xref: /openbmc/linux/fs/libfs.c (revision 53da7fe8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 		   struct kstat *stat, u32 request_mask,
33 		   unsigned int query_flags)
34 {
35 	struct inode *inode = d_inode(path->dentry);
36 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41 
42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 	buf->f_type = dentry->d_sb->s_magic;
45 	buf->f_bsize = PAGE_SIZE;
46 	buf->f_namelen = NAME_MAX;
47 	return 0;
48 }
49 EXPORT_SYMBOL(simple_statfs);
50 
51 /*
52  * Retaining negative dentries for an in-memory filesystem just wastes
53  * memory and lookup time: arrange for them to be deleted immediately.
54  */
55 int always_delete_dentry(const struct dentry *dentry)
56 {
57 	return 1;
58 }
59 EXPORT_SYMBOL(always_delete_dentry);
60 
61 const struct dentry_operations simple_dentry_operations = {
62 	.d_delete = always_delete_dentry,
63 };
64 EXPORT_SYMBOL(simple_dentry_operations);
65 
66 /*
67  * Lookup the data. This is trivial - if the dentry didn't already
68  * exist, we know it is negative.  Set d_op to delete negative dentries.
69  */
70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 {
72 	if (dentry->d_name.len > NAME_MAX)
73 		return ERR_PTR(-ENAMETOOLONG);
74 	if (!dentry->d_sb->s_d_op)
75 		d_set_d_op(dentry, &simple_dentry_operations);
76 	d_add(dentry, NULL);
77 	return NULL;
78 }
79 EXPORT_SYMBOL(simple_lookup);
80 
81 int dcache_dir_open(struct inode *inode, struct file *file)
82 {
83 	file->private_data = d_alloc_cursor(file->f_path.dentry);
84 
85 	return file->private_data ? 0 : -ENOMEM;
86 }
87 EXPORT_SYMBOL(dcache_dir_open);
88 
89 int dcache_dir_close(struct inode *inode, struct file *file)
90 {
91 	dput(file->private_data);
92 	return 0;
93 }
94 EXPORT_SYMBOL(dcache_dir_close);
95 
96 /* parent is locked at least shared */
97 /*
98  * Returns an element of siblings' list.
99  * We are looking for <count>th positive after <p>; if
100  * found, dentry is grabbed and returned to caller.
101  * If no such element exists, NULL is returned.
102  */
103 static struct dentry *scan_positives(struct dentry *cursor,
104 					struct list_head *p,
105 					loff_t count,
106 					struct dentry *last)
107 {
108 	struct dentry *dentry = cursor->d_parent, *found = NULL;
109 
110 	spin_lock(&dentry->d_lock);
111 	while ((p = p->next) != &dentry->d_subdirs) {
112 		struct dentry *d = list_entry(p, struct dentry, d_child);
113 		// we must at least skip cursors, to avoid livelocks
114 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 			continue;
116 		if (simple_positive(d) && !--count) {
117 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 			if (simple_positive(d))
119 				found = dget_dlock(d);
120 			spin_unlock(&d->d_lock);
121 			if (likely(found))
122 				break;
123 			count = 1;
124 		}
125 		if (need_resched()) {
126 			list_move(&cursor->d_child, p);
127 			p = &cursor->d_child;
128 			spin_unlock(&dentry->d_lock);
129 			cond_resched();
130 			spin_lock(&dentry->d_lock);
131 		}
132 	}
133 	spin_unlock(&dentry->d_lock);
134 	dput(last);
135 	return found;
136 }
137 
138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139 {
140 	struct dentry *dentry = file->f_path.dentry;
141 	switch (whence) {
142 		case 1:
143 			offset += file->f_pos;
144 			fallthrough;
145 		case 0:
146 			if (offset >= 0)
147 				break;
148 			fallthrough;
149 		default:
150 			return -EINVAL;
151 	}
152 	if (offset != file->f_pos) {
153 		struct dentry *cursor = file->private_data;
154 		struct dentry *to = NULL;
155 
156 		inode_lock_shared(dentry->d_inode);
157 
158 		if (offset > 2)
159 			to = scan_positives(cursor, &dentry->d_subdirs,
160 					    offset - 2, NULL);
161 		spin_lock(&dentry->d_lock);
162 		if (to)
163 			list_move(&cursor->d_child, &to->d_child);
164 		else
165 			list_del_init(&cursor->d_child);
166 		spin_unlock(&dentry->d_lock);
167 		dput(to);
168 
169 		file->f_pos = offset;
170 
171 		inode_unlock_shared(dentry->d_inode);
172 	}
173 	return offset;
174 }
175 EXPORT_SYMBOL(dcache_dir_lseek);
176 
177 /*
178  * Directory is locked and all positive dentries in it are safe, since
179  * for ramfs-type trees they can't go away without unlink() or rmdir(),
180  * both impossible due to the lock on directory.
181  */
182 
183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 	struct dentry *dentry = file->f_path.dentry;
186 	struct dentry *cursor = file->private_data;
187 	struct list_head *anchor = &dentry->d_subdirs;
188 	struct dentry *next = NULL;
189 	struct list_head *p;
190 
191 	if (!dir_emit_dots(file, ctx))
192 		return 0;
193 
194 	if (ctx->pos == 2)
195 		p = anchor;
196 	else if (!list_empty(&cursor->d_child))
197 		p = &cursor->d_child;
198 	else
199 		return 0;
200 
201 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
202 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
203 			      d_inode(next)->i_ino,
204 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
205 			break;
206 		ctx->pos++;
207 		p = &next->d_child;
208 	}
209 	spin_lock(&dentry->d_lock);
210 	if (next)
211 		list_move_tail(&cursor->d_child, &next->d_child);
212 	else
213 		list_del_init(&cursor->d_child);
214 	spin_unlock(&dentry->d_lock);
215 	dput(next);
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(dcache_readdir);
220 
221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222 {
223 	return -EISDIR;
224 }
225 EXPORT_SYMBOL(generic_read_dir);
226 
227 const struct file_operations simple_dir_operations = {
228 	.open		= dcache_dir_open,
229 	.release	= dcache_dir_close,
230 	.llseek		= dcache_dir_lseek,
231 	.read		= generic_read_dir,
232 	.iterate_shared	= dcache_readdir,
233 	.fsync		= noop_fsync,
234 };
235 EXPORT_SYMBOL(simple_dir_operations);
236 
237 const struct inode_operations simple_dir_inode_operations = {
238 	.lookup		= simple_lookup,
239 };
240 EXPORT_SYMBOL(simple_dir_inode_operations);
241 
242 static void offset_set(struct dentry *dentry, u32 offset)
243 {
244 	dentry->d_fsdata = (void *)((uintptr_t)(offset));
245 }
246 
247 static u32 dentry2offset(struct dentry *dentry)
248 {
249 	return (u32)((uintptr_t)(dentry->d_fsdata));
250 }
251 
252 static struct lock_class_key simple_offset_xa_lock;
253 
254 /**
255  * simple_offset_init - initialize an offset_ctx
256  * @octx: directory offset map to be initialized
257  *
258  */
259 void simple_offset_init(struct offset_ctx *octx)
260 {
261 	xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
262 	lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
263 
264 	/* 0 is '.', 1 is '..', so always start with offset 2 */
265 	octx->next_offset = 2;
266 }
267 
268 /**
269  * simple_offset_add - Add an entry to a directory's offset map
270  * @octx: directory offset ctx to be updated
271  * @dentry: new dentry being added
272  *
273  * Returns zero on success. @so_ctx and the dentry offset are updated.
274  * Otherwise, a negative errno value is returned.
