xref: /openbmc/linux/fs/libfs.c (revision 4fc4dca8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 
21 #include <linux/uaccess.h>
22 
23 #include "internal.h"
24 
25 int simple_getattr(const struct path *path, struct kstat *stat,
26 		   u32 request_mask, unsigned int query_flags)
27 {
28 	struct inode *inode = d_inode(path->dentry);
29 	generic_fillattr(inode, stat);
30 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
31 	return 0;
32 }
33 EXPORT_SYMBOL(simple_getattr);
34 
35 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
36 {
37 	buf->f_type = dentry->d_sb->s_magic;
38 	buf->f_bsize = PAGE_SIZE;
39 	buf->f_namelen = NAME_MAX;
40 	return 0;
41 }
42 EXPORT_SYMBOL(simple_statfs);
43 
44 /*
45  * Retaining negative dentries for an in-memory filesystem just wastes
46  * memory and lookup time: arrange for them to be deleted immediately.
47  */
48 int always_delete_dentry(const struct dentry *dentry)
49 {
50 	return 1;
51 }
52 EXPORT_SYMBOL(always_delete_dentry);
53 
54 const struct dentry_operations simple_dentry_operations = {
55 	.d_delete = always_delete_dentry,
56 };
57 EXPORT_SYMBOL(simple_dentry_operations);
58 
59 /*
60  * Lookup the data. This is trivial - if the dentry didn't already
61  * exist, we know it is negative.  Set d_op to delete negative dentries.
62  */
63 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
64 {
65 	if (dentry->d_name.len > NAME_MAX)
66 		return ERR_PTR(-ENAMETOOLONG);
67 	if (!dentry->d_sb->s_d_op)
68 		d_set_d_op(dentry, &simple_dentry_operations);
69 	d_add(dentry, NULL);
70 	return NULL;
71 }
72 EXPORT_SYMBOL(simple_lookup);
73 
74 int dcache_dir_open(struct inode *inode, struct file *file)
75 {
76 	file->private_data = d_alloc_cursor(file->f_path.dentry);
77 
78 	return file->private_data ? 0 : -ENOMEM;
79 }
80 EXPORT_SYMBOL(dcache_dir_open);
81 
82 int dcache_dir_close(struct inode *inode, struct file *file)
83 {
84 	dput(file->private_data);
85 	return 0;
86 }
87 EXPORT_SYMBOL(dcache_dir_close);
88 
89 /* parent is locked at least shared */
90 static struct dentry *next_positive(struct dentry *parent,
91 				    struct list_head *from,
92 				    int count)
93 {
94 	unsigned *seq = &parent->d_inode->i_dir_seq, n;
95 	struct dentry *res;
96 	struct list_head *p;
97 	bool skipped;
98 	int i;
99 
100 retry:
101 	i = count;
102 	skipped = false;
103 	n = smp_load_acquire(seq) & ~1;
104 	res = NULL;
105 	rcu_read_lock();
106 	for (p = from->next; p != &parent->d_subdirs; p = p->next) {
107 		struct dentry *d = list_entry(p, struct dentry, d_child);
108 		if (!simple_positive(d)) {
109 			skipped = true;
110 		} else if (!--i) {
111 			res = d;
112 			break;
113 		}
114 	}
115 	rcu_read_unlock();
116 	if (skipped) {
117 		smp_rmb();
118 		if (unlikely(*seq != n))
119 			goto retry;
120 	}
121 	return res;
122 }
123 
124 static void move_cursor(struct dentry *cursor, struct list_head *after)
125 {
126 	struct dentry *parent = cursor->d_parent;
127 	unsigned n, *seq = &parent->d_inode->i_dir_seq;
128 	spin_lock(&parent->d_lock);
129 	for (;;) {
130 		n = *seq;
131 		if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
132 			break;
133 		cpu_relax();
134 	}
135 	__list_del(cursor->d_child.prev, cursor->d_child.next);
136 	if (after)
137 		list_add(&cursor->d_child, after);
138 	else
139 		list_add_tail(&cursor->d_child, &parent->d_subdirs);
140 	smp_store_release(seq, n + 2);
141 	spin_unlock(&parent->d_lock);
142 }
143 
144 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
145 {
146 	struct dentry *dentry = file->f_path.dentry;
147 	switch (whence) {
148 		case 1:
149 			offset += file->f_pos;
150 			/* fall through */
151 		case 0:
152 			if (offset >= 0)
153 				break;
154 			/* fall through */
155 		default:
156 			return -EINVAL;
157 	}
158 	if (offset != file->f_pos) {
159 		file->f_pos = offset;
160 		if (file->f_pos >= 2) {
161 			struct dentry *cursor = file->private_data;
162 			struct dentry *to;
163 			loff_t n = file->f_pos - 2;
164 
165 			inode_lock_shared(dentry->d_inode);
166 			to = next_positive(dentry, &dentry->d_subdirs, n);
167 			move_cursor(cursor, to ? &to->d_child : NULL);
168 			inode_unlock_shared(dentry->d_inode);
169 		}
170 	}
171 	return offset;
172 }
173 EXPORT_SYMBOL(dcache_dir_lseek);
174 
175 /* Relationship between i_mode and the DT_xxx types */
176 static inline unsigned char dt_type(struct inode *inode)
177 {
178 	return (inode->i_mode >> 12) & 15;
179 }
180 
181 /*
182  * Directory is locked and all positive dentries in it are safe, since
183  * for ramfs-type trees they can't go away without unlink() or rmdir(),
184  * both impossible due to the lock on directory.
