xref: /openbmc/linux/fs/libfs.c (revision 49f3806d89e4cf9e330b6f2e39db1c913a8fd25a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 		   struct kstat *stat, u32 request_mask,
33 		   unsigned int query_flags)
34 {
35 	struct inode *inode = d_inode(path->dentry);
36 	generic_fillattr(&nop_mnt_idmap, inode, stat);
37 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41 
42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 	buf->f_type = dentry->d_sb->s_magic;
45 	buf->f_bsize = PAGE_SIZE;
46 	buf->f_namelen = NAME_MAX;
47 	return 0;
48 }
49 EXPORT_SYMBOL(simple_statfs);
50 
51 /*
52  * Retaining negative dentries for an in-memory filesystem just wastes
53  * memory and lookup time: arrange for them to be deleted immediately.
54  */
55 int always_delete_dentry(const struct dentry *dentry)
56 {
57 	return 1;
58 }
59 EXPORT_SYMBOL(always_delete_dentry);
60 
61 const struct dentry_operations simple_dentry_operations = {
62 	.d_delete = always_delete_dentry,
63 };
64 EXPORT_SYMBOL(simple_dentry_operations);
65 
66 /*
67  * Lookup the data. This is trivial - if the dentry didn't already
68  * exist, we know it is negative.  Set d_op to delete negative dentries.
69  */
70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 {
72 	if (dentry->d_name.len > NAME_MAX)
73 		return ERR_PTR(-ENAMETOOLONG);
74 	if (!dentry->d_sb->s_d_op)
75 		d_set_d_op(dentry, &simple_dentry_operations);
76 	d_add(dentry, NULL);
77 	return NULL;
78 }
79 EXPORT_SYMBOL(simple_lookup);
80 
81 int dcache_dir_open(struct inode *inode, struct file *file)
82 {
83 	file->private_data = d_alloc_cursor(file->f_path.dentry);
84 
85 	return file->private_data ? 0 : -ENOMEM;
86 }
87 EXPORT_SYMBOL(dcache_dir_open);
88 
89 int dcache_dir_close(struct inode *inode, struct file *file)
90 {
91 	dput(file->private_data);
92 	return 0;
93 }
94 EXPORT_SYMBOL(dcache_dir_close);
95 
96 /* parent is locked at least shared */
97 /*
98  * Returns an element of siblings' list.
99  * We are looking for <count>th positive after <p>; if
100  * found, dentry is grabbed and returned to caller.
101  * If no such element exists, NULL is returned.
102  */
103 static struct dentry *scan_positives(struct dentry *cursor,
104 					struct list_head *p,
105 					loff_t count,
106 					struct dentry *last)
107 {
108 	struct dentry *dentry = cursor->d_parent, *found = NULL;
109 
110 	spin_lock(&dentry->d_lock);
111 	while ((p = p->next) != &dentry->d_subdirs) {
112 		struct dentry *d = list_entry(p, struct dentry, d_child);
113 		// we must at least skip cursors, to avoid livelocks
114 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 			continue;
116 		if (simple_positive(d) && !--count) {
117 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 			if (simple_positive(d))
119 				found = dget_dlock(d);
120 			spin_unlock(&d->d_lock);
121 			if (likely(found))
122 				break;
123 			count = 1;
124 		}
125 		if (need_resched()) {
126 			list_move(&cursor->d_child, p);
127 			p = &cursor->d_child;
128 			spin_unlock(&dentry->d_lock);
129 			cond_resched();
130 			spin_lock(&dentry->d_lock);
131 		}
132 	}
133 	spin_unlock(&dentry->d_lock);
134 	dput(last);
135 	return found;
136 }
137 
138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139 {
140 	struct dentry *dentry = file->f_path.dentry;
141 	switch (whence) {
142 		case 1:
143 			offset += file->f_pos;
144 			fallthrough;
145 		case 0:
146 			if (offset >= 0)
147 				break;
148 			fallthrough;
149 		default:
150 			return -EINVAL;
151 	}
152 	if (offset != file->f_pos) {
153 		struct dentry *cursor = file->private_data;
154 		struct dentry *to = NULL;
155 
156 		inode_lock_shared(dentry->d_inode);
157 
158 		if (offset > 2)
159 			to = scan_positives(cursor, &dentry->d_subdirs,
160 					    offset - 2, NULL);
161 		spin_lock(&dentry->d_lock);
162 		if (to)
163 			list_move(&cursor->d_child, &to->d_child);
164 		else
165 			list_del_init(&cursor->d_child);
166 		spin_unlock(&dentry->d_lock);
167 		dput(to);
168 
169 		file->f_pos = offset;
170 
171 		inode_unlock_shared(dentry->d_inode);
172 	}
173 	return offset;
174 }
175 EXPORT_SYMBOL(dcache_dir_lseek);
176 
177 /*
178  * Directory is locked and all positive dentries in it are safe, since
179  * for ramfs-type trees they can't go away without unlink() or rmdir(),
180  * both impossible due to the lock on directory.