275  */
276 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
277 {
278 	static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
279 	u32 offset;
280 	int ret;
281 
282 	if (dentry2offset(dentry) != 0)
283 		return -EBUSY;
284 
285 	ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
286 			      &octx->next_offset, GFP_KERNEL);
287 	if (ret < 0)
288 		return ret;
289 
290 	offset_set(dentry, offset);
291 	return 0;
292 }
293 
294 /**
295  * simple_offset_remove - Remove an entry to a directory's offset map
296  * @octx: directory offset ctx to be updated
297  * @dentry: dentry being removed
298  *
299  */
300 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
301 {
302 	u32 offset;
303 
304 	offset = dentry2offset(dentry);
305 	if (offset == 0)
306 		return;
307 
308 	xa_erase(&octx->xa, offset);
309 	offset_set(dentry, 0);
310 }
311 
312 /**
313  * simple_offset_rename_exchange - exchange rename with directory offsets
314  * @old_dir: parent of dentry being moved
315  * @old_dentry: dentry being moved
316  * @new_dir: destination parent
317  * @new_dentry: destination dentry
318  *
319  * Returns zero on success. Otherwise a negative errno is returned and the
320  * rename is rolled back.
321  */
322 int simple_offset_rename_exchange(struct inode *old_dir,
323 				  struct dentry *old_dentry,
324 				  struct inode *new_dir,
325 				  struct dentry *new_dentry)
326 {
327 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
328 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
329 	u32 old_index = dentry2offset(old_dentry);
330 	u32 new_index = dentry2offset(new_dentry);
331 	int ret;
332 
333 	simple_offset_remove(old_ctx, old_dentry);
334 	simple_offset_remove(new_ctx, new_dentry);
335 
336 	ret = simple_offset_add(new_ctx, old_dentry);
337 	if (ret)
338 		goto out_restore;
339 
340 	ret = simple_offset_add(old_ctx, new_dentry);
341 	if (ret) {
342 		simple_offset_remove(new_ctx, old_dentry);
343 		goto out_restore;
344 	}
345 
346 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
347 	if (ret) {
348 		simple_offset_remove(new_ctx, old_dentry);
349 		simple_offset_remove(old_ctx, new_dentry);
350 		goto out_restore;
351 	}
352 	return 0;
353 
354 out_restore:
355 	offset_set(old_dentry, old_index);
356 	xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL);
357 	offset_set(new_dentry, new_index);
358 	xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL);
359 	return ret;
360 }
361 
362 /**
363  * simple_offset_destroy - Release offset map
364  * @octx: directory offset ctx that is about to be destroyed
365  *
366  * During fs teardown (eg. umount), a directory's offset map might still
367  * contain entries. xa_destroy() cleans out anything that remains.
368  */
369 void simple_offset_destroy(struct offset_ctx *octx)
370 {
371 	xa_destroy(&octx->xa);
372 }
373 
374 /**
375  * offset_dir_llseek - Advance the read position of a directory descriptor
376  * @file: an open directory whose position is to be updated
377  * @offset: a byte offset
378  * @whence: enumerator describing the starting position for this update
379  *
380  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
381  *
382  * Returns the updated read position if successful; otherwise a
383  * negative errno is returned and the read position remains unchanged.
384  */
385 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
386 {
387 	switch (whence) {
388 	case SEEK_CUR:
389 		offset += file->f_pos;
390 		fallthrough;
391 	case SEEK_SET:
392 		if (offset >= 0)
393 			break;
394 		fallthrough;
395 	default:
396 		return -EINVAL;
397 	}
398 
399 	/* In this case, ->private_data is protected by f_pos_lock */
400 	file->private_data = NULL;
401 	return vfs_setpos(file, offset, U32_MAX);
402 }
403 
404 static struct dentry *offset_find_next(struct xa_state *xas)
405 {
406 	struct dentry *child, *found = NULL;
407 
408 	rcu_read_lock();
409 	child = xas_next_entry(xas, U32_MAX);
410 	if (!child)
411 		goto out;
412 	spin_lock(&child->d_lock);
413 	if (simple_positive(child))
414 		found = dget_dlock(child);
415 	spin_unlock(&child->d_lock);
416 out:
417 	rcu_read_unlock();
418 	return found;
419 }
420 
421 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
422 {
423 	u32 offset = dentry2offset(dentry);
424 	struct inode *inode = d_inode(dentry);
425 
426 	return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
427 			  inode->i_ino, fs_umode_to_dtype(inode->i_mode));
428 }
429 
430 static void *offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
431 {
432 	struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
433 	XA_STATE(xas, &so_ctx->xa, ctx->pos);
434 	struct dentry *dentry;
435 
436 	while (true) {
437 		dentry = offset_find_next(&xas);
438 		if (!dentry)
439 			return ERR_PTR(-ENOENT);
440 
441 		if (!offset_dir_emit(ctx, dentry)) {
442 			dput(dentry);
443 			break;
444 		}
445 
446 		dput(dentry);
447 		ctx->pos = xas.xa_index + 1;
448 	}
449 	return NULL;
450 }
451 
452 /**
453  * offset_readdir - Emit entries starting at offset @ctx->pos
454  * @file: an open directory to iterate over
455  * @ctx: directory iteration context
456  *
457  * Caller must hold @file's i_rwsem to prevent insertion or removal of
458  * entries during this call.
459  *
460  * On entry, @ctx->pos contains an offset that represents the first entry
461  * to be read from the directory.
462  *
463  * The operation continues until there are no more entries to read, or
464  * until the ctx->actor indicates there is no more space in the caller's
465  * output buffer.
466  *
467  * On return, @ctx->pos contains an offset that will read the next entry
468  * in this directory when offset_readdir() is called again with @ctx.