185  */
186 
187 int dcache_readdir(struct file *file, struct dir_context *ctx)
188 {
189 	struct dentry *dentry = file->f_path.dentry;
190 	struct dentry *cursor = file->private_data;
191 	struct list_head *p = &cursor->d_child;
192 	struct dentry *next;
193 	bool moved = false;
194 
195 	if (!dir_emit_dots(file, ctx))
196 		return 0;
197 
198 	if (ctx->pos == 2)
199 		p = &dentry->d_subdirs;
200 	while ((next = next_positive(dentry, p, 1)) != NULL) {
201 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
202 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
203 			break;
204 		moved = true;
205 		p = &next->d_child;
206 		ctx->pos++;
207 	}
208 	if (moved)
209 		move_cursor(cursor, p);
210 	return 0;
211 }
212 EXPORT_SYMBOL(dcache_readdir);
213 
214 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
215 {
216 	return -EISDIR;
217 }
218 EXPORT_SYMBOL(generic_read_dir);
219 
220 const struct file_operations simple_dir_operations = {
221 	.open		= dcache_dir_open,
222 	.release	= dcache_dir_close,
223 	.llseek		= dcache_dir_lseek,
224 	.read		= generic_read_dir,
225 	.iterate_shared	= dcache_readdir,
226 	.fsync		= noop_fsync,
227 };
228 EXPORT_SYMBOL(simple_dir_operations);
229 
230 const struct inode_operations simple_dir_inode_operations = {
231 	.lookup		= simple_lookup,
232 };
233 EXPORT_SYMBOL(simple_dir_inode_operations);
234 
235 static const struct super_operations simple_super_operations = {
236 	.statfs		= simple_statfs,
237 };
238 
239 /*
240  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
241  * will never be mountable)
242  */
243 struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
244 	const struct super_operations *ops, const struct xattr_handler **xattr,
245 	const struct dentry_operations *dops, unsigned long magic)
246 {
247 	struct super_block *s;
248 	struct dentry *dentry;
249 	struct inode *root;
250 	struct qstr d_name = QSTR_INIT(name, strlen(name));
251 
252 	s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER,
253 			&init_user_ns, NULL);
254 	if (IS_ERR(s))
255 		return ERR_CAST(s);
256 
257 	s->s_maxbytes = MAX_LFS_FILESIZE;
258 	s->s_blocksize = PAGE_SIZE;
259 	s->s_blocksize_bits = PAGE_SHIFT;
260 	s->s_magic = magic;
261 	s->s_op = ops ? ops : &simple_super_operations;
262 	s->s_xattr = xattr;
263 	s->s_time_gran = 1;
264 	root = new_inode(s);
265 	if (!root)
266 		goto Enomem;
267 	/*
268 	 * since this is the first inode, make it number 1. New inodes created
269 	 * after this must take care not to collide with it (by passing
270 	 * max_reserved of 1 to iunique).
271 	 */
272 	root->i_ino = 1;
273 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
274 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
275 	dentry = __d_alloc(s, &d_name);
276 	if (!dentry) {
277 		iput(root);
278 		goto Enomem;
279 	}
280 	d_instantiate(dentry, root);
281 	s->s_root = dentry;
282 	s->s_d_op = dops;
283 	s->s_flags |= SB_ACTIVE;
284 	return dget(s->s_root);
285 
286 Enomem:
287 	deactivate_locked_super(s);
288 	return ERR_PTR(-ENOMEM);
289 }
290 EXPORT_SYMBOL(mount_pseudo_xattr);
291 
292 int simple_open(struct inode *inode, struct file *file)
293 {
294 	if (inode->i_private)
295 		file->private_data = inode->i_private;
296 	return 0;
297 }
298 EXPORT_SYMBOL(simple_open);
299 
300 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
301 {
302 	struct inode *inode = d_inode(old_dentry);
303 
304 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
305 	inc_nlink(inode);
306 	ihold(inode);
307 	dget(dentry);
308 	d_instantiate(dentry, inode);
309 	return 0;
310 }
311 EXPORT_SYMBOL(simple_link);
312 
313 int simple_empty(struct dentry *dentry)
314 {
315 	struct dentry *child;
316 	int ret = 0;
317 
318 	spin_lock(&dentry->d_lock);
319 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
320 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
321 		if (simple_positive(child)) {
322 			spin_unlock(&child->d_lock);
323 			goto out;
324 		}
325 		spin_unlock(&child->d_lock);
326 	}
327 	ret = 1;
328 out:
329 	spin_unlock(&dentry->d_lock);
330 	return ret;
331 }
332 EXPORT_SYMBOL(simple_empty);
333 
