child)) { 668 spin_unlock(&child->d_lock); 669 goto out; 670 } 671 spin_unlock(&child->d_lock); 672 } 673 ret = 1; 674 out: 675 spin_unlock(&dentry->d_lock); 676 return ret; 677 } 678 EXPORT_SYMBOL(simple_empty); 679 680 int simple_unlink(struct inode *dir, struct dentry *dentry) 681 { 682 struct inode *inode = d_inode(dentry); 683 684 dir->i_mtime = inode_set_ctime_to_ts(dir, 685 inode_set_ctime_current(inode)); 686 drop_nlink(inode); 687 dput(dentry); 688 return 0; 689 } 690 EXPORT_SYMBOL(simple_unlink); 691 692 int simple_rmdir(struct inode *dir, struct dentry *dentry) 693 { 694 if (!simple_empty(dentry)) 695 return -ENOTEMPTY; 696 697 drop_nlink(d_inode(dentry)); 698 simple_unlink(dir, dentry); 699 drop_nlink(dir); 700 return 0; 701 } 702 EXPORT_SYMBOL(simple_rmdir); 703 704 /** 705 * simple_rename_timestamp - update the various inode timestamps for rename 706 * @old_dir: old parent directory 707 * @old_dentry: dentry that is being renamed 708 * @new_dir: new parent directory 709 * @new_dentry: target for rename 710 * 711 * POSIX mandates that the old and new parent directories have their ctime and 712 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 713 * their ctime updated. 714 */ 715 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 716 struct inode *new_dir, struct dentry *new_dentry) 717 { 718 struct inode *newino = d_inode(new_dentry); 719 720 old_dir->i_mtime = inode_set_ctime_current(old_dir); 721 if (new_dir != old_dir) 722 new_dir->i_mtime = inode_set_ctime_current(new_dir); 723 inode_set_ctime_current(d_inode(old_dentry)); 724 if (newino) 725 inode_set_ctime_current(newino); 726 } 727 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 728 729 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 730 struct inode *new_dir, struct dentry *new_dentry) 731 { 732 bool old_is_dir = d_is_dir(old_dentry); 733 bool new_is_dir = d_is_dir(new_dentry); 734 735 if (old_dir != new_dir && old_is_dir != new_is_dir) { 736 if (old_is_dir) { 737 drop_nlink(old_dir); 738 inc_nlink(new_dir); 739 } else { 740 drop_nlink(new_dir); 741 inc_nlink(old_dir); 742 } 743 } 744 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 745 return 0; 746 } 747 EXPORT_SYMBOL_GPL(simple_rename_exchange); 748 749 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 750 struct dentry *old_dentry, struct inode *new_dir, 751 struct dentry *new_dentry, unsigned int flags) 752 { 753 int they_are_dirs = d_is_dir(old_dentry); 754 755 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 756 return -EINVAL; 757 758 if (flags & RENAME_EXCHANGE) 759 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 760 761 if (!simple_empty(new_dentry)) 762 return -ENOTEMPTY; 763 764 if (d_really_is_positive(new_dentry)) { 765 simple_unlink(new_dir, new_dentry); 766 if (they_are_dirs) { 767 drop_nlink(d_inode(new_dentry)); 768 drop_nlink(old_dir); 769 } 770 } else if (they_are_dirs) { 771 drop_nlink(old_dir); 772 inc_nlink(new_dir); 773 } 774 775 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 776 return 0; 777 } 778 EXPORT_SYMBOL(simple_rename); 779 780 /** 781 * simple_setattr - setattr for simple filesystem 782 * @idmap: idmap of the target mount 783 * @dentry: dentry 784 * @iattr: iattr structure 785 * 786 * Returns 0 on success, -error on failure. 787 * 788 * simple_setattr is a simple ->setattr implementation without a proper 789 * implementation of size changes. 790 * 791 * It can either be used for in-memory filesystems or special files 792 * on simple regular filesystems. Anything that needs to change on-disk 793 * or wire state on size changes needs its own setattr method. 794 */ 795 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 796 struct iattr *iattr) 797 { 798 struct inode *inode = d_inode(dentry); 799 int error; 800 801 error = setattr_prepare(idmap, dentry, iattr); 802 if (error) 803 return error; 804 805 if (iattr->ia_valid & ATTR_SIZE) 806 truncate_setsize(inode, iattr->ia_size); 807 setattr_copy(idmap, inode, iattr); 808 mark_inode_dirty(inode); 809 return 0; 810 } 811 EXPORT_SYMBOL(simple_setattr); 812 813 static int simple_read_folio(struct file *file, struct folio *folio) 814 { 815 folio_zero_range(folio, 0, folio_size(folio)); 816 flush_dcache_folio(folio); 817 folio_mark_uptodate(folio); 818 folio_unlock(folio); 819 return 0; 820 } 821 822 int simple_write_begin(struct file *file, struct address_space *mapping, 823 loff_t pos, unsigned len, 824 struct page **pagep, void **fsdata) 825 { 826 struct folio *folio; 827 828 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 829 mapping_gfp_mask(mapping)); 830 if (IS_ERR(folio)) 831 return PTR_ERR(folio); 832 833 *pagep = &folio->page; 834 835 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 836 size_t from = offset_in_folio(folio, pos); 837 838 folio_zero_segments(folio, 0, from, 839 from + len, folio_size(folio)); 840 } 841 return 0; 842 } 843 EXPORT_SYMBOL(simple_write_begin); 844 845 /** 846 * simple_write_end - .write_end helper for non-block-device FSes 847 * @file: See .write_end of address_space_operations 848 * @mapping: " 849 * @pos: " 850 * @len: " 851 * @copied: " 852 * @page: " 853 * @fsdata: " 854 * 855 * simple_write_end does the minimum needed for updating a page after writing is 856 * done. It has the same API signature as the .write_end of 857 * address_space_operations vector. So it can just be set onto .write_end for 858 * FSes that don't need any other processing. i_mutex is assumed to be held. 859 * Block based filesystems should use generic_write_end(). 