469  *
470  * Return values:
471  *   %0 - Complete
472  */
473 static int offset_readdir(struct file *file, struct dir_context *ctx)
474 {
475 	struct dentry *dir = file->f_path.dentry;
476 
477 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
478 
479 	if (!dir_emit_dots(file, ctx))
480 		return 0;
481 
482 	/* In this case, ->private_data is protected by f_pos_lock */
483 	if (ctx->pos == 2)
484 		file->private_data = NULL;
485 	else if (file->private_data == ERR_PTR(-ENOENT))
486 		return 0;
487 	file->private_data = offset_iterate_dir(d_inode(dir), ctx);
488 	return 0;
489 }
490 
491 const struct file_operations simple_offset_dir_operations = {
492 	.llseek		= offset_dir_llseek,
493 	.iterate_shared	= offset_readdir,
494 	.read		= generic_read_dir,
495 	.fsync		= noop_fsync,
496 };
497 
498 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
499 {
500 	struct dentry *child = NULL;
501 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
502 
503 	spin_lock(&parent->d_lock);
504 	while ((p = p->next) != &parent->d_subdirs) {
505 		struct dentry *d = container_of(p, struct dentry, d_child);
506 		if (simple_positive(d)) {
507 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
508 			if (simple_positive(d))
509 				child = dget_dlock(d);
510 			spin_unlock(&d->d_lock);
511 			if (likely(child))
512 				break;
513 		}
514 	}
515 	spin_unlock(&parent->d_lock);
516 	dput(prev);
517 	return child;
518 }
519 
520 void simple_recursive_removal(struct dentry *dentry,
521                               void (*callback)(struct dentry *))
522 {
523 	struct dentry *this = dget(dentry);
524 	while (true) {
525 		struct dentry *victim = NULL, *child;
526 		struct inode *inode = this->d_inode;
527 
528 		inode_lock(inode);
529 		if (d_is_dir(this))
530 			inode->i_flags |= S_DEAD;
531 		while ((child = find_next_child(this, victim)) == NULL) {
532 			// kill and ascend
533 			// update metadata while it's still locked
534 			inode_set_ctime_current(inode);
535 			clear_nlink(inode);
536 			inode_unlock(inode);
537 			victim = this;
538 			this = this->d_parent;
539 			inode = this->d_inode;
540 			inode_lock(inode);
541 			if (simple_positive(victim)) {
542 				d_invalidate(victim);	// avoid lost mounts
543 				if (d_is_dir(victim))
544 					fsnotify_rmdir(inode, victim);
545 				else
546 					fsnotify_unlink(inode, victim);
547 				if (callback)
548 					callback(victim);
549 				dput(victim);		// unpin it
550 			}
551 			if (victim == dentry) {
552 				inode->i_mtime = inode_set_ctime_current(inode);
553 				if (d_is_dir(dentry))
554 					drop_nlink(inode);
555 				inode_unlock(inode);
556 				dput(dentry);
557 				return;
558 			}
559 		}
560 		inode_unlock(inode);
561 		this = child;
562 	}
563 }
564 EXPORT_SYMBOL(simple_recursive_removal);
565 
566 static const struct super_operations simple_super_operations = {
567 	.statfs		= simple_statfs,
568 };
569 
570 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
571 {
572 	struct pseudo_fs_context *ctx = fc->fs_private;
573 	struct inode *root;
574 
575 	s->s_maxbytes = MAX_LFS_FILESIZE;
576 	s->s_blocksize = PAGE_SIZE;
577 	s->s_blocksize_bits = PAGE_SHIFT;
578 	s->s_magic = ctx->magic;
579 	s->s_op = ctx->ops ?: &simple_super_operations;
580 	s->s_xattr = ctx->xattr;
581 	s->s_time_gran = 1;
582 	root = new_inode(s);
583 	if (!root)
584 		return -ENOMEM;
585 
586 	/*
587 	 * since this is the first inode, make it number 1. New inodes created
588 	 * after this must take care not to collide with it (by passing
589 	 * max_reserved of 1 to iunique).
590 	 */
591 	root->i_ino = 1;
592 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
593 	root->i_atime = root->i_mtime = inode_set_ctime_current(root);
594 	s->s_root = d_make_root(root);
595 	if (!s->s_root)
596 		return -ENOMEM;
597 	s->s_d_op = ctx->dops;
598 	return 0;
599 }
600 
601 static int pseudo_fs_get_tree(struct fs_context *fc)
602 {
603 	return get_tree_nodev(fc, pseudo_fs_fill_super);
604 }
605 
606 static void pseudo_fs_free(struct fs_context *fc)
607 {
608 	kfree(fc->fs_private);
609 }
610 
611 static const struct fs_context_operations pseudo_fs_context_ops = {
612 	.free		= pseudo_fs_free,
613 	.get_tree	= pseudo_fs_get_tree,
614 };
615 
616 /*
617  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
618  * will never be mountable)
619  */
620 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
621 					unsigned long magic)
622 {
623 	struct pseudo_fs_context *ctx;
624 
625 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
626 	if (likely(ctx)) {
627 		ctx->magic = magic;
628 		fc->fs_private = ctx;
629 		fc->ops = &pseudo_fs_context_ops;
630 		fc->sb_flags |= SB_NOUSER;
631 		fc->global = true;
632 	}
633 	return ctx;
634 }
635 EXPORT_SYMBOL(init_pseudo);
636 
637 int simple_open(struct inode *inode, struct file *file)
638 {
639 	if (inode->i_private)
640 		file->private_data = inode->i_private;
641 	return 0;
642 }
643 EXPORT_SYMBOL(simple_open);
644 
645 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
646 {
647 	struct inode *inode = d_inode(old_dentry);
648 
649 	dir->i_mtime = inode_set_ctime_to_ts(dir,
650 					     inode_set_ctime_current(inode));
651 	inc_nlink(inode);
652 	ihold(inode);
653 	dget(dentry);
654 	d_instantiate(dentry, inode);
655 	return 0;
656 }
657 EXPORT_SYMBOL(simple_link);
658 
659 int simple_empty(struct dentry *dentry)
660 {
661 	struct dentry *child;
662 	int ret = 0;
663 
664 	spin_lock(&dentry->d_lock);
665 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
666 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
667 		if (simple_positive(child)) {
668 			spin_unlock(&child->d_lock);
669 			goto out;
670 		}
671 		spin_unlock(&child->d_lock);
672 	}
673 	ret = 1;
674 out:
675 	spin_unlock(&dentry->d_lock);
676 	return ret;
677 }
678 EXPORT_SYMBOL(simple_empty);
679 
680 int simple_unlink(struct inode *dir, struct dentry *dentry)
681 {
682 	struct inode *inode = d_inode(dentry);
683 
684 	dir->i_mtime = inode_set_ctime_to_ts(dir,
685 					     inode_set_ctime_current(inode));
686 	drop_nlink(inode);
687 	dput(dentry);
688 	return 0;
689 }
690 EXPORT_SYMBOL(simple_unlink);
691 
692 int simple_rmdir(struct inode *dir, struct dentry *dentry)
693 {
694 	if (!simple_empty(dentry))
695 		return -ENOTEMPTY;
696 
697 	drop_nlink(d_inode(dentry));
698 	simple_unlink(dir, dentry);
699 	drop_nlink(dir);
700 	return 0;
701 }
702 EXPORT_SYMBOL(simple_rmdir);
703 
704 /**
705  * simple_rename_timestamp - update the various inode timestamps for rename
706  * @old_dir: old parent directory
707  * @old_dentry: dentry that is being renamed
708  * @new_dir: new parent directory
709  * @new_dentry: target for rename
710  *
711  * POSIX mandates that the old and new parent directories have their ctime and
712  * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
713  * their ctime updated.
714  */
715 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
716 			     struct inode *new_dir, struct dentry *new_dentry)
717 {
718 	struct inode *newino = d_inode(new_dentry);
719 
720 	old_dir->i_mtime = inode_set_ctime_current(old_dir);
721 	if (new_dir != old_dir)
722 		new_dir->i_mtime = inode_set_ctime_current(new_dir);
723 	inode_set_ctime_current(d_inode(old_dentry));
724 	if (newino)
725 		inode_set_ctime_current(newino);
726 }
727 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
728 
729 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
730 			   struct inode *new_dir, struct dentry *new_dentry)
731 {
732 	bool old_is_dir = d_is_dir(old_dentry);
733 	bool new_is_dir = d_is_dir(new_dentry);
734 
735 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
736 		if (old_is_dir) {
737 			drop_nlink(old_dir);
738 			inc_nlink(new_dir);
739 		} else {
740 			drop_nlink(new_dir);
741 			inc_nlink(old_dir);
742 		}
743 	}
744 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
745 	return 0;
746 }
747 EXPORT_SYMBOL_GPL(simple_rename_exchange);
748 
749 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
750 		  struct dentry *old_dentry, struct inode *new_dir,
751 		  struct dentry *new_dentry, unsigned int flags)
752 {
753 	int they_are_dirs = d_is_dir(old_dentry);
754 
755 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
756 		return -EINVAL;
757 
758 	if (flags & RENAME_EXCHANGE)
759 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
760 
761 	if (!simple_empty(new_dentry))
762 		return -ENOTEMPTY;
763 
764 	if (d_really_is_positive(new_dentry)) {
765 		simple_unlink(new_dir, new_dentry);
766 		if (they_are_dirs) {
767 			drop_nlink(d_inode(new_dentry));
768 			drop_nlink(old_dir);
769 		}
770 	} else if (they_are_dirs) {
771 		drop_nlink(old_dir);
772 		inc_nlink(new_dir);
773 	}
774 
775 	simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
776 	return 0;
777 }
778 EXPORT_SYMBOL(simple_rename);
779 
780 /**
781  * simple_setattr - setattr for simple filesystem
782  * @idmap: idmap of the target mount
783  * @dentry: dentry
784  * @iattr: iattr structure
785  *
786  * Returns 0 on success, -error on failure.