334 int simple_unlink(struct inode *dir, struct dentry *dentry)
335 {
336 	struct inode *inode = d_inode(dentry);
337 
338 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
339 	drop_nlink(inode);
340 	dput(dentry);
341 	return 0;
342 }
343 EXPORT_SYMBOL(simple_unlink);
344 
345 int simple_rmdir(struct inode *dir, struct dentry *dentry)
346 {
347 	if (!simple_empty(dentry))
348 		return -ENOTEMPTY;
349 
350 	drop_nlink(d_inode(dentry));
351 	simple_unlink(dir, dentry);
352 	drop_nlink(dir);
353 	return 0;
354 }
355 EXPORT_SYMBOL(simple_rmdir);
356 
357 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
358 		  struct inode *new_dir, struct dentry *new_dentry,
359 		  unsigned int flags)
360 {
361 	struct inode *inode = d_inode(old_dentry);
362 	int they_are_dirs = d_is_dir(old_dentry);
363 
364 	if (flags & ~RENAME_NOREPLACE)
365 		return -EINVAL;
366 
367 	if (!simple_empty(new_dentry))
368 		return -ENOTEMPTY;
369 
370 	if (d_really_is_positive(new_dentry)) {
371 		simple_unlink(new_dir, new_dentry);
372 		if (they_are_dirs) {
373 			drop_nlink(d_inode(new_dentry));
374 			drop_nlink(old_dir);
375 		}
376 	} else if (they_are_dirs) {
377 		drop_nlink(old_dir);
378 		inc_nlink(new_dir);
379 	}
380 
381 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
382 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
383 
384 	return 0;
385 }
386 EXPORT_SYMBOL(simple_rename);
387 
388 /**
389  * simple_setattr - setattr for simple filesystem
390  * @dentry: dentry
391  * @iattr: iattr structure
392  *
393  * Returns 0 on success, -error on failure.
394  *
395  * simple_setattr is a simple ->setattr implementation without a proper
396  * implementation of size changes.
397  *
398  * It can either be used for in-memory filesystems or special files
399  * on simple regular filesystems.  Anything that needs to change on-disk
400  * or wire state on size changes needs its own setattr method.
401  */
402 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
403 {
404 	struct inode *inode = d_inode(dentry);
405 	int error;
406 
407 	error = setattr_prepare(dentry, iattr);
408 	if (error)
409 		return error;
410 
411 	if (iattr->ia_valid & ATTR_SIZE)
412 		truncate_setsize(inode, iattr->ia_size);
413 	setattr_copy(inode, iattr);
414 	mark_inode_dirty(inode);
415 	return 0;
416 }
417 EXPORT_SYMBOL(simple_setattr);
418 
419 int simple_readpage(struct file *file, struct page *page)
420 {
421 	clear_highpage(page);
422 	flush_dcache_page(page);
423 	SetPageUptodate(page);
424 	unlock_page(page);
425 	return 0;
426 }
427 EXPORT_SYMBOL(simple_readpage);
428 
429 int simple_write_begin(struct file *file, struct address_space *mapping,
430 			loff_t pos, unsigned len, unsigned flags,
431 			struct page **pagep, void **fsdata)
432 {
433 	struct page *page;
434 	pgoff_t index;
435 
436 	index = pos >> PAGE_SHIFT;
437 
438 	page = grab_cache_page_write_begin(mapping, index, flags);
439 	if (!page)
440 		return -ENOMEM;
441 
442 	*pagep = page;
443 
444 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
445 		unsigned from = pos & (PAGE_SIZE - 1);
446 
447 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
448 	}
449 	return 0;
450 }
451 EXPORT_SYMBOL(simple_write_begin);
452 
453 /**
454  * simple_write_end - .write_end helper for non-block-device FSes
455  * @available: See .write_end of address_space_operations
456  * @file: 		"
457  * @mapping: 		"
458  * @pos: 		"
459  * @len: 		"
460  * @copied: 		"
461  * @page: 		"
462  * @fsdata: 		"
463  *
464  * simple_write_end does the minimum needed for updating a page after writing is
465  * done. It has the same API signature as the .write_end of
466  * address_space_operations vector. So it can just be set onto .write_end for
467  * FSes that don't need any other processing. i_mutex is assumed to be held.
468  * Block based filesystems should use generic_write_end().
469  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
470  * is not called, so a filesystem that actually does store data in .write_inode
471  * should extend on what's done here with a call to mark_inode_dirty() in the
472  * case that i_size has changed.