860 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 861 * is not called, so a filesystem that actually does store data in .write_inode 862 * should extend on what's done here with a call to mark_inode_dirty() in the 863 * case that i_size has changed. 864 * 865 * Use *ONLY* with simple_read_folio() 866 */ 867 static int simple_write_end(struct file *file, struct address_space *mapping, 868 loff_t pos, unsigned len, unsigned copied, 869 struct page *page, void *fsdata) 870 { 871 struct folio *folio = page_folio(page); 872 struct inode *inode = folio->mapping->host; 873 loff_t last_pos = pos + copied; 874 875 /* zero the stale part of the folio if we did a short copy */ 876 if (!folio_test_uptodate(folio)) { 877 if (copied < len) { 878 size_t from = offset_in_folio(folio, pos); 879 880 folio_zero_range(folio, from + copied, len - copied); 881 } 882 folio_mark_uptodate(folio); 883 } 884 /* 885 * No need to use i_size_read() here, the i_size 886 * cannot change under us because we hold the i_mutex. 887 */ 888 if (last_pos > inode->i_size) 889 i_size_write(inode, last_pos); 890 891 folio_mark_dirty(folio); 892 folio_unlock(folio); 893 folio_put(folio); 894 895 return copied; 896 } 897 898 /* 899 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 900 */ 901 const struct address_space_operations ram_aops = { 902 .read_folio = simple_read_folio, 903 .write_begin = simple_write_begin, 904 .write_end = simple_write_end, 905 .dirty_folio = noop_dirty_folio, 906 }; 907 EXPORT_SYMBOL(ram_aops); 908 909 /* 910 * the inodes created here are not hashed. If you use iunique to generate 911 * unique inode values later for this filesystem, then you must take care 912 * to pass it an appropriate max_reserved value to avoid collisions. 913 */ 914 int simple_fill_super(struct super_block *s, unsigned long magic, 915 const struct tree_descr *files) 916 { 917 struct inode *inode; 918 struct dentry *root; 919 struct dentry *dentry; 920 int i; 921 922 s->s_blocksize = PAGE_SIZE; 923 s->s_blocksize_bits = PAGE_SHIFT; 924 s->s_magic = magic; 925 s->s_op = &simple_super_operations; 926 s->s_time_gran = 1; 927 928 inode = new_inode(s); 929 if (!inode) 930 return -ENOMEM; 931 /* 932 * because the root inode is 1, the files array must not contain an 933 * entry at index 1 934 */ 935 inode->i_ino = 1; 936 inode->i_mode = S_IFDIR | 0755; 937 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 938 inode->i_op = &simple_dir_inode_operations; 939 inode->i_fop = &simple_dir_operations; 940 set_nlink(inode, 2); 941 root = d_make_root(inode); 942 if (!root) 943 return -ENOMEM; 944 for (i = 0; !files->name || files->name[0]; i++, files++) { 945 if (!files->name) 946 continue; 947 948 /* warn if it tries to conflict with the root inode */ 949 if (unlikely(i == 1)) 950 printk(KERN_WARNING "%s: %s passed in a files array" 951 "with an index of 1!\n", __func__, 952 s->s_type->name); 953 954 dentry = d_alloc_name(root, files->name); 955 if (!dentry) 956 goto out; 957 inode = new_inode(s); 958 if (!inode) { 959 dput(dentry); 960 goto out; 961 } 962 inode->i_mode = S_IFREG | files->mode; 963 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 964 inode->i_fop = files->ops; 965 inode->i_ino = i; 966 d_add(dentry, inode); 967 } 968 s->s_root = root; 969 return 0; 970 out: 971 d_genocide(root); 972 shrink_dcache_parent(root); 973 dput(root); 974 return -ENOMEM; 975 } 976 EXPORT_SYMBOL(simple_fill_super); 977 978 static DEFINE_SPINLOCK(pin_fs_lock); 979 980 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 981 { 982 struct vfsmount *mnt = NULL; 983 spin_lock(&pin_fs_lock); 984 if (unlikely(!*mount)) { 985 spin_unlock(&pin_fs_lock); 986 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 987 if (IS_ERR(mnt)) 988 return PTR_ERR(mnt); 989 spin_lock(&pin_fs_lock); 990 if (!*mount) 991 *mount = mnt; 992 } 993 mntget(*mount); 994 ++*count; 995 spin_unlock(&pin_fs_lock); 996 mntput(mnt); 997 return 0; 998 } 999 EXPORT_SYMBOL(simple_pin_fs); 1000 1001 void simple_release_fs(struct vfsmount **mount, int *count) 1002 { 1003 struct vfsmount *mnt; 1004 spin_lock(&pin_fs_lock); 1005 mnt = *mount; 1006 if (!