787  *
788  * simple_setattr is a simple ->setattr implementation without a proper
789  * implementation of size changes.
790  *
791  * It can either be used for in-memory filesystems or special files
792  * on simple regular filesystems.  Anything that needs to change on-disk
793  * or wire state on size changes needs its own setattr method.
794  */
795 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
796 		   struct iattr *iattr)
797 {
798 	struct inode *inode = d_inode(dentry);
799 	int error;
800 
801 	error = setattr_prepare(idmap, dentry, iattr);
802 	if (error)
803 		return error;
804 
805 	if (iattr->ia_valid & ATTR_SIZE)
806 		truncate_setsize(inode, iattr->ia_size);
807 	setattr_copy(idmap, inode, iattr);
808 	mark_inode_dirty(inode);
809 	return 0;
810 }
811 EXPORT_SYMBOL(simple_setattr);
812 
813 static int simple_read_folio(struct file *file, struct folio *folio)
814 {
815 	folio_zero_range(folio, 0, folio_size(folio));
816 	flush_dcache_folio(folio);
817 	folio_mark_uptodate(folio);
818 	folio_unlock(folio);
819 	return 0;
820 }
821 
822 int simple_write_begin(struct file *file, struct address_space *mapping,
823 			loff_t pos, unsigned len,
824 			struct page **pagep, void **fsdata)
825 {
826 	struct folio *folio;
827 
828 	folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
829 			mapping_gfp_mask(mapping));
830 	if (IS_ERR(folio))
831 		return PTR_ERR(folio);
832 
833 	*pagep = &folio->page;
834 
835 	if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
836 		size_t from = offset_in_folio(folio, pos);
837 
838 		folio_zero_segments(folio, 0, from,
839 				from + len, folio_size(folio));
840 	}
841 	return 0;
842 }
843 EXPORT_SYMBOL(simple_write_begin);
844 
845 /**
846  * simple_write_end - .write_end helper for non-block-device FSes
847  * @file: See .write_end of address_space_operations
848  * @mapping: 		"
849  * @pos: 		"
850  * @len: 		"
851  * @copied: 		"
852  * @page: 		"
853  * @fsdata: 		"
854  *
855  * simple_write_end does the minimum needed for updating a page after writing is
856  * done. It has the same API signature as the .write_end of
857  * address_space_operations vector. So it can just be set onto .write_end for
858  * FSes that don't need any other processing. i_mutex is assumed to be held.
859  * Block based filesystems should use generic_write_end().
860  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
861  * is not called, so a filesystem that actually does store data in .write_inode
862  * should extend on what's done here with a call to mark_inode_dirty() in the
863  * case that i_size has changed.
864  *
865  * Use *ONLY* with simple_read_folio()
866  */
867 static int simple_write_end(struct file *file, struct address_space *mapping,
868 			loff_t pos, unsigned len, unsigned copied,
869 			struct page *page, void *fsdata)
870 {
871 	struct folio *folio = page_folio(page);
872 	struct inode *inode = folio->mapping->host;
873 	loff_t last_pos = pos + copied;
874 
875 	/* zero the stale part of the folio if we did a short copy */
876 	if (!folio_test_uptodate(folio)) {
877 		if (copied < len) {
878 			size_t from = offset_in_folio(folio, pos);
879 
880 			folio_zero_range(folio, from + copied, len - copied);
881 		}
882 		folio_mark_uptodate(folio);
883 	}
884 	/*
885 	 * No need to use i_size_read() here, the i_size
886 	 * cannot change under us because we hold the i_mutex.
887 	 */
888 	if (last_pos > inode->i_size)
889 		i_size_write(inode, last_pos);
890 
891 	folio_mark_dirty(folio);
892 	folio_unlock(folio);
893 	folio_put(folio);
894 
895 	return copied;
896 }
897 
898 /*
899  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
900  */
901 const struct address_space_operations ram_aops = {
902 	.read_folio	= simple_read_folio,
903 	.write_begin	= simple_write_begin,
904 	.write_end	= simple_write_end,
905 	.dirty_folio	= noop_dirty_folio,
906 };
907 EXPORT_SYMBOL(ram_aops);
908 
909 /*
910  * the inodes created here are not hashed. If you use iunique to generate
911  * unique inode values later for this filesystem, then you must take care
912  * to pass it an appropriate max_reserved value to avoid collisions.
913  */
914 int simple_fill_super(struct super_block *s, unsigned long magic,
915 		      const struct tree_descr *files)
916 {
917 	struct inode *inode;
918 	struct dentry *root;
919 	struct dentry *dentry;
920 	int i;
921 
922 	s->s_blocksize = PAGE_SIZE;
923 	s->s_blocksize_bits = PAGE_SHIFT;
924 	s->s_magic = magic;
925 	s->s_op = &simple_super_operations;
926 	s->s_time_gran = 1;
927 
928 	inode = new_inode(s);
929 	if (!inode)
930 		return -ENOMEM;
931 	/*
932 	 * because the root inode is 1, the files array must not contain an
933 	 * entry at index 1
934 	 */
935 	inode->i_ino = 1;
936 	inode->i_mode = S_IFDIR | 0755;
937 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
938 	inode->i_op = &simple_dir_inode_operations;
939 	inode->i_fop = &simple_dir_operations;
940 	set_nlink(inode, 2);
941 	root = d_make_root(inode);
942 	if (!root)
943 		return -ENOMEM;
944 	for (i = 0; !files->name || files->name[0]; i++, files++) {
945 		if (!files->name)
946 			continue;
947 
948 		/* warn if it tries to conflict with the root inode */
949 		if (unlikely(i == 1))
950 			printk(KERN_WARNING "%s: %s passed in a files array"
951 				"with an index of 1!\n", __func__,
952 				s->s_type->name);
953 
954 		dentry = d_alloc_name(root, files->name);
955 		if (!dentry)
956 			goto out;
957 		inode = new_inode(s);
958 		if (!inode) {
959 			dput(dentry);
960 			goto out;
961 		}
962 		inode->i_mode = S_IFREG | files->mode;
963 		inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
964 		inode->i_fop = files->ops;
965 		inode->i_ino = i;
966 		d_add(dentry, inode);
967 	}
968 	s->s_root = root;
969 	return 0;
970 out:
971 	d_genocide(root);
972 	shrink_dcache_parent(root);
973 	dput(root);
974 	return -ENOMEM;
975 }
976 EXPORT_SYMBOL(simple_fill_super);
977 
978 static DEFINE_SPINLOCK(pin_fs_lock);
979 
980 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
981 {
982 	struct vfsmount *mnt = NULL;
983 	spin_lock(&pin_fs_lock);
984 	if (unlikely(!*mount)) {
985 		spin_unlock(&pin_fs_lock);
986 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
987 		if (IS_ERR(mnt))
988 			return PTR_ERR(mnt);
989 		spin_lock(&pin_fs_lock);
990 		if (!*mount)
991 			*mount = mnt;
992 	}
993 	mntget(*mount);
994 	++*count;
995 	spin_unlock(&pin_fs_lock);
996 	mntput(mnt);
997 	return 0;
998 }
999 EXPORT_SYMBOL(simple_pin_fs);
1000 
1001 void simple_release_fs(struct vfsmount **mount, int *count)
1002 {
1003 	struct vfsmount *mnt;
1004 	spin_lock(&pin_fs_lock);
1005 	mnt = *mount;
1006 	if (!--*count)
1007 		*mount = NULL;
1008 	spin_unlock(&pin_fs_lock);
1009 	mntput(mnt);
1010 }
1011 EXPORT_SYMBOL(simple_release_fs);
1012 
1013 /**
1014  * simple_read_from_buffer - copy data from the buffer to user space
1015  * @to: the user space buffer to read to
1016  * @count: the maximum number of bytes to read
1017  * @ppos: the current position in the buffer
1018  * @from: the buffer to read from
1019  * @available: the size of the buffer
1020  *
1021  * The simple_read_from_buffer() function reads up to @count bytes from the
1022  * buffer @from at offset @ppos into the user space address starting at @to.