473  *
474  * Use *ONLY* with simple_readpage()
475  */
476 int simple_write_end(struct file *file, struct address_space *mapping,
477 			loff_t pos, unsigned len, unsigned copied,
478 			struct page *page, void *fsdata)
479 {
480 	struct inode *inode = page->mapping->host;
481 	loff_t last_pos = pos + copied;
482 
483 	/* zero the stale part of the page if we did a short copy */
484 	if (!PageUptodate(page)) {
485 		if (copied < len) {
486 			unsigned from = pos & (PAGE_SIZE - 1);
487 
488 			zero_user(page, from + copied, len - copied);
489 		}
490 		SetPageUptodate(page);
491 	}
492 	/*
493 	 * No need to use i_size_read() here, the i_size
494 	 * cannot change under us because we hold the i_mutex.
495 	 */
496 	if (last_pos > inode->i_size)
497 		i_size_write(inode, last_pos);
498 
499 	set_page_dirty(page);
500 	unlock_page(page);
501 	put_page(page);
502 
503 	return copied;
504 }
505 EXPORT_SYMBOL(simple_write_end);
506 
507 /*
508  * the inodes created here are not hashed. If you use iunique to generate
509  * unique inode values later for this filesystem, then you must take care
510  * to pass it an appropriate max_reserved value to avoid collisions.
511  */
512 int simple_fill_super(struct super_block *s, unsigned long magic,
513 		      const struct tree_descr *files)
514 {
515 	struct inode *inode;
516 	struct dentry *root;
517 	struct dentry *dentry;
518 	int i;
519 
520 	s->s_blocksize = PAGE_SIZE;
521 	s->s_blocksize_bits = PAGE_SHIFT;
522 	s->s_magic = magic;
523 	s->s_op = &simple_super_operations;
524 	s->s_time_gran = 1;
525 
526 	inode = new_inode(s);
527 	if (!inode)
528 		return -ENOMEM;
529 	/*
530 	 * because the root inode is 1, the files array must not contain an
531 	 * entry at index 1
532 	 */
533 	inode->i_ino = 1;
534 	inode->i_mode = S_IFDIR | 0755;
535 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
536 	inode->i_op = &simple_dir_inode_operations;
537 	inode->i_fop = &simple_dir_operations;
538 	set_nlink(inode, 2);
539 	root = d_make_root(inode);
540 	if (!root)
541 		return -ENOMEM;
542 	for (i = 0; !files->name || files->name[0]; i++, files++) {
543 		if (!files->name)
544 			continue;
545 
546 		/* warn if it tries to conflict with the root inode */
547 		if (unlikely(i == 1))
548 			printk(KERN_WARNING "%s: %s passed in a files array"
549 				"with an index of 1!\n", __func__,
550 				s->s_type->name);
551 
552 		dentry = d_alloc_name(root, files->name);
553 		if (!dentry)
554 			goto out;
555 		inode = new_inode(s);
556 		if (!inode) {
557 			dput(dentry);
558 			goto out;
559 		}
560 		inode->i_mode = S_IFREG | files->mode;
561 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
562 		inode->i_fop = files->ops;
563 		inode->i_ino = i;
564 		d_add(dentry, inode);
565 	}
566 	s->s_root = root;
567 	return 0;
568 out:
569 	d_genocide(root);
570 	shrink_dcache_parent(root);
571 	dput(root);
572 	return -ENOMEM;
573 }
574 EXPORT_SYMBOL(simple_fill_super);
575 
576 static DEFINE_SPINLOCK(pin_fs_lock);
577 
578 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
579 {
580 	struct vfsmount *mnt = NULL;
581 	spin_lock(&pin_fs_lock);
582 	if (unlikely(!*mount)) {
583 		spin_unlock(&pin_fs_lock);
584 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
585 		if (IS_ERR(mnt))
586 			return PTR_ERR(mnt);
587 		spin_lock(&pin_fs_lock);
588 		if (!*mount)
589 			*mount = mnt;
590 	}
591 	mntget(*mount);
592 	++*count;
593 	spin_unlock(&pin_fs_lock);
594 	mntput(mnt);
595 	return 0;
596 }
597 EXPORT_SYMBOL(simple_pin_fs);
598 
599 void simple_release_fs(struct vfsmount **mount, int *count)
600 {
601 	struct vfsmount *mnt;
602 	spin_lock(&pin_fs_lock);
603 	mnt = *mount;
604 	if (!--*count)
605 		*mount = NULL;
606 	spin_unlock(&pin_fs_lock);
607 	mntput(mnt);
608 }
609 EXPORT_SYMBOL(simple_release_fs);
610 
611 /**
612  * simple_read_from_buffer - copy data from the buffer to user space
613  * @to: the user space buffer to read to
614  * @count: the maximum number of bytes to read
615  * @ppos: the current position in the buffer
616  * @from: the buffer to read from
617  * @available: the size of the buffer
618  *
619  * The simple_read_from_buffer() function reads up to @count bytes from the
620  * buffer @from at offset @ppos into the user space address starting at @to.
621  *
622  * On success, the number of bytes read is returned and the offset @ppos is
623  * advanced by this number, or negative value is returned on error.