181  */
182 
183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 	struct dentry *dentry = file->f_path.dentry;
186 	struct dentry *cursor = file->private_data;
187 	struct list_head *anchor = &dentry->d_subdirs;
188 	struct dentry *next = NULL;
189 	struct list_head *p;
190 
191 	if (!dir_emit_dots(file, ctx))
192 		return 0;
193 
194 	if (ctx->pos == 2)
195 		p = anchor;
196 	else if (!list_empty(&cursor->d_child))
197 		p = &cursor->d_child;
198 	else
199 		return 0;
200 
201 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
202 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
203 			      d_inode(next)->i_ino,
204 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
205 			break;
206 		ctx->pos++;
207 		p = &next->d_child;
208 	}
209 	spin_lock(&dentry->d_lock);
210 	if (next)
211 		list_move_tail(&cursor->d_child, &next->d_child);
212 	else
213 		list_del_init(&cursor->d_child);
214 	spin_unlock(&dentry->d_lock);
215 	dput(next);
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(dcache_readdir);
220 
221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222 {
223 	return -EISDIR;
224 }
225 EXPORT_SYMBOL(generic_read_dir);
226 
227 const struct file_operations simple_dir_operations = {
228 	.open		= dcache_dir_open,
229 	.release	= dcache_dir_close,
230 	.llseek		= dcache_dir_lseek,
231 	.read		= generic_read_dir,
232 	.iterate_shared	= dcache_readdir,
233 	.fsync		= noop_fsync,
234 };
235 EXPORT_SYMBOL(simple_dir_operations);
236 
237 const struct inode_operations simple_dir_inode_operations = {
238 	.lookup		= simple_lookup,
239 };
240 EXPORT_SYMBOL(simple_dir_inode_operations);
241 
242 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
243 {
244 	struct dentry *child = NULL;
245 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
246 
247 	spin_lock(&parent->d_lock);
248 	while ((p = p->next) != &parent->d_subdirs) {
249 		struct dentry *d = container_of(p, struct dentry, d_child);
250 		if (simple_positive(d)) {
251 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
252 			if (simple_positive(d))
253 				child = dget_dlock(d);
254 			spin_unlock(&d->d_lock);
255 			if (likely(child))
256 				break;
257 		}
258 	}
259 	spin_unlock(&parent->d_lock);
260 	dput(prev);
261 	return child;
262 }
263 
264 void simple_recursive_removal(struct dentry *dentry,
265                               void (*callback)(struct dentry *))
266 {
267 	struct dentry *this = dget(dentry);
268 	while (true) {
269 		struct dentry *victim = NULL, *child;
270 		struct inode *inode = this->d_inode;
271 
272 		inode_lock(inode);
273 		if (d_is_dir(this))
274 			inode->i_flags |= S_DEAD;
275 		while ((child = find_next_child(this, victim)) == NULL) {
276 			// kill and ascend
277 			// update metadata while it's still locked
278 			inode->i_ctime = current_time(inode);
279 			clear_nlink(inode);
280 			inode_unlock(inode);
281 			victim = this;
282 			this = this->d_parent;
283 			inode = this->d_inode;
284 			inode_lock(inode);
285 			if (simple_positive(victim)) {
286 				d_invalidate(victim);	// avoid lost mounts
287 				if (d_is_dir(victim))
288 					fsnotify_rmdir(inode, victim);
289 				else
290 					fsnotify_unlink(inode, victim);
291 				if (callback)
292 					callback(victim);
293 				dput(victim);		// unpin it
294 			}
295 			if (victim == dentry) {
296 				inode->i_ctime = inode->i_mtime =
297 					current_time(inode);
298 				if (d_is_dir(dentry))
299 					drop_nlink(inode);
300 				inode_unlock(inode);
301 				dput(dentry);
302 				return;
303 			}
304 		}
305 		inode_unlock(inode);
306 		this = child;
307 	}
308 }
309 EXPORT_SYMBOL(simple_recursive_removal);
310 
311 static const struct super_operations simple_super_operations = {
312 	.statfs		= simple_statfs,
313 };
314 