--*count) 1007 *mount = NULL; 1008 spin_unlock(&pin_fs_lock); 1009 mntput(mnt); 1010 } 1011 EXPORT_SYMBOL(simple_release_fs); 1012 1013 /** 1014 * simple_read_from_buffer - copy data from the buffer to user space 1015 * @to: the user space buffer to read to 1016 * @count: the maximum number of bytes to read 1017 * @ppos: the current position in the buffer 1018 * @from: the buffer to read from 1019 * @available: the size of the buffer 1020 * 1021 * The simple_read_from_buffer() function reads up to @count bytes from the 1022 * buffer @from at offset @ppos into the user space address starting at @to. 1023 * 1024 * On success, the number of bytes read is returned and the offset @ppos is 1025 * advanced by this number, or negative value is returned on error. 1026 **/ 1027 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1028 const void *from, size_t available) 1029 { 1030 loff_t pos = *ppos; 1031 size_t ret; 1032 1033 if (pos < 0) 1034 return -EINVAL; 1035 if (pos >= available || !count) 1036 return 0; 1037 if (count > available - pos) 1038 count = available - pos; 1039 ret = copy_to_user(to, from + pos, count); 1040 if (ret == count) 1041 return -EFAULT; 1042 count -= ret; 1043 *ppos = pos + count; 1044 return count; 1045 } 1046 EXPORT_SYMBOL(simple_read_from_buffer); 1047 1048 /** 1049 * simple_write_to_buffer - copy data from user space to the buffer 1050 * @to: the buffer to write to 1051 * @available: the size of the buffer 1052 * @ppos: the current position in the buffer 1053 * @from: the user space buffer to read from 1054 * @count: the maximum number of bytes to read 1055 * 1056 * The simple_write_to_buffer() function reads up to @count bytes from the user 1057 * space address starting at @from into the buffer @to at offset @ppos. 1058 * 1059 * On success, the number of bytes written is returned and the offset @ppos is 1060 * advanced by this number, or negative value is returned on error. 1061 **/ 1062 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1063 const void __user *from, size_t count) 1064 { 1065 loff_t pos = *ppos; 1066 size_t res; 1067 1068 if (pos < 0) 1069 return -EINVAL; 1070 if (pos >= available || !count) 1071 return 0; 1072 if (count > available - pos) 1073 count = available - pos; 1074 res = copy_from_user(to + pos, from, count); 1075 if (res == count) 1076 return -EFAULT; 1077 count -= res; 1078 *ppos = pos + count; 1079 return count; 1080 } 1081 EXPORT_SYMBOL(simple_write_to_buffer); 1082 1083 /** 1084 * memory_read_from_buffer - copy data from the buffer 1085 * @to: the kernel space buffer to read to 1086 * @count: the maximum number of bytes to read 1087 * @ppos: the current position in the buffer 1088 * @from: the buffer to read from 1089 * @available: the size of the buffer 1090 * 1091 * The memory_read_from_buffer() function reads up to @count bytes from the 1092 * buffer @from at offset @ppos into the kernel space address starting at @to. 1093 * 1094 * On success, the number of bytes read is returned and the offset @ppos is 1095 * advanced by this number, or negative value is returned on error. 1096 **/ 1097 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1098 const void *from, size_t available) 1099 { 1100 loff_t pos = *ppos; 1101 1102 if (pos < 0) 1103 return -EINVAL; 1104 if (pos >= available) 1105 return 0; 1106 if (count > available - pos) 1107 count = available - pos; 1108 memcpy(to, from + pos, count); 1109 *ppos = pos + count; 1110 1111 return count; 1112 } 1113 EXPORT_SYMBOL(memory_read_from_buffer); 1114 1115 /* 1116 * Transaction based IO. 1117 * The file expects a single write which triggers the transaction, and then 1118 * possibly a read which collects the result - which is stored in a 1119 * file-local buffer. 1120 */ 1121 1122 void simple_transaction_set(struct file *file, size_t n) 1123 { 1124 struct simple_transaction_argresp *ar = file->private_data; 1125 1126 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1127 1128 /* 1129 * The barrier ensures that ar->size will really remain zero until 1130 * ar->data is ready for reading. 