624  **/
625 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
626 				const void *from, size_t available)
627 {
628 	loff_t pos = *ppos;
629 	size_t ret;
630 
631 	if (pos < 0)
632 		return -EINVAL;
633 	if (pos >= available || !count)
634 		return 0;
635 	if (count > available - pos)
636 		count = available - pos;
637 	ret = copy_to_user(to, from + pos, count);
638 	if (ret == count)
639 		return -EFAULT;
640 	count -= ret;
641 	*ppos = pos + count;
642 	return count;
643 }
644 EXPORT_SYMBOL(simple_read_from_buffer);
645 
646 /**
647  * simple_write_to_buffer - copy data from user space to the buffer
648  * @to: the buffer to write to
649  * @available: the size of the buffer
650  * @ppos: the current position in the buffer
651  * @from: the user space buffer to read from
652  * @count: the maximum number of bytes to read
653  *
654  * The simple_write_to_buffer() function reads up to @count bytes from the user
655  * space address starting at @from into the buffer @to at offset @ppos.
656  *
657  * On success, the number of bytes written is returned and the offset @ppos is
658  * advanced by this number, or negative value is returned on error.
659  **/
660 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
661 		const void __user *from, size_t count)
662 {
663 	loff_t pos = *ppos;
664 	size_t res;
665 
666 	if (pos < 0)
667 		return -EINVAL;
668 	if (pos >= available || !count)
669 		return 0;
670 	if (count > available - pos)
671 		count = available - pos;
672 	res = copy_from_user(to + pos, from, count);
673 	if (res == count)
674 		return -EFAULT;
675 	count -= res;
676 	*ppos = pos + count;
677 	return count;
678 }
679 EXPORT_SYMBOL(simple_write_to_buffer);
680 
681 /**
682  * memory_read_from_buffer - copy data from the buffer
683  * @to: the kernel space buffer to read to
684  * @count: the maximum number of bytes to read
685  * @ppos: the current position in the buffer
686  * @from: the buffer to read from
687  * @available: the size of the buffer
688  *
689  * The memory_read_from_buffer() function reads up to @count bytes from the
690  * buffer @from at offset @ppos into the kernel space address starting at @to.
691  *
692  * On success, the number of bytes read is returned and the offset @ppos is
693  * advanced by this number, or negative value is returned on error.
694  **/
695 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
696 				const void *from, size_t available)
697 {
698 	loff_t pos = *ppos;
699 
700 	if (pos < 0)
701 		return -EINVAL;
702 	if (pos >= available)
703 		return 0;
704 	if (count > available - pos)
705 		count = available - pos;
706 	memcpy(to, from + pos, count);
707 	*ppos = pos + count;
708 
709 	return count;
710 }
711 EXPORT_SYMBOL(memory_read_from_buffer);
712 
713 /*
714  * Transaction based IO.
715  * The file expects a single write which triggers the transaction, and then
716  * possibly a read which collects the result - which is stored in a
717  * file-local buffer.
718  */
719 
720 void simple_transaction_set(struct file *file, size_t n)
721 {
722 	struct simple_transaction_argresp *ar = file->private_data;
723 
724 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
725 
726 	/*
727 	 * The barrier ensures that ar->size will really remain zero until
728 	 * ar->data is ready for reading.
729 	 */
730 	smp_mb();
731 	ar->size = n;
732 }
733 EXPORT_SYMBOL(simple_transaction_set);
734 
735 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
736 {
737 	struct simple_transaction_argresp *ar;
738 	static DEFINE_SPINLOCK(simple_transaction_lock);
739 
740 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
741 		return ERR_PTR(-EFBIG);
742 
743 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
744 	if (!ar)
745 		return ERR_PTR(-ENOMEM);
746 
747 	spin_lock(&simple_transaction_lock);
748 
749 	/* only one write allowed per open */
750 	if (file->private_data) {
751 		spin_unlock(&simple_transaction_lock);
752 		free_page((unsigned long)ar);
753 		return ERR_PTR(-EBUSY);
754 	}
755 
756 	file->private_data = ar;
757 
758 	spin_unlock(&simple_transaction_lock);
759 
760 	if (copy_from_user(ar->data, buf, size))
761 		return ERR_PTR(-EFAULT);
762 
763 	return ar->data;
764 }
765 EXPORT_SYMBOL(simple_transaction_get);
766 
767 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
768 {
769 	struct simple_transaction_argresp *ar = file->private_data;
770 
771 	if (!ar)
772 		return 0;
773 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
774 }
775 EXPORT_SYMBOL(simple_transaction_read);
776 
777 int simple_transaction_release(struct inode *inode, struct file *file)
778 {
779 	free_page((unsigned long)file->private_data);
780 	return 0;
781 }
782 EXPORT_SYMBOL(simple_transaction_release);
783 
784 /* Simple attribute files */
785 
786 struct simple_attr {
787 	int (*get)(void *, u64 *);
788 	int (*set)(void *, u64);
789 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
790 	char set_buf[24];
791 	void *data;
792 	const char *fmt;	/* format for read operation */
793 	struct mutex mutex;	/* protects access to these buffers */
794 };
795 
796 /* simple_attr_open is called by an actual attribute open file operation
797  * to set the attribute specific access operations. */