315 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
316 {
317 	struct pseudo_fs_context *ctx = fc->fs_private;
318 	struct inode *root;
319 
320 	s->s_maxbytes = MAX_LFS_FILESIZE;
321 	s->s_blocksize = PAGE_SIZE;
322 	s->s_blocksize_bits = PAGE_SHIFT;
323 	s->s_magic = ctx->magic;
324 	s->s_op = ctx->ops ?: &simple_super_operations;
325 	s->s_xattr = ctx->xattr;
326 	s->s_time_gran = 1;
327 	root = new_inode(s);
328 	if (!root)
329 		return -ENOMEM;
330 
331 	/*
332 	 * since this is the first inode, make it number 1. New inodes created
333 	 * after this must take care not to collide with it (by passing
334 	 * max_reserved of 1 to iunique).
335 	 */
336 	root->i_ino = 1;
337 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
338 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
339 	s->s_root = d_make_root(root);
340 	if (!s->s_root)
341 		return -ENOMEM;
342 	s->s_d_op = ctx->dops;
343 	return 0;
344 }
345 
346 static int pseudo_fs_get_tree(struct fs_context *fc)
347 {
348 	return get_tree_nodev(fc, pseudo_fs_fill_super);
349 }
350 
351 static void pseudo_fs_free(struct fs_context *fc)
352 {
353 	kfree(fc->fs_private);
354 }
355 
356 static const struct fs_context_operations pseudo_fs_context_ops = {
357 	.free		= pseudo_fs_free,
358 	.get_tree	= pseudo_fs_get_tree,
359 };
360 
361 /*
362  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
363  * will never be mountable)
364  */
365 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
366 					unsigned long magic)
367 {
368 	struct pseudo_fs_context *ctx;
369 
370 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
371 	if (likely(ctx)) {
372 		ctx->magic = magic;
373 		fc->fs_private = ctx;
374 		fc->ops = &pseudo_fs_context_ops;
375 		fc->sb_flags |= SB_NOUSER;
376 		fc->global = true;
377 	}
378 	return ctx;
379 }
380 EXPORT_SYMBOL(init_pseudo);
381 
382 int simple_open(struct inode *inode, struct file *file)
383 {
384 	if (inode->i_private)
385 		file->private_data = inode->i_private;
386 	return 0;
387 }
388 EXPORT_SYMBOL(simple_open);
389 
390 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
391 {
392 	struct inode *inode = d_inode(old_dentry);
393 
394 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
395 	inc_nlink(inode);
396 	ihold(inode);
397 	dget(dentry);
398 	d_instantiate(dentry, inode);
399 	return 0;
400 }
401 EXPORT_SYMBOL(simple_link);
402 
403 int simple_empty(struct dentry *dentry)
404 {
405 	struct dentry *child;
406 	int ret = 0;
407 
408 	spin_lock(&dentry->d_lock);
409 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
410 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
411 		if (simple_positive(child)) {
412 			spin_unlock(&child->d_lock);
413 			goto out;
414 		}
415 		spin_unlock(&child->d_lock);
416 	}
417 	ret = 1;
418 out:
419 	spin_unlock(&dentry->d_lock);
420 	return ret;
421 }
422 EXPORT_SYMBOL(simple_empty);
423 
424 int simple_unlink(struct inode *dir, struct dentry *dentry)
425 {
426 	struct inode *inode = d_inode(dentry);
427 
428 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
429 	drop_nlink(inode);
430 	dput(dentry);
431 	return 0;
432 }
433 EXPORT_SYMBOL(simple_unlink);
434 
435 int simple_rmdir(struct inode *dir, struct dentry *dentry)
436 {
437 	if (!simple_empty(dentry))
438 		return -ENOTEMPTY;
439 
440 	drop_nlink(d_inode(dentry));
441 	simple_unlink(dir, dentry);
442 	drop_nlink(dir);
443 	return 0;
444 }
445 EXPORT_SYMBOL(simple_rmdir);
446 
447 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
448 			   struct inode *new_dir, struct dentry *new_dentry)
449 {
450 	bool old_is_dir = d_is_dir(old_dentry);
451 	bool new_is_dir = d_is_dir(new_dentry);
452 
453 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
454 		if (old_is_dir) {
455 			drop_nlink(old_dir);
456 			inc_nlink(new_dir);