1023  *
1024  * On success, the number of bytes read is returned and the offset @ppos is
1025  * advanced by this number, or negative value is returned on error.
1026  **/
1027 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1028 				const void *from, size_t available)
1029 {
1030 	loff_t pos = *ppos;
1031 	size_t ret;
1032 
1033 	if (pos < 0)
1034 		return -EINVAL;
1035 	if (pos >= available || !count)
1036 		return 0;
1037 	if (count > available - pos)
1038 		count = available - pos;
1039 	ret = copy_to_user(to, from + pos, count);
1040 	if (ret == count)
1041 		return -EFAULT;
1042 	count -= ret;
1043 	*ppos = pos + count;
1044 	return count;
1045 }
1046 EXPORT_SYMBOL(simple_read_from_buffer);
1047 
1048 /**
1049  * simple_write_to_buffer - copy data from user space to the buffer
1050  * @to: the buffer to write to
1051  * @available: the size of the buffer
1052  * @ppos: the current position in the buffer
1053  * @from: the user space buffer to read from
1054  * @count: the maximum number of bytes to read
1055  *
1056  * The simple_write_to_buffer() function reads up to @count bytes from the user
1057  * space address starting at @from into the buffer @to at offset @ppos.
1058  *
1059  * On success, the number of bytes written is returned and the offset @ppos is
1060  * advanced by this number, or negative value is returned on error.
1061  **/
1062 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1063 		const void __user *from, size_t count)
1064 {
1065 	loff_t pos = *ppos;
1066 	size_t res;
1067 
1068 	if (pos < 0)
1069 		return -EINVAL;
1070 	if (pos >= available || !count)
1071 		return 0;
1072 	if (count > available - pos)
1073 		count = available - pos;
1074 	res = copy_from_user(to + pos, from, count);
1075 	if (res == count)
1076 		return -EFAULT;
1077 	count -= res;
1078 	*ppos = pos + count;
1079 	return count;
1080 }
1081 EXPORT_SYMBOL(simple_write_to_buffer);
1082 
1083 /**
1084  * memory_read_from_buffer - copy data from the buffer
1085  * @to: the kernel space buffer to read to
1086  * @count: the maximum number of bytes to read
1087  * @ppos: the current position in the buffer
1088  * @from: the buffer to read from
1089  * @available: the size of the buffer
1090  *
1091  * The memory_read_from_buffer() function reads up to @count bytes from the
1092  * buffer @from at offset @ppos into the kernel space address starting at @to.
1093  *
1094  * On success, the number of bytes read is returned and the offset @ppos is
1095  * advanced by this number, or negative value is returned on error.
1096  **/
1097 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1098 				const void *from, size_t available)
1099 {
1100 	loff_t pos = *ppos;
1101 
1102 	if (pos < 0)
1103 		return -EINVAL;
1104 	if (pos >= available)
1105 		return 0;
1106 	if (count > available - pos)
1107 		count = available - pos;
1108 	memcpy(to, from + pos, count);
1109 	*ppos = pos + count;
1110 
1111 	return count;
1112 }
1113 EXPORT_SYMBOL(memory_read_from_buffer);
1114 
1115 /*
1116  * Transaction based IO.
1117  * The file expects a single write which triggers the transaction, and then
1118  * possibly a read which collects the result - which is stored in a
1119  * file-local buffer.
1120  */
1121 
1122 void simple_transaction_set(struct file *file, size_t n)
1123 {
1124 	struct simple_transaction_argresp *ar = file->private_data;
1125 
1126 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1127 
1128 	/*
1129 	 * The barrier ensures that ar->size will really remain zero until
1130 	 * ar->data is ready for reading.
1131 	 */
1132 	smp_mb();
1133 	ar->size = n;
1134 }
1135 EXPORT_SYMBOL(simple_transaction_set);
1136 
1137 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1138 {
1139 	struct simple_transaction_argresp *ar;
1140 	static DEFINE_SPINLOCK(simple_transaction_lock);
1141 
1142 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1143 		return ERR_PTR(-EFBIG);
1144 
1145 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1146 	if (!ar)
1147 		return ERR_PTR(-ENOMEM);
1148 
1149 	spin_lock(&simple_transaction_lock);
1150 
1151 	/* only one write allowed per open */
1152 	if (file->private_data) {
1153 		spin_unlock(&simple_transaction_lock);
1154 		free_page((unsigned long)ar);
1155 		return ERR_PTR(-EBUSY);
1156 	}
1157 
1158 	file->private_data = ar;
1159 
1160 	spin_unlock(&simple_transaction_lock);
1161 
1162 	if (copy_from_user(ar->data, buf, size))
1163 		return ERR_PTR(-EFAULT);
1164 
1165 	return ar->data;
1166 }
1167 EXPORT_SYMBOL(simple_transaction_get);
1168 
1169 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1170 {
1171 	struct simple_transaction_argresp *ar = file->private_data;
1172 
1173 	if (!ar)
1174 		return 0;
1175 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1176 }
1177 EXPORT_SYMBOL(simple_transaction_read);
1178 
1179 int simple_transaction_release(struct inode *inode, struct file *file)
1180 {
1181 	free_page((unsigned long)file->private_data);
1182 	return 0;
1183 }
1184 EXPORT_SYMBOL(simple_transaction_release);
1185 
1186 /* Simple attribute files */
1187 
1188 struct simple_attr {
1189 	int (*get)(void *, u64 *);
1190 	int (*set)(void *, u64);
1191 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1192 	char set_buf[24];
1193 	void *data;
1194 	const char *fmt;	/* format for read operation */
1195 	struct mutex mutex;	/* protects access to these buffers */
1196 };
1197 
1198 /* simple_attr_open is called by an actual attribute open file operation
1199  * to set the attribute specific access operations. */
1200 int simple_attr_open(struct inode *inode, struct file *file,
1201 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1202 		     const char *fmt)
1203 {
1204 	struct simple_attr *attr;
1205 
1206 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1207 	if (!attr)
1208 		return -ENOMEM;
1209 
1210 	attr->get = get;
1211 	attr->set = set;
1212 	attr->data = inode->i_private;
1213 	attr->fmt = fmt;
1214 	mutex_init(&attr->mutex);
1215 
1216 	file->private_data = attr;
1217 
1218 	return nonseekable_open(inode, file);
1219 }
1220 EXPORT_SYMBOL_GPL(simple_attr_open);
1221 
1222 int simple_attr_release(struct inode *inode, struct file *file)
1223 {
1224 	kfree(file->private_data);
1225 	return 0;
1226 }
1227 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1228 
1229 /* read from the buffer that is filled with the get function */
1230 ssize_t simple_attr_read(struct file *file, char __user *buf,
1231 			 size_t len, loff_t *ppos)
1232 {
1233 	struct simple_attr *attr;
1234 	size_t size;
1235 	ssize_t ret;
1236 
1237 	attr = file->private_data;
1238 
1239 	if (!attr->get)
1240 		return -EACCES;
1241 
1242 	ret = mutex_lock_interruptible(&attr->mutex);
1243 	if (ret)
1244 		return ret;
1245 
1246 	if (*ppos && attr->get_buf[0]) {
1247 		/* continued read */
1248 		size = strlen(attr->get_buf);
1249 	} else {
1250 		/* first read */
1251 		u64 val;
1252 		ret = attr->get(attr->data, &val);
1253 		if (ret)
1254 			goto out;
1255 