798 int simple_attr_open(struct inode *inode, struct file *file,
799 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
800 		     const char *fmt)
801 {
802 	struct simple_attr *attr;
803 
804 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
805 	if (!attr)
806 		return -ENOMEM;
807 
808 	attr->get = get;
809 	attr->set = set;
810 	attr->data = inode->i_private;
811 	attr->fmt = fmt;
812 	mutex_init(&attr->mutex);
813 
814 	file->private_data = attr;
815 
816 	return nonseekable_open(inode, file);
817 }
818 EXPORT_SYMBOL_GPL(simple_attr_open);
819 
820 int simple_attr_release(struct inode *inode, struct file *file)
821 {
822 	kfree(file->private_data);
823 	return 0;
824 }
825 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
826 
827 /* read from the buffer that is filled with the get function */
828 ssize_t simple_attr_read(struct file *file, char __user *buf,
829 			 size_t len, loff_t *ppos)
830 {
831 	struct simple_attr *attr;
832 	size_t size;
833 	ssize_t ret;
834 
835 	attr = file->private_data;
836 
837 	if (!attr->get)
838 		return -EACCES;
839 
840 	ret = mutex_lock_interruptible(&attr->mutex);
841 	if (ret)
842 		return ret;
843 
844 	if (*ppos) {		/* continued read */
845 		size = strlen(attr->get_buf);
846 	} else {		/* first read */
847 		u64 val;
848 		ret = attr->get(attr->data, &val);
849 		if (ret)
850 			goto out;
851 
852 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
853 				 attr->fmt, (unsigned long long)val);
854 	}
855 
856 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
857 out:
858 	mutex_unlock(&attr->mutex);
859 	return ret;
860 }
861 EXPORT_SYMBOL_GPL(simple_attr_read);
862 
863 /* interpret the buffer as a number to call the set function with */
864 ssize_t simple_attr_write(struct file *file, const char __user *buf,
865 			  size_t len, loff_t *ppos)
866 {
867 	struct simple_attr *attr;
868 	u64 val;
869 	size_t size;
870 	ssize_t ret;
871 
872 	attr = file->private_data;
873 	if (!attr->set)
874 		return -EACCES;
875 
876 	ret = mutex_lock_interruptible(&attr->mutex);
877 	if (ret)
878 		return ret;
879 
880 	ret = -EFAULT;
881 	size = min(sizeof(attr->set_buf) - 1, len);
882 	if (copy_from_user(attr->set_buf, buf, size))
883 		goto out;
884 
885 	attr->set_buf[size] = '\0';
886 	val = simple_strtoll(attr->set_buf, NULL, 0);
887 	ret = attr->set(attr->data, val);
888 	if (ret == 0)
889 		ret = len; /* on success, claim we got the whole input */
890 out:
891 	mutex_unlock(&attr->mutex);
892 	return ret;
893 }
894 EXPORT_SYMBOL_GPL(simple_attr_write);
895 
896 /**
897  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
898  * @sb:		filesystem to do the file handle conversion on
899  * @fid:	file handle to convert
900  * @fh_len:	length of the file handle in bytes
901  * @fh_type:	type of file handle
902  * @get_inode:	filesystem callback to retrieve inode
903  *
904  * This function decodes @fid as long as it has one of the well-known
905  * Linux filehandle types and calls @get_inode on it to retrieve the
906  * inode for the object specified in the file handle.
907  */
908 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
909 		int fh_len, int fh_type, struct inode *(*get_inode)
910 			(struct super_block *sb, u64 ino, u32 gen))
911 {
912 	struct inode *inode = NULL;
913 
914 	if (fh_len < 2)
915 		return NULL;
916 
917 	switch (fh_type) {
918 	case FILEID_INO32_GEN:
919 	case FILEID_INO32_GEN_PARENT:
920 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
921 		break;
922 	}
923 
924 	return d_obtain_alias(inode);
925 }
926 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
927 
928 /**
929  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
930  * @sb:		filesystem to do the file handle conversion on
931  * @fid:	file handle to convert
932  * @fh_len:	length of the file handle in bytes
933  * @fh_type:	type of file handle
934  * @get_inode:	filesystem callback to retrieve inode
935  *
936  * This function decodes @fid as long as it has one of the well-known
937  * Linux filehandle types and calls @get_inode on it to retrieve the
938  * inode for the _parent_ object specified in the file handle if it
939  * is specified in the file handle, or NULL otherwise.
940  */
941 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
942 		int fh_len, int fh_type, struct inode *(*get_inode)
943 			(struct super_block *sb, u64 ino, u32 gen))
944 {
945 	struct inode *inode = NULL;
946 
947 	if (fh_len <= 2)
948 		return NULL;
949 
950 	switch (fh_type) {
951 	case FILEID_INO32_GEN_PARENT:
952 		inode = get_inode(sb, fid->i32.parent_ino,
953 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
954 		break;
955 	}
956 
957 	return d_obtain_alias(inode);
958 }
959 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
960 
961 /**
962  * __generic_file_fsync - generic fsync implementation for simple filesystems
963  *
964  * @file:	file to synchronize
965  * @start:	start offset in bytes
966  * @end:	end offset in bytes (inclusive)
967  * @datasync:	only synchronize essential metadata if true
968  *
969  * This is a generic implementation of the fsync method for simple
970  * filesystems which track all non-inode metadata in the buffers list
971  * hanging off the address_space structure.