457 		} else {
458 			drop_nlink(new_dir);
459 			inc_nlink(old_dir);
460 		}
461 	}
462 	old_dir->i_ctime = old_dir->i_mtime =
463 	new_dir->i_ctime = new_dir->i_mtime =
464 	d_inode(old_dentry)->i_ctime =
465 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
466 
467 	return 0;
468 }
469 EXPORT_SYMBOL_GPL(simple_rename_exchange);
470 
471 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
472 		  struct dentry *old_dentry, struct inode *new_dir,
473 		  struct dentry *new_dentry, unsigned int flags)
474 {
475 	struct inode *inode = d_inode(old_dentry);
476 	int they_are_dirs = d_is_dir(old_dentry);
477 
478 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
479 		return -EINVAL;
480 
481 	if (flags & RENAME_EXCHANGE)
482 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
483 
484 	if (!simple_empty(new_dentry))
485 		return -ENOTEMPTY;
486 
487 	if (d_really_is_positive(new_dentry)) {
488 		simple_unlink(new_dir, new_dentry);
489 		if (they_are_dirs) {
490 			drop_nlink(d_inode(new_dentry));
491 			drop_nlink(old_dir);
492 		}
493 	} else if (they_are_dirs) {
494 		drop_nlink(old_dir);
495 		inc_nlink(new_dir);
496 	}
497 
498 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
499 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
500 
501 	return 0;
502 }
503 EXPORT_SYMBOL(simple_rename);
504 
505 /**
506  * simple_setattr - setattr for simple filesystem
507  * @idmap: idmap of the target mount
508  * @dentry: dentry
509  * @iattr: iattr structure
510  *
511  * Returns 0 on success, -error on failure.
512  *
513  * simple_setattr is a simple ->setattr implementation without a proper
514  * implementation of size changes.
515  *
516  * It can either be used for in-memory filesystems or special files
517  * on simple regular filesystems.  Anything that needs to change on-disk
518  * or wire state on size changes needs its own setattr method.
519  */
520 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
521 		   struct iattr *iattr)
522 {
523 	struct inode *inode = d_inode(dentry);
524 	int error;
525 
526 	error = setattr_prepare(idmap, dentry, iattr);
527 	if (error)
528 		return error;
529 
530 	if (iattr->ia_valid & ATTR_SIZE)
531 		truncate_setsize(inode, iattr->ia_size);
532 	setattr_copy(idmap, inode, iattr);
533 	mark_inode_dirty(inode);
534 	return 0;
535 }
536 EXPORT_SYMBOL(simple_setattr);
537 
538 static int simple_read_folio(struct file *file, struct folio *folio)
539 {
540 	folio_zero_range(folio, 0, folio_size(folio));
541 	flush_dcache_folio(folio);
542 	folio_mark_uptodate(folio);
543 	folio_unlock(folio);
544 	return 0;
545 }
546 
547 int simple_write_begin(struct file *file, struct address_space *mapping,
548 			loff_t pos, unsigned len,
549 			struct page **pagep, void **fsdata)
550 {
551 	struct page *page;
552 	pgoff_t index;
553 
554 	index = pos >> PAGE_SHIFT;
555 
556 	page = grab_cache_page_write_begin(mapping, index);
557 	if (!page)
558 		return -ENOMEM;
559 
560 	*pagep = page;
561 
562 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
563 		unsigned from = pos & (PAGE_SIZE - 1);
564 
565 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
566 	}
567 	return 0;
568 }
569 EXPORT_SYMBOL(simple_write_begin);
570 
571 /**
572  * simple_write_end - .write_end helper for non-block-device FSes
573  * @file: See .write_end of address_space_operations
574  * @mapping: 		"
575  * @pos: 		"
576  * @len: 		"
577  * @copied: 		"
578  * @page: 		"
579  * @fsdata: 		"
580  *
581  * simple_write_end does the minimum needed for updating a page after writing is
582  * done. It has the same API signature as the .write_end of
583  * address_space_operations vector. So it can just be set onto .write_end for
584  * FSes that don't need any other processing. i_mutex is assumed to be held.