1131 */ 1132 smp_mb(); 1133 ar->size = n; 1134 } 1135 EXPORT_SYMBOL(simple_transaction_set); 1136 1137 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1138 { 1139 struct simple_transaction_argresp *ar; 1140 static DEFINE_SPINLOCK(simple_transaction_lock); 1141 1142 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1143 return ERR_PTR(-EFBIG); 1144 1145 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1146 if (!ar) 1147 return ERR_PTR(-ENOMEM); 1148 1149 spin_lock(&simple_transaction_lock); 1150 1151 /* only one write allowed per open */ 1152 if (file->private_data) { 1153 spin_unlock(&simple_transaction_lock); 1154 free_page((unsigned long)ar); 1155 return ERR_PTR(-EBUSY); 1156 } 1157 1158 file->private_data = ar; 1159 1160 spin_unlock(&simple_transaction_lock); 1161 1162 if (copy_from_user(ar->data, buf, size)) 1163 return ERR_PTR(-EFAULT); 1164 1165 return ar->data; 1166 } 1167 EXPORT_SYMBOL(simple_transaction_get); 1168 1169 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1170 { 1171 struct simple_transaction_argresp *ar = file->private_data; 1172 1173 if (!ar) 1174 return 0; 1175 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1176 } 1177 EXPORT_SYMBOL(simple_transaction_read); 1178 1179 int simple_transaction_release(struct inode *inode, struct file *file) 1180 { 1181 free_page((unsigned long)file->private_data); 1182 return 0; 1183 } 1184 EXPORT_SYMBOL(simple_transaction_release); 1185 1186 /* Simple attribute files */ 1187 1188 struct simple_attr { 1189 int (*get)(void *, u64 *); 1190 int (*set)(void *, u64); 1191 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1192 char set_buf[24]; 1193 void *data; 1194 const char *fmt; /* format for read operation */ 1195 struct mutex mutex; /* protects access to these buffers */ 1196 }; 1197 1198 /* simple_attr_open is called by an actual attribute open file operation 1199 * to set the attribute specific access operations. */ 1200 int simple_attr_open(struct inode *inode, struct file *file, 1201 int (*get)(void *, u64 *), int (*set)(void *, u64), 1202 const char *fmt) 1203 { 1204 struct simple_attr *attr; 1205 1206 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1207 if (!attr) 1208 return -ENOMEM; 1209 1210 attr->get = get; 1211 attr->set = set; 1212 attr->data = inode->i_private; 1213 attr->fmt = fmt; 1214 mutex_init(&attr->mutex); 1215 1216 file->private_data = attr; 1217 1218 return nonseekable_open(inode, file); 1219 } 1220 EXPORT_SYMBOL_GPL(simple_attr_open); 1221 1222 int simple_attr_release(struct inode *inode, struct file *file) 1223 { 1224 kfree(file->private_data); 1225 return 0; 1226 } 1227 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1228 1229 /* read from the buffer that is filled with the get function */ 1230 ssize_t simple_attr_read(struct file *file, char __user *buf, 1231 size_t len, loff_t *ppos) 1232 { 1233 struct simple_attr *attr; 1234 size_t size; 1235 ssize_t ret; 1236 1237 attr = file->private_data; 1238 1239 if (!attr->get) 1240 return -EACCES; 1241 1242 ret = mutex_lock_interruptible(&attr->mutex); 1243 if (ret) 1244 return ret; 1245 1246 if (*ppos && attr->get_buf[0]) { 1247 /* continued read */ 1248 size = strlen(attr->get_buf); 1249 } else { 1250 /* first read */ 1251 u64 val; 1252 ret = attr->get(attr->data, &val); 1253 if (ret) 1254 goto out; 1255 1256 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1257 attr->fmt, (unsigned long long)val); 1258 } 1259 1260 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1261 out: 1262 mutex_unlock(&attr->mutex); 1263 return ret; 1264 } 1265 EXPORT_SYMBOL_GPL(simple_attr_read); 1266 1267 /* interpret the buffer as a number to call the set function with */ 1268 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1269 size_t len, loff_t *ppos, bool is_signed) 1270 { 1271 struct simple_attr *attr; 1272 unsigned long long val; 1273 size_t size; 1274 ssize_t ret; 1275 1276 attr = file->private_data; 1277 if (!attr->set) 1278 return -EACCES; 1279 1280 ret = mutex_lock_interruptible(&attr->mutex); 1281 if (ret) 1282 return ret; 1283 1284 ret = -EFAULT; 1285 size = min(sizeof(attr->set_buf) - 1, len); 1286 if (copy_from_user(attr->set_buf, buf, size)) 1287 goto out; 1288 1289 attr->set_buf[size] = '\0'; 1290 if (is_signed) 1291 ret = kstrtoll(attr->set_buf, 0, &val); 1292 else 1293 ret = kstrtoull(attr->set_buf, 0, &val); 1294 if (ret) 1295 goto out; 1296 ret = attr->set(attr->data, val); 1297 if (ret == 0) 1298 ret = len; /* on success, claim we got the whole input */ 1299 out: 1300 mutex_unlock(&attr->mutex); 1301 return ret; 1302 } 1303 1304 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1305 size_t len, loff_t *ppos) 1306 { 1307 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1308 } 1309 EXPORT_SYMBOL_GPL(simple_attr_write); 1310 1311 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1312 size_t len, loff_t *ppos) 1313 { 1314 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1315 } 1316 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1317 1318 /** 1319 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1320 * @sb: filesystem to do the file handle conversion on 1321 * @fid: file handle to convert 1322 * @fh_len: length of the file handle in bytes 1323 * @fh_type: type of file handle 1324 * @get_inode: filesystem callback to retrieve inode 1325 * 1326 * This function decodes @fid as long as it has one of the well-known 1327 * Linux filehandle types and calls @get_inode on it to retrieve the 1328 * inode for the object specified in the file handle. 