1256 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1257 				 attr->fmt, (unsigned long long)val);
1258 	}
1259 
1260 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1261 out:
1262 	mutex_unlock(&attr->mutex);
1263 	return ret;
1264 }
1265 EXPORT_SYMBOL_GPL(simple_attr_read);
1266 
1267 /* interpret the buffer as a number to call the set function with */
1268 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1269 			  size_t len, loff_t *ppos, bool is_signed)
1270 {
1271 	struct simple_attr *attr;
1272 	unsigned long long val;
1273 	size_t size;
1274 	ssize_t ret;
1275 
1276 	attr = file->private_data;
1277 	if (!attr->set)
1278 		return -EACCES;
1279 
1280 	ret = mutex_lock_interruptible(&attr->mutex);
1281 	if (ret)
1282 		return ret;
1283 
1284 	ret = -EFAULT;
1285 	size = min(sizeof(attr->set_buf) - 1, len);
1286 	if (copy_from_user(attr->set_buf, buf, size))
1287 		goto out;
1288 
1289 	attr->set_buf[size] = '\0';
1290 	if (is_signed)
1291 		ret = kstrtoll(attr->set_buf, 0, &val);
1292 	else
1293 		ret = kstrtoull(attr->set_buf, 0, &val);
1294 	if (ret)
1295 		goto out;
1296 	ret = attr->set(attr->data, val);
1297 	if (ret == 0)
1298 		ret = len; /* on success, claim we got the whole input */
1299 out:
1300 	mutex_unlock(&attr->mutex);
1301 	return ret;
1302 }
1303 
1304 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1305 			  size_t len, loff_t *ppos)
1306 {
1307 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1308 }
1309 EXPORT_SYMBOL_GPL(simple_attr_write);
1310 
1311 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1312 			  size_t len, loff_t *ppos)
1313 {
1314 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1315 }
1316 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1317 
1318 /**
1319  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1320  * @sb:		filesystem to do the file handle conversion on
1321  * @fid:	file handle to convert
1322  * @fh_len:	length of the file handle in bytes
1323  * @fh_type:	type of file handle
1324  * @get_inode:	filesystem callback to retrieve inode
1325  *
1326  * This function decodes @fid as long as it has one of the well-known
1327  * Linux filehandle types and calls @get_inode on it to retrieve the
1328  * inode for the object specified in the file handle.
1329  */
1330 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1331 		int fh_len, int fh_type, struct inode *(*get_inode)
1332 			(struct super_block *sb, u64 ino, u32 gen))
1333 {
1334 	struct inode *inode = NULL;
1335 
1336 	if (fh_len < 2)
1337 		return NULL;
1338 
1339 	switch (fh_type) {
1340 	case FILEID_INO32_GEN:
1341 	case FILEID_INO32_GEN_PARENT:
1342 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1343 		break;
1344 	}
1345 
1346 	return d_obtain_alias(inode);
1347 }
1348 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1349 
1350 /**
1351  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1352  * @sb:		filesystem to do the file handle conversion on
1353  * @fid:	file handle to convert
1354  * @fh_len:	length of the file handle in bytes
1355  * @fh_type:	type of file handle
1356  * @get_inode:	filesystem callback to retrieve inode
1357  *
1358  * This function decodes @fid as long as it has one of the well-known
1359  * Linux filehandle types and calls @get_inode on it to retrieve the
1360  * inode for the _parent_ object specified in the file handle if it
1361  * is specified in the file handle, or NULL otherwise.
1362  */
1363 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1364 		int fh_len, int fh_type, struct inode *(*get_inode)
1365 			(struct super_block *sb, u64 ino, u32 gen))
1366 {
1367 	struct inode *inode = NULL;
1368 
1369 	if (fh_len <= 2)
1370 		return NULL;
1371 
1372 	switch (fh_type) {
1373 	case FILEID_INO32_GEN_PARENT:
1374 		inode = get_inode(sb, fid->i32.parent_ino,
1375 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1376 		break;
1377 	}
1378 
1379 	return d_obtain_alias(inode);
1380 }
1381 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1382 
1383 /**
1384  * __generic_file_fsync - generic fsync implementation for simple filesystems
1385  *
1386  * @file:	file to synchronize
1387  * @start:	start offset in bytes
1388  * @end:	end offset in bytes (inclusive)
1389  * @datasync:	only synchronize essential metadata if true
1390  *
1391  * This is a generic implementation of the fsync method for simple
1392  * filesystems which track all non-inode metadata in the buffers list
1393  * hanging off the address_space structure.
1394  */
1395 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1396 				 int datasync)
1397 {
1398 	struct inode *inode = file->f_mapping->host;
1399 	int err;
1400 	int ret;
1401 
1402 	err = file_write_and_wait_range(file, start, end);
1403 	if (err)
1404 		return err;
1405 
1406 	inode_lock(inode);
1407 	ret = sync_mapping_buffers(inode->i_mapping);
1408 	if (!(inode->i_state & I_DIRTY_ALL))
1409 		goto out;
1410 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1411 		goto out;
1412 
1413 	err = sync_inode_metadata(inode, 1);
1414 	if (ret == 0)
1415 		ret = err;
1416 
1417 out:
1418 	inode_unlock(inode);
1419 	/* check and advance again to catch errors after syncing out buffers */
1420 	err = file_check_and_advance_wb_err(file);
1421 	if (ret == 0)
1422 		ret = err;
1423 	return ret;
1424 }
1425 EXPORT_SYMBOL(__generic_file_fsync);
1426 
1427 /**
1428  * generic_file_fsync - generic fsync implementation for simple filesystems
1429  *			with flush
1430  * @file:	file to synchronize
1431  * @start:	start offset in bytes
1432  * @end:	end offset in bytes (inclusive)
1433  * @datasync:	only synchronize essential metadata if true
1434  *
1435  */
1436 
1437 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1438 		       int datasync)
1439 {
1440 	struct inode *inode = file->f_mapping->host;
1441 	int err;
1442 
1443 	err = __generic_file_fsync(file, start, end, datasync);
1444 	if (err)
1445 		return err;
1446 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1447 }
1448 EXPORT_SYMBOL(generic_file_fsync);
1449 
1450 /**
1451  * generic_check_addressable - Check addressability of file system
1452  * @blocksize_bits:	log of file system block size
1453  * @num_blocks:		number of blocks in file system
1454  *
1455  * Determine whether a file system with @num_blocks blocks (and a
1456  * block size of 2**@blocksize_bits) is addressable by the sector_t
1457  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1458  */
1459 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1460 {
1461 	u64 last_fs_block = num_blocks - 1;
1462 	u64 last_fs_page =
1463 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1464 
1465 	if (unlikely(num_blocks == 0))
1466 		return 0;
1467 
1468 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1469 		return -EINVAL;
1470 
1471 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1472 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1473 		return -EFBIG;
1474 	}
1475 	return 0;
1476 }
1477 EXPORT_SYMBOL(generic_check_addressable);
1478 
1479 /*
1480  * No-op implementation of ->fsync for in-memory filesystems.