585  * Block based filesystems should use generic_write_end().
586  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
587  * is not called, so a filesystem that actually does store data in .write_inode
588  * should extend on what's done here with a call to mark_inode_dirty() in the
589  * case that i_size has changed.
590  *
591  * Use *ONLY* with simple_read_folio()
592  */
593 static int simple_write_end(struct file *file, struct address_space *mapping,
594 			loff_t pos, unsigned len, unsigned copied,
595 			struct page *page, void *fsdata)
596 {
597 	struct inode *inode = page->mapping->host;
598 	loff_t last_pos = pos + copied;
599 
600 	/* zero the stale part of the page if we did a short copy */
601 	if (!PageUptodate(page)) {
602 		if (copied < len) {
603 			unsigned from = pos & (PAGE_SIZE - 1);
604 
605 			zero_user(page, from + copied, len - copied);
606 		}
607 		SetPageUptodate(page);
608 	}
609 	/*
610 	 * No need to use i_size_read() here, the i_size
611 	 * cannot change under us because we hold the i_mutex.
612 	 */
613 	if (last_pos > inode->i_size)
614 		i_size_write(inode, last_pos);
615 
616 	set_page_dirty(page);
617 	unlock_page(page);
618 	put_page(page);
619 
620 	return copied;
621 }
622 
623 /*
624  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
625  */
626 const struct address_space_operations ram_aops = {
627 	.read_folio	= simple_read_folio,
628 	.write_begin	= simple_write_begin,
629 	.write_end	= simple_write_end,
630 	.dirty_folio	= noop_dirty_folio,
631 };
632 EXPORT_SYMBOL(ram_aops);
633 
634 /*
635  * the inodes created here are not hashed. If you use iunique to generate
636  * unique inode values later for this filesystem, then you must take care
637  * to pass it an appropriate max_reserved value to avoid collisions.
638  */
639 int simple_fill_super(struct super_block *s, unsigned long magic,
640 		      const struct tree_descr *files)
641 {
642 	struct inode *inode;
643 	struct dentry *root;
644 	struct dentry *dentry;
645 	int i;
646 
647 	s->s_blocksize = PAGE_SIZE;
648 	s->s_blocksize_bits = PAGE_SHIFT;
649 	s->s_magic = magic;
650 	s->s_op = &simple_super_operations;
651 	s->s_time_gran = 1;
652 
653 	inode = new_inode(s);
654 	if (!inode)
655 		return -ENOMEM;
656 	/*
657 	 * because the root inode is 1, the files array must not contain an
658 	 * entry at index 1
659 	 */
660 	inode->i_ino = 1;
661 	inode->i_mode = S_IFDIR | 0755;
662 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
663 	inode->i_op = &simple_dir_inode_operations;
664 	inode->i_fop = &simple_dir_operations;
665 	set_nlink(inode, 2);
666 	root = d_make_root(inode);
667 	if (!root)
668 		return -ENOMEM;
669 	for (i = 0; !files->name || files->name[0]; i++, files++) {
670 		if (!files->name)
671 			continue;
672 
673 		/* warn if it tries to conflict with the root inode */
674 		if (unlikely(i == 1))
675 			printk(KERN_WARNING "%s: %s passed in a files array"
676 				"with an index of 1!\n", __func__,
677 				s->s_type->name);
678 
679 		dentry = d_alloc_name(root, files->name);
680 		if (!dentry)
681 			goto out;
682 		inode = new_inode(s);
683 		if (!inode) {
684 			dput(dentry);
685 			goto out;
686 		}
687 		inode->i_mode = S_IFREG | files->mode;
688 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
689 		inode->i_fop = files->ops;
690 		inode->i_ino = i;
691 		d_add(dentry, inode);
692 	}
693 	s->s_root = root;
694 	return 0;
695 out:
696 	d_genocide(root);
697 	shrink_dcache_parent(root);
698 	dput(root);
699 	return -ENOMEM;
700 }
701 EXPORT_SYMBOL(simple_fill_super);
702 
703 static DEFINE_SPINLOCK(pin_fs_lock);