1329 */ 1330 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1331 int fh_len, int fh_type, struct inode *(*get_inode) 1332 (struct super_block *sb, u64 ino, u32 gen)) 1333 { 1334 struct inode *inode = NULL; 1335 1336 if (fh_len < 2) 1337 return NULL; 1338 1339 switch (fh_type) { 1340 case FILEID_INO32_GEN: 1341 case FILEID_INO32_GEN_PARENT: 1342 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1343 break; 1344 } 1345 1346 return d_obtain_alias(inode); 1347 } 1348 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1349 1350 /** 1351 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1352 * @sb: filesystem to do the file handle conversion on 1353 * @fid: file handle to convert 1354 * @fh_len: length of the file handle in bytes 1355 * @fh_type: type of file handle 1356 * @get_inode: filesystem callback to retrieve inode 1357 * 1358 * This function decodes @fid as long as it has one of the well-known 1359 * Linux filehandle types and calls @get_inode on it to retrieve the 1360 * inode for the _parent_ object specified in the file handle if it 1361 * is specified in the file handle, or NULL otherwise. 1362 */ 1363 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1364 int fh_len, int fh_type, struct inode *(*get_inode) 1365 (struct super_block *sb, u64 ino, u32 gen)) 1366 { 1367 struct inode *inode = NULL; 1368 1369 if (fh_len <= 2) 1370 return NULL; 1371 1372 switch (fh_type) { 1373 case FILEID_INO32_GEN_PARENT: 1374 inode = get_inode(sb, fid->i32.parent_ino, 1375 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1376 break; 1377 } 1378 1379 return d_obtain_alias(inode); 1380 } 1381 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1382 1383 /** 1384 * __generic_file_fsync - generic fsync implementation for simple filesystems 1385 * 1386 * @file: file to synchronize 1387 * @start: start offset in bytes 1388 * @end: end offset in bytes (inclusive) 1389 * @datasync: only synchronize essential metadata if true 1390 * 1391 * This is a generic implementation of the fsync method for simple 1392 * filesystems which track all non-inode metadata in the buffers list 1393 * hanging off the address_space structure. 1394 */ 1395 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1396 int datasync) 1397 { 1398 struct inode *inode = file->f_mapping->host; 1399 int err; 1400 int ret; 1401 1402 err = file_write_and_wait_range(file, start, end); 1403 if (err) 1404 return err; 1405 1406 inode_lock(inode); 1407 ret = sync_mapping_buffers(inode->i_mapping); 1408 if (!(inode->i_state & I_DIRTY_ALL)) 1409 goto out; 1410 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1411 goto out; 1412 1413 err = sync_inode_metadata(inode, 1); 1414 if (ret == 0) 1415 ret = err; 1416 1417 out: 1418 inode_unlock(inode); 1419 /* check and advance again to catch errors after syncing out buffers */ 1420 err = file_check_and_advance_wb_err(file); 1421 if (ret == 0) 1422 ret = err; 1423 return ret; 1424 } 1425 EXPORT_SYMBOL(__generic_file_fsync); 1426 1427 /** 1428 * generic_file_fsync - generic fsync implementation for simple filesystems 1429 * with flush 1430 * @file: file to synchronize 1431 * @start: start offset in bytes 1432 * @end: end offset in bytes (inclusive) 1433 * @datasync: only synchronize essential metadata if true 1434 * 1435 */ 1436 1437 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1438 int datasync) 1439 { 1440 struct inode *inode = file->f_mapping->host; 1441 int err; 1442 1443 err = __generic_file_fsync(file, start, end, datasync); 1444 if (err) 1445 return err; 1446 return blkdev_issue_flush(inode->i_sb->s_bdev); 1447 } 1448 EXPORT_SYMBOL(generic_file_fsync); 1449 1450 /** 1451 * generic_check_addressable - Check addressability of file system 1452 * @blocksize_bits: log of file system block size 1453 * @num_blocks: number of blocks in file system 1454 * 1455 * Determine whether a file system with @num_blocks blocks (and a 1456 * block size of 2**@blocksize_bits) is addressable by the sector_t 1457 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1458 */ 1459 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1460 { 1461 u64 last_fs_block = num_blocks - 1; 1462 u64 last_fs_page = 1463 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1464 1465 if (unlikely(num_blocks == 0)) 1466 return 0; 1467 1468 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1469 return -EINVAL; 1470 1471 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1472 (last_fs_page > (pgoff_t)(~0ULL))) { 1473 return -EFBIG; 1474 } 1475 return 0; 1476 } 1477 EXPORT_SYMBOL(generic_check_addressable); 1478 1479 /* 1480 * No-op implementation of ->fsync for in-memory filesystems. 