1481  */
1482 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1483 {
1484 	return 0;
1485 }
1486 EXPORT_SYMBOL(noop_fsync);
1487 
1488 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1489 {
1490 	/*
1491 	 * iomap based filesystems support direct I/O without need for
1492 	 * this callback. However, it still needs to be set in
1493 	 * inode->a_ops so that open/fcntl know that direct I/O is
1494 	 * generally supported.
1495 	 */
1496 	return -EINVAL;
1497 }
1498 EXPORT_SYMBOL_GPL(noop_direct_IO);
1499 
1500 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1501 void kfree_link(void *p)
1502 {
1503 	kfree(p);
1504 }
1505 EXPORT_SYMBOL(kfree_link);
1506 
1507 struct inode *alloc_anon_inode(struct super_block *s)
1508 {
1509 	static const struct address_space_operations anon_aops = {
1510 		.dirty_folio	= noop_dirty_folio,
1511 	};
1512 	struct inode *inode = new_inode_pseudo(s);
1513 
1514 	if (!inode)
1515 		return ERR_PTR(-ENOMEM);
1516 
1517 	inode->i_ino = get_next_ino();
1518 	inode->i_mapping->a_ops = &anon_aops;
1519 
1520 	/*
1521 	 * Mark the inode dirty from the very beginning,
1522 	 * that way it will never be moved to the dirty
1523 	 * list because mark_inode_dirty() will think
1524 	 * that it already _is_ on the dirty list.
1525 	 */
1526 	inode->i_state = I_DIRTY;
1527 	inode->i_mode = S_IRUSR | S_IWUSR;
1528 	inode->i_uid = current_fsuid();
1529 	inode->i_gid = current_fsgid();
1530 	inode->i_flags |= S_PRIVATE;
1531 	inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1532 	return inode;
1533 }
1534 EXPORT_SYMBOL(alloc_anon_inode);
1535 
1536 /**
1537  * simple_nosetlease - generic helper for prohibiting leases
1538  * @filp: file pointer
1539  * @arg: type of lease to obtain
1540  * @flp: new lease supplied for insertion
1541  * @priv: private data for lm_setup operation
1542  *
1543  * Generic helper for filesystems that do not wish to allow leases to be set.
1544  * All arguments are ignored and it just returns -EINVAL.
1545  */
1546 int
1547 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1548 		  void **priv)
1549 {
1550 	return -EINVAL;
1551 }
1552 EXPORT_SYMBOL(simple_nosetlease);
1553 
1554 /**
1555  * simple_get_link - generic helper to get the target of "fast" symlinks
1556  * @dentry: not used here
1557  * @inode: the symlink inode
1558  * @done: not used here
1559  *
1560  * Generic helper for filesystems to use for symlink inodes where a pointer to
1561  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1562  * since as an optimization the path lookup code uses any non-NULL ->i_link
1563  * directly, without calling ->get_link().  But ->get_link() still must be set,
1564  * to mark the inode_operations as being for a symlink.
1565  *
1566  * Return: the symlink target
1567  */
1568 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1569 			    struct delayed_call *done)
1570 {
1571 	return inode->i_link;
1572 }
1573 EXPORT_SYMBOL(simple_get_link);
1574 
1575 const struct inode_operations simple_symlink_inode_operations = {
1576 	.get_link = simple_get_link,
1577 };
1578 EXPORT_SYMBOL(simple_symlink_inode_operations);
1579 
1580 /*
1581  * Operations for a permanently empty directory.
1582  */
1583 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1584 {
1585 	return ERR_PTR(-ENOENT);
1586 }
1587 
1588 static int empty_dir_getattr(struct mnt_idmap *idmap,
1589 			     const struct path *path, struct kstat *stat,
1590 			     u32 request_mask, unsigned int query_flags)
1591 {
1592 	struct inode *inode = d_inode(path->dentry);
1593 	generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1594 	return 0;
1595 }
1596 
1597 static int empty_dir_setattr(struct mnt_idmap *idmap,
1598 			     struct dentry *dentry, struct iattr *attr)
1599 {
1600 	return -EPERM;
1601 }
1602 
1603 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1604 {
1605 	return -EOPNOTSUPP;
1606 }
1607 
1608 static const struct inode_operations empty_dir_inode_operations = {
1609 	.lookup		= empty_dir_lookup,
1610 	.permission	= generic_permission,
1611 	.setattr	= empty_dir_setattr,
1612 	.getattr	= empty_dir_getattr,
1613 	.listxattr	= empty_dir_listxattr,
1614 };
1615 
1616 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1617 {
1618 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1619 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1620 }
1621 
1622 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1623 {
1624 	dir_emit_dots(file, ctx);
1625 	return 0;
1626 }
1627 
1628 static const struct file_operations empty_dir_operations = {
1629 	.llseek		= empty_dir_llseek,
1630 	.read		= generic_read_dir,
1631 	.iterate_shared	= empty_dir_readdir,
1632 	.fsync		= noop_fsync,
1633 };
1634 
1635 
1636 void make_empty_dir_inode(struct inode *inode)
1637 {
1638 	set_nlink(inode, 2);
1639 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1640 	inode->i_uid = GLOBAL_ROOT_UID;
1641 	inode->i_gid = GLOBAL_ROOT_GID;
1642 	inode->i_rdev = 0;
1643 	inode->i_size = 0;
1644 	inode->i_blkbits = PAGE_SHIFT;
1645 	inode->i_blocks = 0;
1646 
1647 	inode->i_op = &empty_dir_inode_operations;
1648 	inode->i_opflags &= ~IOP_XATTR;
1649 	inode->i_fop = &empty_dir_operations;
1650 }
1651 
1652 bool is_empty_dir_inode(struct inode *inode)
1653 {
1654 	return (inode->i_fop == &empty_dir_operations) &&
1655 		(inode->i_op == &empty_dir_inode_operations);
1656 }
1657 
1658 #if IS_ENABLED(CONFIG_UNICODE)
1659 /**
1660  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1661  * @dentry:	dentry whose name we are checking against
1662  * @len:	len of name of dentry
1663  * @str:	str pointer to name of dentry
1664  * @name:	Name to compare against
1665  *
1666  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1667  */
1668 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1669 				const char *str, const struct qstr *name)
1670 {
1671 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1672 	const struct inode *dir = READ_ONCE(parent->d_inode);
1673 	const struct super_block *sb = dentry->d_sb;
1674 	const struct unicode_map *um = sb->s_encoding;
1675 	struct qstr qstr = QSTR_INIT(str, len);
1676 	char strbuf[DNAME_INLINE_LEN];
1677 	int ret;
1678 
1679 	if (!dir || !IS_CASEFOLDED(dir))
1680 		goto fallback;
1681 	/*
1682 	 * If the dentry name is stored in-line, then it may be concurrently
1683 	 * modified by a rename.  If this happens, the VFS will eventually retry
1684 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1685 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1686 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1687 	 */
1688 	if (len <= DNAME_INLINE_LEN - 1) {
1689 		memcpy(strbuf, str, len);
1690 		strbuf[len] = 0;
1691 		qstr.name = strbuf;
1692 		/* prevent compiler from optimizing out the temporary buffer */
1693 		barrier();
1694 	}
1695 	ret = utf8_strncasecmp(um, name, &qstr);
1696 	if (ret >= 0)
1697 		return ret;
1698 
1699 	if (sb_has_strict_encoding(sb))
1700 		return -EINVAL;
1701 fallback:
1702 	if (len != name->len)
1703 		return 1;
1704 	return !!memcmp(str, name->name, len);
1705 }
1706 
1707 /**
1708  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1709  * @dentry:	dentry of the parent directory
1710  * @str:	qstr of name whose hash we should fill in
1711  *
1712  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1713  */
1714 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1715 {
1716 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1717 	struct super_block *sb = dentry->d_sb;
1718 	const struct unicode_map *um = sb->s_encoding;
1719 	int ret = 0;
1720 
1721 	if (!dir || !IS_CASEFOLDED(dir))
1722 		return 0;
1723 
1724 	ret = utf8_casefold_hash(um, dentry, str);
1725 	if (ret < 0 && sb_has_strict_encoding(sb))
1726 		return -EINVAL;
1727 	return 0;
1728 }
1729 
1730 static const struct dentry_operations generic_ci_dentry_ops = {
1731 	.d_hash = generic_ci_d_hash,
1732 	.d_compare = generic_ci_d_compare,
1733 };
1734 #endif
1735 
1736 #ifdef CONFIG_FS_ENCRYPTION
1737 static const struct dentry_operations generic_encrypted_dentry_ops = {
1738 	.d_revalidate = fscrypt_d_revalidate,
1739 };
1740 #endif
1741 
1742 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1743 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1744 	.d_hash = generic_ci_d_hash,
1745 	.d_compare = generic_ci_d_compare,
1746 	.d_revalidate = fscrypt_d_revalidate,
1747 };
1748 #endif
1749 
1750 /**
1751  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1752  * @dentry:	dentry to set ops on
1753  *
1754  * Casefolded directories need d_hash and d_compare set, so that the dentries
1755  * contained in them are handled case-insensitively.  Note that these operations
1756  * are needed on the parent directory rather than on the dentries in it, and
1757  * while the casefolding flag can be toggled on and off on an empty directory,
1758  * dentry_operations can't be changed later.  As a result, if the filesystem has
1759  * casefolding support enabled at all, we have to give all dentries the
1760  * casefolding operations even if their inode doesn't have the casefolding flag
1761  * currently (and thus the casefolding ops would be no-ops for now).