704 
705 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
706 {
707 	struct vfsmount *mnt = NULL;
708 	spin_lock(&pin_fs_lock);
709 	if (unlikely(!*mount)) {
710 		spin_unlock(&pin_fs_lock);
711 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
712 		if (IS_ERR(mnt))
713 			return PTR_ERR(mnt);
714 		spin_lock(&pin_fs_lock);
715 		if (!*mount)
716 			*mount = mnt;
717 	}
718 	mntget(*mount);
719 	++*count;
720 	spin_unlock(&pin_fs_lock);
721 	mntput(mnt);
722 	return 0;
723 }
724 EXPORT_SYMBOL(simple_pin_fs);
725 
726 void simple_release_fs(struct vfsmount **mount, int *count)
727 {
728 	struct vfsmount *mnt;
729 	spin_lock(&pin_fs_lock);
730 	mnt = *mount;
731 	if (!--*count)
732 		*mount = NULL;
733 	spin_unlock(&pin_fs_lock);
734 	mntput(mnt);
735 }
736 EXPORT_SYMBOL(simple_release_fs);
737 
738 /**
739  * simple_read_from_buffer - copy data from the buffer to user space
740  * @to: the user space buffer to read to
741  * @count: the maximum number of bytes to read
742  * @ppos: the current position in the buffer
743  * @from: the buffer to read from
744  * @available: the size of the buffer
745  *
746  * The simple_read_from_buffer() function reads up to @count bytes from the
747  * buffer @from at offset @ppos into the user space address starting at @to.
748  *
749  * On success, the number of bytes read is returned and the offset @ppos is
750  * advanced by this number, or negative value is returned on error.
751  **/
752 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
753 				const void *from, size_t available)
754 {
755 	loff_t pos = *ppos;
756 	size_t ret;
757 
758 	if (pos < 0)
759 		return -EINVAL;
760 	if (pos >= available || !count)
761 		return 0;
762 	if (count > available - pos)
763 		count = available - pos;
764 	ret = copy_to_user(to, from + pos, count);
765 	if (ret == count)
766 		return -EFAULT;
767 	count -= ret;
768 	*ppos = pos + count;
769 	return count;
770 }
771 EXPORT_SYMBOL(simple_read_from_buffer);
772 
773 /**
774  * simple_write_to_buffer - copy data from user space to the buffer
775  * @to: the buffer to write to
776  * @available: the size of the buffer
777  * @ppos: the current position in the buffer
778  * @from: the user space buffer to read from
779  * @count: the maximum number of bytes to read
780  *
781  * The simple_write_to_buffer() function reads up to @count bytes from the user
782  * space address starting at @from into the buffer @to at offset @ppos.
783  *
784  * On success, the number of bytes written is returned and the offset @ppos is
785  * advanced by this number, or negative value is returned on error.
786  **/
787 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
788 		const void __user *from, size_t count)
789 {
790 	loff_t pos = *ppos;
791 	size_t res;
792 
793 	if (pos < 0)
794 		return -EINVAL;
795 	if (pos >= available || !count)
796 		return 0;
797 	if (count > available - pos)
798 		count = available - pos;
799 	res = copy_from_user(to + pos, from, count);
800 	if (res == count)
801 		return -EFAULT;
802 	count -= res;
803 	*ppos = pos + count;
804 	return count;
805 }
806 EXPORT_SYMBOL(simple_write_to_buffer);
807 
808 /**
809  * memory_read_from_buffer - copy data from the buffer
810  * @to: the kernel space buffer to read to
811  * @count: the maximum number of bytes to read
812  * @ppos: the current position in the buffer
813  * @from: the buffer to read from
814  * @available: the size of the buffer
815  *
816  * The memory_read_from_buffer() function reads up to @count bytes from the
817  * buffer @from at offset @ppos into the kernel space address starting at @to.