972  */
973 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
974 				 int datasync)
975 {
976 	struct inode *inode = file->f_mapping->host;
977 	int err;
978 	int ret;
979 
980 	err = file_write_and_wait_range(file, start, end);
981 	if (err)
982 		return err;
983 
984 	inode_lock(inode);
985 	ret = sync_mapping_buffers(inode->i_mapping);
986 	if (!(inode->i_state & I_DIRTY_ALL))
987 		goto out;
988 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
989 		goto out;
990 
991 	err = sync_inode_metadata(inode, 1);
992 	if (ret == 0)
993 		ret = err;
994 
995 out:
996 	inode_unlock(inode);
997 	/* check and advance again to catch errors after syncing out buffers */
998 	err = file_check_and_advance_wb_err(file);
999 	if (ret == 0)
1000 		ret = err;
1001 	return ret;
1002 }
1003 EXPORT_SYMBOL(__generic_file_fsync);
1004 
1005 /**
1006  * generic_file_fsync - generic fsync implementation for simple filesystems
1007  *			with flush
1008  * @file:	file to synchronize
1009  * @start:	start offset in bytes
1010  * @end:	end offset in bytes (inclusive)
1011  * @datasync:	only synchronize essential metadata if true
1012  *
1013  */
1014 
1015 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1016 		       int datasync)
1017 {
1018 	struct inode *inode = file->f_mapping->host;
1019 	int err;
1020 
1021 	err = __generic_file_fsync(file, start, end, datasync);
1022 	if (err)
1023 		return err;
1024 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1025 }
1026 EXPORT_SYMBOL(generic_file_fsync);
1027 
1028 /**
1029  * generic_check_addressable - Check addressability of file system
1030  * @blocksize_bits:	log of file system block size
1031  * @num_blocks:		number of blocks in file system
1032  *
1033  * Determine whether a file system with @num_blocks blocks (and a
1034  * block size of 2**@blocksize_bits) is addressable by the sector_t
1035  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1036  */
1037 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1038 {
1039 	u64 last_fs_block = num_blocks - 1;
1040 	u64 last_fs_page =
1041 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1042 
1043 	if (unlikely(num_blocks == 0))
1044 		return 0;
1045 
1046 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1047 		return -EINVAL;
1048 
1049 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1050 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1051 		return -EFBIG;
1052 	}
1053 	return 0;
1054 }
1055 EXPORT_SYMBOL(generic_check_addressable);
1056 
1057 /*
1058  * No-op implementation of ->fsync for in-memory filesystems.
1059  */
1060 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1061 {
1062 	return 0;
1063 }
1064 EXPORT_SYMBOL(noop_fsync);
1065 
1066 int noop_set_page_dirty(struct page *page)
1067 {
1068 	/*
1069 	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1070 	 * tracking in the page object, dax does all dirty tracking in
1071 	 * the inode address_space in response to mkwrite faults. In the
1072 	 * dax case we only need to worry about potentially dirty CPU
1073 	 * caches, not dirty page cache pages to write back.
1074 	 *
1075 	 * This callback is defined to prevent fallback to
1076 	 * __set_page_dirty_buffers() in set_page_dirty().
1077 	 */
1078 	return 0;
1079 }
1080 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1081 
1082 void noop_invalidatepage(struct page *page, unsigned int offset,
1083 		unsigned int length)
1084 {
1085 	/*
1086 	 * There is no page cache to invalidate in the dax case, however
1087 	 * we need this callback defined to prevent falling back to
1088 	 * block_invalidatepage() in do_invalidatepage().
1089 	 */
1090 }
1091 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1092 
1093 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1094 {
1095 	/*
1096 	 * iomap based filesystems support direct I/O without need for
1097 	 * this callback. However, it still needs to be set in
1098 	 * inode->a_ops so that open/fcntl know that direct I/O is
1099 	 * generally supported.
1100 	 */
1101 	return -EINVAL;
1102 }
1103 EXPORT_SYMBOL_GPL(noop_direct_IO);
1104 
1105 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1106 void kfree_link(void *p)
1107 {
1108 	kfree(p);
1109 }
1110 EXPORT_SYMBOL(kfree_link);
1111 
1112 /*
1113  * nop .set_page_dirty method so that people can use .page_mkwrite on
1114  * anon inodes.
1115  */
1116 static int anon_set_page_dirty(struct page *page)
1117 {
1118 	return 0;
1119 };
1120 
1121 /*
1122  * A single inode exists for all anon_inode files. Contrary to pipes,
1123  * anon_inode inodes have no associated per-instance data, so we need
1124  * only allocate one of them.