1481 */ 1482 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1483 { 1484 return 0; 1485 } 1486 EXPORT_SYMBOL(noop_fsync); 1487 1488 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1489 { 1490 /* 1491 * iomap based filesystems support direct I/O without need for 1492 * this callback. However, it still needs to be set in 1493 * inode->a_ops so that open/fcntl know that direct I/O is 1494 * generally supported. 1495 */ 1496 return -EINVAL; 1497 } 1498 EXPORT_SYMBOL_GPL(noop_direct_IO); 1499 1500 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1501 void kfree_link(void *p) 1502 { 1503 kfree(p); 1504 } 1505 EXPORT_SYMBOL(kfree_link); 1506 1507 struct inode *alloc_anon_inode(struct super_block *s) 1508 { 1509 static const struct address_space_operations anon_aops = { 1510 .dirty_folio = noop_dirty_folio, 1511 }; 1512 struct inode *inode = new_inode_pseudo(s); 1513 1514 if (!inode) 1515 return ERR_PTR(-ENOMEM); 1516 1517 inode->i_ino = get_next_ino(); 1518 inode->i_mapping->a_ops = &anon_aops; 1519 1520 /* 1521 * Mark the inode dirty from the very beginning, 1522 * that way it will never be moved to the dirty 1523 * list because mark_inode_dirty() will think 1524 * that it already _is_ on the dirty list. 1525 */ 1526 inode->i_state = I_DIRTY; 1527 inode->i_mode = S_IRUSR | S_IWUSR; 1528 inode->i_uid = current_fsuid(); 1529 inode->i_gid = current_fsgid(); 1530 inode->i_flags |= S_PRIVATE; 1531 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 1532 return inode; 1533 } 1534 EXPORT_SYMBOL(alloc_anon_inode); 1535 1536 /** 1537 * simple_nosetlease - generic helper for prohibiting leases 1538 * @filp: file pointer 1539 * @arg: type of lease to obtain 1540 * @flp: new lease supplied for insertion 1541 * @priv: private data for lm_setup operation 1542 * 1543 * Generic helper for filesystems that do not wish to allow leases to be set. 1544 * All arguments are ignored and it just returns -EINVAL. 1545 */ 1546 int 1547 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp, 1548 void **priv) 1549 { 1550 return -EINVAL; 1551 } 1552 EXPORT_SYMBOL(simple_nosetlease); 1553 1554 /** 1555 * simple_get_link - generic helper to get the target of "fast" symlinks 1556 * @dentry: not used here 1557 * @inode: the symlink inode 1558 * @done: not used here 1559 * 1560 * Generic helper for filesystems to use for symlink inodes where a pointer to 1561 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1562 * since as an optimization the path lookup code uses any non-NULL ->i_link 1563 * directly, without calling ->get_link(). But ->get_link() still must be set, 1564 * to mark the inode_operations as being for a symlink. 1565 * 1566 * Return: the symlink target 1567 */ 1568 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1569 struct delayed_call *done) 1570 { 1571 return inode->i_link; 1572 } 1573 EXPORT_SYMBOL(simple_get_link); 1574 1575 const struct inode_operations simple_symlink_inode_operations = { 1576 .get_link = simple_get_link, 1577 }; 1578 EXPORT_SYMBOL(simple_symlink_inode_operations); 1579 1580 /* 1581 * Operations for a permanently empty directory. 1582 */ 1583 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1584 { 1585 return ERR_PTR(-ENOENT); 1586 } 1587 1588 static int empty_dir_getattr(struct mnt_idmap *idmap, 1589 const struct path *path, struct kstat *stat, 1590 u32 request_mask, unsigned int query_flags) 1591 { 1592 struct inode *inode = d_inode(path->dentry); 1593 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1594 return 0; 1595 } 1596 1597 static int empty_dir_setattr(struct mnt_idmap *idmap, 1598 struct dentry *dentry, struct iattr *attr) 1599 { 1600 return -EPERM; 1601 } 1602 1603 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1604 { 1605 return -EOPNOTSUPP; 1606 } 1607 1608 static const struct inode_operations empty_dir_inode_operations = { 1609 .lookup = empty_dir_lookup, 1610 .permission = generic_permission, 1611 .setattr = empty_dir_setattr, 1612 .getattr = empty_dir_getattr, 1613 .listxattr = empty_dir_listxattr, 1614 }; 1615 1616 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1617 { 1618 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1619 return generic_file_llseek_size(file, offset, whence, 2, 2); 1620 } 1621 1622 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1623 { 1624 dir_emit_dots(file, ctx); 1625 return 0; 1626 } 1627 1628 static const struct file_operations empty_dir_operations = { 1629 .llseek = empty_dir_llseek, 1630 .read = generic_read_dir, 1631 .iterate_shared = empty_dir_readdir, 1632 .fsync = noop_fsync, 1633 }; 1634 1635 1636 void make_empty_dir_inode(struct inode *inode) 1637 { 1638 set_nlink(inode, 2); 1639 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1640 inode->i_uid = GLOBAL_ROOT_UID; 1641 inode->i_gid = GLOBAL_ROOT_GID; 1642 inode->i_rdev = 0; 1643 inode->i_size = 0; 1644 inode->i_blkbits = PAGE_SHIFT; 1645 inode->i_blocks = 0; 1646 1647 inode->i_op = &empty_dir_inode_operations; 1648 inode->i_opflags &= ~IOP_XATTR; 1649 