818  *
819  * On success, the number of bytes read is returned and the offset @ppos is
820  * advanced by this number, or negative value is returned on error.
821  **/
822 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
823 				const void *from, size_t available)
824 {
825 	loff_t pos = *ppos;
826 
827 	if (pos < 0)
828 		return -EINVAL;
829 	if (pos >= available)
830 		return 0;
831 	if (count > available - pos)
832 		count = available - pos;
833 	memcpy(to, from + pos, count);
834 	*ppos = pos + count;
835 
836 	return count;
837 }
838 EXPORT_SYMBOL(memory_read_from_buffer);
839 
840 /*
841  * Transaction based IO.
842  * The file expects a single write which triggers the transaction, and then
843  * possibly a read which collects the result - which is stored in a
844  * file-local buffer.
845  */
846 
847 void simple_transaction_set(struct file *file, size_t n)
848 {
849 	struct simple_transaction_argresp *ar = file->private_data;
850 
851 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
852 
853 	/*
854 	 * The barrier ensures that ar->size will really remain zero until
855 	 * ar->data is ready for reading.
856 	 */
857 	smp_mb();
858 	ar->size = n;
859 }
860 EXPORT_SYMBOL(simple_transaction_set);
861 
862 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
863 {
864 	struct simple_transaction_argresp *ar;
865 	static DEFINE_SPINLOCK(simple_transaction_lock);
866 
867 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
868 		return ERR_PTR(-EFBIG);
869 
870 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
871 	if (!ar)
872 		return ERR_PTR(-ENOMEM);
873 
874 	spin_lock(&simple_transaction_lock);
875 
876 	/* only one write allowed per open */
877 	if (file->private_data) {
878 		spin_unlock(&simple_transaction_lock);
879 		free_page((unsigned long)ar);
880 		return ERR_PTR(-EBUSY);
881 	}
882 
883 	file->private_data = ar;
884 
885 	spin_unlock(&simple_transaction_lock);
886 
887 	if (copy_from_user(ar->data, buf, size))
888 		return ERR_PTR(-EFAULT);
889 
890 	return ar->data;
891 }
892 EXPORT_SYMBOL(simple_transaction_get);
893 
894 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
895 {
896 	struct simple_transaction_argresp *ar = file->private_data;
897 
898 	if (!ar)
899 		return 0;
900 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
901 }
902 EXPORT_SYMBOL(simple_transaction_read);
903 
904 int simple_transaction_release(struct inode *inode, struct file *file)
905 {
906 	free_page((unsigned long)file->private_data);
907 	return 0;
908 }
909 EXPORT_SYMBOL(simple_transaction_release);
910 
911 /* Simple attribute files */
912 
913 struct simple_attr {
914 	int (*get)(void *, u64 *);
915 	int (*set)(void *, u64);
916 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
917 	char set_buf[24];
918 	void *data;
919 	const char *fmt;	/* format for read operation */
920 	struct mutex mutex;	/* protects access to these buffers */
921 };
922 
923 /* simple_attr_open is called by an actual attribute open file operation
924  * to set the attribute specific access operations. */
925 int simple_attr_open(struct inode *inode, struct file *file,
926 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
927 		     const char *fmt)
928 {
929 	struct simple_attr *attr;
930 
931 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
932 	if (!attr)
933 		return -ENOMEM;
934 
935 	attr->get = get;
936 	attr->set = set;
937 	attr->data = inode->i_private;
938 	attr->fmt = fmt;
939 	mutex_init(&attr->mutex);
940 
941 	file->private_data = attr;
942 
943 	return nonseekable_open(inode, file);
944 }
945 EXPORT_SYMBOL_GPL(simple_attr_open);
946 
947 int simple_attr_release(struct inode *inode, struct file *file)
948 {
949 	kfree(file->private_data);
950 	return 0;
951 }
952 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
953 
954 /* read from the buffer that is filled with the get function */