1762  *
1763  * Encryption works differently in that the only dentry operation it needs is
1764  * d_revalidate, which it only needs on dentries that have the no-key name flag.
1765  * The no-key flag can't be set "later", so we don't have to worry about that.
1766  *
1767  * Finally, to maximize compatibility with overlayfs (which isn't compatible
1768  * with certain dentry operations) and to avoid taking an unnecessary
1769  * performance hit, we use custom dentry_operations for each possible
1770  * combination rather than always installing all operations.
1771  */
1772 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1773 {
1774 #ifdef CONFIG_FS_ENCRYPTION
1775 	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1776 #endif
1777 #if IS_ENABLED(CONFIG_UNICODE)
1778 	bool needs_ci_ops = dentry->d_sb->s_encoding;
1779 #endif
1780 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1781 	if (needs_encrypt_ops && needs_ci_ops) {
1782 		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1783 		return;
1784 	}
1785 #endif
1786 #ifdef CONFIG_FS_ENCRYPTION
1787 	if (needs_encrypt_ops) {
1788 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1789 		return;
1790 	}
1791 #endif
1792 #if IS_ENABLED(CONFIG_UNICODE)
1793 	if (needs_ci_ops) {
1794 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1795 		return;
1796 	}
1797 #endif
1798 }
1799 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1800 
1801 /**
1802  * inode_maybe_inc_iversion - increments i_version
1803  * @inode: inode with the i_version that should be updated
1804  * @force: increment the counter even if it's not necessary?
1805  *
1806  * Every time the inode is modified, the i_version field must be seen to have
1807  * changed by any observer.
1808  *
1809  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1810  * the value, and clear the queried flag.
1811  *
1812  * In the common case where neither is set, then we can return "false" without
1813  * updating i_version.
1814  *
1815  * If this function returns false, and no other metadata has changed, then we
1816  * can avoid logging the metadata.
1817  */
1818 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1819 {
1820 	u64 cur, new;
1821 
1822 	/*
1823 	 * The i_version field is not strictly ordered with any other inode
1824 	 * information, but the legacy inode_inc_iversion code used a spinlock
1825 	 * to serialize increments.
1826 	 *
1827 	 * Here, we add full memory barriers to ensure that any de-facto
1828 	 * ordering with other info is preserved.
1829 	 *
1830 	 * This barrier pairs with the barrier in inode_query_iversion()
1831 	 */
1832 	smp_mb();
1833 	cur = inode_peek_iversion_raw(inode);
1834 	do {
1835 		/* If flag is clear then we needn't do anything */
1836 		if (!force && !(cur & I_VERSION_QUERIED))
1837 			return false;
1838 
1839 		/* Since lowest bit is flag, add 2 to avoid it */
1840 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1841 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1842 	return true;
1843 }
1844 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1845 
1846 /**
1847  * inode_query_iversion - read i_version for later use
1848  * @inode: inode from which i_version should be read
1849  *
1850  * Read the inode i_version counter. This should be used by callers that wish
1851  * to store the returned i_version for later comparison. This will guarantee
1852  * that a later query of the i_version will result in a different value if
1853  * anything has changed.
1854  *
1855  * In this implementation, we fetch the current value, set the QUERIED flag and
1856  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1857  * that fails, we try again with the newly fetched value from the cmpxchg.
1858  */
1859 u64 inode_query_iversion(struct inode *inode)
1860 {
1861 	u64 cur, new;
1862 
1863 	cur = inode_peek_iversion_raw(inode);
1864 	do {
1865 		/* If flag is already set, then no need to swap */
1866 		if (cur & I_VERSION_QUERIED) {
1867 			/*
1868 			 * This barrier (and the implicit barrier in the
1869 			 * cmpxchg below) pairs with the barrier in
1870 			 * inode_maybe_inc_iversion().
1871 			 */
1872 			smp_mb();
1873 			break;
1874 		}
1875 
1876 		new = cur | I_VERSION_QUERIED;
1877 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1878 	return cur >> I_VERSION_QUERIED_SHIFT;
1879 }
1880 EXPORT_SYMBOL(inode_query_iversion);
1881 
1882 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1883 		ssize_t direct_written, ssize_t buffered_written)
1884 {
1885 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1886 	loff_t pos = iocb->ki_pos - buffered_written;
1887 	loff_t end = iocb->ki_pos - 1;
1888 	int err;
1889 
1890 	/*
1891 	 * If the buffered write fallback returned an error, we want to return
1892 	 * the number of bytes which were written by direct I/O, or the error
1893 	 * code if that was zero.
1894 	 *
1895 	 * Note that this differs from normal direct-io semantics, which will
1896 	 * return -EFOO even if some bytes were written.
1897 	 */
1898 	if (unlikely(buffered_written < 0)) {
1899 		if (direct_written)
1900 			return direct_written;
1901 		return buffered_written;
1902 	}
1903 
1904 	/*
1905 	 * We need to ensure that the page cache pages are written to disk and
1906 	 * invalidated to preserve the expected O_DIRECT semantics.
1907 	 */
1908 	err = filemap_write_and_wait_range(mapping, pos, end);
1909 	if (err < 0) {
1910 		/*
1911 		 * We don't know how much we wrote, so just return the number of
1912 		 * bytes which were direct-written
1913 		 */
1914 		iocb->ki_pos -= buffered_written;
1915 		if (direct_written)
1916 			return direct_written;
1917 		return err;
1918 	}
1919 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1920 	return direct_written + buffered_written;
1921 }
1922 EXPORT_SYMBOL_GPL(direct_write_fallback);
1923