inode->i_fop = &empty_dir_operations; 1650 } 1651 1652 bool is_empty_dir_inode(struct inode *inode) 1653 { 1654 return (inode->i_fop == &empty_dir_operations) && 1655 (inode->i_op == &empty_dir_inode_operations); 1656 } 1657 1658 #if IS_ENABLED(CONFIG_UNICODE) 1659 /** 1660 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1661 * @dentry: dentry whose name we are checking against 1662 * @len: len of name of dentry 1663 * @str: str pointer to name of dentry 1664 * @name: Name to compare against 1665 * 1666 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1667 */ 1668 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1669 const char *str, const struct qstr *name) 1670 { 1671 const struct dentry *parent = READ_ONCE(dentry->d_parent); 1672 const struct inode *dir = READ_ONCE(parent->d_inode); 1673 const struct super_block *sb = dentry->d_sb; 1674 const struct unicode_map *um = sb->s_encoding; 1675 struct qstr qstr = QSTR_INIT(str, len); 1676 char strbuf[DNAME_INLINE_LEN]; 1677 int ret; 1678 1679 if (!dir || !IS_CASEFOLDED(dir)) 1680 goto fallback; 1681 /* 1682 * If the dentry name is stored in-line, then it may be concurrently 1683 * modified by a rename. If this happens, the VFS will eventually retry 1684 * the lookup, so it doesn't matter what ->d_compare() returns. 1685 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1686 * string. Therefore, we have to copy the name into a temporary buffer. 1687 */ 1688 if (len <= DNAME_INLINE_LEN - 1) { 1689 memcpy(strbuf, str, len); 1690 strbuf[len] = 0; 1691 qstr.name = strbuf; 1692 /* prevent compiler from optimizing out the temporary buffer */ 1693 barrier(); 1694 } 1695 ret = utf8_strncasecmp(um, name, &qstr); 1696 if (ret >= 0) 1697 return ret; 1698 1699 if (sb_has_strict_encoding(sb)) 1700 return -EINVAL; 1701 fallback: 1702 if (len != name->len) 1703 return 1; 1704 return !!memcmp(str, name->name, len); 1705 } 1706 1707 /** 1708 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1709 * @dentry: dentry of the parent directory 1710 * @str: qstr of name whose hash we should fill in 1711 * 1712 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1713 */ 1714 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1715 { 1716 const struct inode *dir = READ_ONCE(dentry->d_inode); 1717 struct super_block *sb = dentry->d_sb; 1718 const struct unicode_map *um = sb->s_encoding; 1719 int ret = 0; 1720 1721 if (!dir || !IS_CASEFOLDED(dir)) 1722 return 0; 1723 1724 ret = utf8_casefold_hash(um, dentry, str); 1725 if (ret < 0 && sb_has_strict_encoding(sb)) 1726 return -EINVAL; 1727 return 0; 1728 } 1729 1730 static const struct dentry_operations generic_ci_dentry_ops = { 1731 .d_hash = generic_ci_d_hash, 1732 .d_compare = generic_ci_d_compare, 1733 }; 1734 #endif 1735 1736 #ifdef CONFIG_FS_ENCRYPTION 1737 static const struct dentry_operations generic_encrypted_dentry_ops = { 1738 .d_revalidate = fscrypt_d_revalidate, 1739 }; 1740 #endif 1741 1742 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1743 static const struct dentry_operations generic_encrypted_ci_dentry_ops = { 1744 .d_hash = generic_ci_d_hash, 1745 .d_compare = generic_ci_d_compare, 1746 .d_revalidate = fscrypt_d_revalidate, 1747 }; 1748 #endif 1749 1750 /** 1751 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry 1752 * @dentry: dentry to set ops on 1753 * 1754 * Casefolded directories need d_hash and d_compare set, so that the dentries 1755 * contained in them are handled case-insensitively. Note that these operations 1756 * are needed on the parent directory rather than on the dentries in it, and 1757 * while the casefolding flag can be toggled on and off on an empty directory, 1758 * dentry_operations can't be changed later. As a result, if the filesystem has 1759 * casefolding support enabled at all, we have to give all dentries the 1760 * casefolding operations even if their inode doesn't have the casefolding flag 1761 * currently (and thus the casefolding ops would be no-ops for now). 1762 * 1763 * Encryption works differently in that the only dentry operation it needs is 1764 * d_revalidate, which it only needs on dentries that have the no-key name flag. 1765 * The no-key flag can't be set "later", so we don't have to worry about that. 1766 * 1767 * Finally, to maximize compatibility with overlayfs (which isn't compatible 1768 * with certain dentry operations) and to avoid taking an unnecessary 1769 * performance hit, we use custom dentry_operations for each possible 1770 * combination rather than always installing all operations. 