1125  */
1126 struct inode *alloc_anon_inode(struct super_block *s)
1127 {
1128 	static const struct address_space_operations anon_aops = {
1129 		.set_page_dirty = anon_set_page_dirty,
1130 	};
1131 	struct inode *inode = new_inode_pseudo(s);
1132 
1133 	if (!inode)
1134 		return ERR_PTR(-ENOMEM);
1135 
1136 	inode->i_ino = get_next_ino();
1137 	inode->i_mapping->a_ops = &anon_aops;
1138 
1139 	/*
1140 	 * Mark the inode dirty from the very beginning,
1141 	 * that way it will never be moved to the dirty
1142 	 * list because mark_inode_dirty() will think
1143 	 * that it already _is_ on the dirty list.
1144 	 */
1145 	inode->i_state = I_DIRTY;
1146 	inode->i_mode = S_IRUSR | S_IWUSR;
1147 	inode->i_uid = current_fsuid();
1148 	inode->i_gid = current_fsgid();
1149 	inode->i_flags |= S_PRIVATE;
1150 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1151 	return inode;
1152 }
1153 EXPORT_SYMBOL(alloc_anon_inode);
1154 
1155 /**
1156  * simple_nosetlease - generic helper for prohibiting leases
1157  * @filp: file pointer
1158  * @arg: type of lease to obtain
1159  * @flp: new lease supplied for insertion
1160  * @priv: private data for lm_setup operation
1161  *
1162  * Generic helper for filesystems that do not wish to allow leases to be set.
1163  * All arguments are ignored and it just returns -EINVAL.
1164  */
1165 int
1166 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1167 		  void **priv)
1168 {
1169 	return -EINVAL;
1170 }
1171 EXPORT_SYMBOL(simple_nosetlease);
1172 
1173 /**
1174  * simple_get_link - generic helper to get the target of "fast" symlinks
1175  * @dentry: not used here
1176  * @inode: the symlink inode
1177  * @done: not used here
1178  *
1179  * Generic helper for filesystems to use for symlink inodes where a pointer to
1180  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1181  * since as an optimization the path lookup code uses any non-NULL ->i_link
1182  * directly, without calling ->get_link().  But ->get_link() still must be set,
1183  * to mark the inode_operations as being for a symlink.
1184  *
1185  * Return: the symlink target
1186  */
1187 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1188 			    struct delayed_call *done)
1189 {
1190 	return inode->i_link;
1191 }
1192 EXPORT_SYMBOL(simple_get_link);
1193 
1194 const struct inode_operations simple_symlink_inode_operations = {
1195 	.get_link = simple_get_link,
1196 };
1197 EXPORT_SYMBOL(simple_symlink_inode_operations);
1198 
1199 /*
1200  * Operations for a permanently empty directory.
1201  */
1202 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1203 {
1204 	return ERR_PTR(-ENOENT);
1205 }
1206 
1207 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1208 			     u32 request_mask, unsigned int query_flags)
1209 {
1210 	struct inode *inode = d_inode(path->dentry);
1211 	generic_fillattr(inode, stat);
1212 	return 0;
1213 }
1214 
1215 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1216 {
1217 	return -EPERM;
1218 }
1219 
1220 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1221 {
1222 	return -EOPNOTSUPP;
1223 }
1224 
1225 static const struct inode_operations empty_dir_inode_operations = {
1226 	.lookup		= empty_dir_lookup,
1227 	.permission	= generic_permission,
1228 	.setattr	= empty_dir_setattr,
1229 	.getattr	= empty_dir_getattr,
1230 	.listxattr	= empty_dir_listxattr,
1231 };
1232 
1233 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1234 {
1235 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1236 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1237 }
1238 
1239 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1240 {
1241 	dir_emit_dots(file, ctx);
1242 	return 0;
1243 }
1244 
1245 static const struct file_operations empty_dir_operations = {
1246 	.llseek		= empty_dir_llseek,
1247 	.read		= generic_read_dir,
1248 	.iterate_shared	= empty_dir_readdir,
1249 	.fsync		= noop_fsync,
1250 };
1251 
1252 
1253 void make_empty_dir_inode(struct inode *inode)
1254 {
1255 	set_nlink(inode, 2);
1256 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1257 	inode->i_uid = GLOBAL_ROOT_UID;
1258 	inode->i_gid = GLOBAL_ROOT_GID;
1259 	inode->i_rdev = 0;
1260 	inode->i_size = 0;
1261 	inode->i_blkbits = PAGE_SHIFT;
1262 	inode->i_blocks = 0;
1263 
1264 	inode->i_op = &empty_dir_inode_operations;
1265 	inode->i_opflags &= ~IOP_XATTR;
1266 	inode->i_fop = &empty_dir_operations;
1267 }
1268 
1269 bool is_empty_dir_inode(struct inode *inode)
1270 {
1271 	return (inode->i_fop == &empty_dir_operations) &&
1272 		(inode->i_op == &empty_dir_inode_operations);
1273 }
1274