1771 */ 1772 void generic_set_encrypted_ci_d_ops(struct dentry *dentry) 1773 { 1774 #ifdef CONFIG_FS_ENCRYPTION 1775 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME; 1776 #endif 1777 #if IS_ENABLED(CONFIG_UNICODE) 1778 bool needs_ci_ops = dentry->d_sb->s_encoding; 1779 #endif 1780 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1781 if (needs_encrypt_ops && needs_ci_ops) { 1782 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops); 1783 return; 1784 } 1785 #endif 1786 #ifdef CONFIG_FS_ENCRYPTION 1787 if (needs_encrypt_ops) { 1788 d_set_d_op(dentry, &generic_encrypted_dentry_ops); 1789 return; 1790 } 1791 #endif 1792 #if IS_ENABLED(CONFIG_UNICODE) 1793 if (needs_ci_ops) { 1794 d_set_d_op(dentry, &generic_ci_dentry_ops); 1795 return; 1796 } 1797 #endif 1798 } 1799 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops); 1800 1801 /** 1802 * inode_maybe_inc_iversion - increments i_version 1803 * @inode: inode with the i_version that should be updated 1804 * @force: increment the counter even if it's not necessary? 1805 * 1806 * Every time the inode is modified, the i_version field must be seen to have 1807 * changed by any observer. 1808 * 1809 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1810 * the value, and clear the queried flag. 1811 * 1812 * In the common case where neither is set, then we can return "false" without 1813 * updating i_version. 1814 * 1815 * If this function returns false, and no other metadata has changed, then we 1816 * can avoid logging the metadata. 1817 */ 1818 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1819 { 1820 u64 cur, new; 1821 1822 /* 1823 * The i_version field is not strictly ordered with any other inode 1824 * information, but the legacy inode_inc_iversion code used a spinlock 1825 * to serialize increments. 1826 * 1827 * Here, we add full memory barriers to ensure that any de-facto 1828 * ordering with other info is preserved. 1829 * 1830 * This barrier pairs with the barrier in inode_query_iversion() 1831 */ 1832 smp_mb(); 1833 cur = inode_peek_iversion_raw(inode); 1834 do { 1835 /* If flag is clear then we needn't do anything */ 1836 if (!force && !(cur & I_VERSION_QUERIED)) 1837 return false; 1838 1839 /* Since lowest bit is flag, add 2 to avoid it */ 1840 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 1841 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1842 return true; 1843 } 1844 EXPORT_SYMBOL(inode_maybe_inc_iversion); 1845 1846 /** 1847 * inode_query_iversion - read i_version for later use 1848 * @inode: inode from which i_version should be read 1849 * 1850 * Read the inode i_version counter. This should be used by callers that wish 1851 * to store the returned i_version for later comparison. This will guarantee 1852 * that a later query of the i_version will result in a different value if 1853 * anything has changed. 1854 * 1855 * In this implementation, we fetch the current value, set the QUERIED flag and 1856 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 1857 * that fails, we try again with the newly fetched value from the cmpxchg. 1858 */ 1859 u64 inode_query_iversion(struct inode *inode) 1860 { 1861 u64 cur, new; 1862 1863 cur = inode_peek_iversion_raw(inode); 1864 do { 1865 /* If flag is already set, then no need to swap */ 1866 if (cur & I_VERSION_QUERIED) { 1867 /* 1868 * This barrier (and the implicit barrier in the 1869 * cmpxchg below) pairs with the barrier in 1870 * inode_maybe_inc_iversion(). 1871 */ 1872 smp_mb(); 1873 break; 1874 } 1875 1876 new = cur | I_VERSION_QUERIED; 1877 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1878 return cur >> I_VERSION_QUERIED_SHIFT; 1879 } 1880 EXPORT_SYMBOL(inode_query_iversion); 1881 1882 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 1883 ssize_t direct_written, ssize_t buffered_written) 1884 { 1885 struct address_space *mapping = iocb->ki_filp->f_mapping; 1886 loff_t pos = iocb->ki_pos - buffered_written; 1887 loff_t end = iocb->ki_pos - 1; 1888 int err; 1889 1890 /* 1891 * If the buffered write fallback returned an error, we want to return 1892 * the number of bytes which were written by direct I/O, or the error 1893 * code if that was zero. 1894 * 1895 * Note that this differs from normal direct-io semantics, which will 1896 * return -EFOO even if some bytes were written. 1897 */ 1898 if (unlikely(buffered_written < 0)) { 1899 if (direct_written) 1900 return direct_written; 1901 return buffered_written; 1902 } 1903 1904 /* 1905 * We need to ensure that the page cache pages are written to disk and 1906 * invalidated to preserve the expected O_DIRECT semantics. 1907 */ 1908 err = filemap_write_and_wait_range(mapping, pos, end); 1909 if (err < 0) { 1910 /* 1911 * We don't know how much we wrote, so just return the number of 1912 * bytes which were direct-written 1913 */ 1914 iocb->ki_pos -= buffered_written; 1915 if (direct_written) 1916 return direct_written; 1917 return err; 1918 } 1919 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 1920 return direct_written + buffered_written; 1921 } 1922 EXPORT_SYMBOL_GPL(direct_write_fallback); 1923