955 ssize_t simple_attr_read(struct file *file, char __user *buf,
956 			 size_t len, loff_t *ppos)
957 {
958 	struct simple_attr *attr;
959 	size_t size;
960 	ssize_t ret;
961 
962 	attr = file->private_data;
963 
964 	if (!attr->get)
965 		return -EACCES;
966 
967 	ret = mutex_lock_interruptible(&attr->mutex);
968 	if (ret)
969 		return ret;
970 
971 	if (*ppos && attr->get_buf[0]) {
972 		/* continued read */
973 		size = strlen(attr->get_buf);
974 	} else {
975 		/* first read */
976 		u64 val;
977 		ret = attr->get(attr->data, &val);
978 		if (ret)
979 			goto out;
980 
981 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
982 				 attr->fmt, (unsigned long long)val);
983 	}
984 
985 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
986 out:
987 	mutex_unlock(&attr->mutex);
988 	return ret;
989 }
990 EXPORT_SYMBOL_GPL(simple_attr_read);
991 
992 /* interpret the buffer as a number to call the set function with */
993 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
994 			  size_t len, loff_t *ppos, bool is_signed)
995 {
996 	struct simple_attr *attr;
997 	unsigned long long val;
998 	size_t size;
999 	ssize_t ret;
1000 
1001 	attr = file->private_data;
1002 	if (!attr->set)
1003 		return -EACCES;
1004 
1005 	ret = mutex_lock_interruptible(&attr->mutex);
1006 	if (ret)
1007 		return ret;
1008 
1009 	ret = -EFAULT;
1010 	size = min(sizeof(attr->set_buf) - 1, len);
1011 	if (copy_from_user(attr->set_buf, buf, size))
1012 		goto out;
1013 
1014 	attr->set_buf[size] = '\0';
1015 	if (is_signed)
1016 		ret = kstrtoll(attr->set_buf, 0, &val);
1017 	else
1018 		ret = kstrtoull(attr->set_buf, 0, &val);
1019 	if (ret)
1020 		goto out;
1021 	ret = attr->set(attr->data, val);
1022 	if (ret == 0)
1023 		ret = len; /* on success, claim we got the whole input */
1024 out:
1025 	mutex_unlock(&attr->mutex);
1026 	return ret;
1027 }
1028 
1029 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1030 			  size_t len, loff_t *ppos)
1031 {
1032 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1033 }
1034 EXPORT_SYMBOL_GPL(simple_attr_write);
1035 
1036 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1037 			  size_t len, loff_t *ppos)
1038 {
1039 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1040 }
1041 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1042 
1043 /**
1044  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1045  * @sb:		filesystem to do the file handle conversion on
1046  * @fid:	file handle to convert
1047  * @fh_len:	length of the file handle in bytes
1048  * @fh_type:	type of file handle
1049  * @get_inode:	filesystem callback to retrieve inode
1050  *
1051  * This function decodes @fid as long as it has one of the well-known
1052  * Linux filehandle types and calls @get_inode on it to retrieve the
1053  * inode for the object specified in the file handle.
1054  */
1055 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1056 		int fh_len, int fh_type, struct inode *(*get_inode)
1057 			(struct super_block *sb, u64 ino, u32 gen))
1058 {
1059 	struct inode *inode = NULL;
1060 
1061 	if (fh_len < 2)
1062 		return NULL;
1063 
1064 	switch (fh_type) {
1065 	case FILEID_INO32_GEN:
1066 	case FILEID_INO32_GEN_PARENT:
1067 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1068 		break;
1069 	}
1070 
1071 	return d_obtain_alias(inode);
1072 }
1073 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1074 
1075 /**
1076  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1077  * @sb:		filesystem to do the file handle conversion on
1078  * @fid:	file handle to convert
1079  * @fh_len:	length of the file handle in bytes
1080  * @fh_type:	type of file handle
1081  * @get_inode:	filesystem callback to retrieve inode
1082  *
1083  * This function decodes @fid as long as it has one of the well-known
1084  * Linux filehandle types and calls @get_inode on it to retrieve the
1085  * inode for the _parent_ object specified in the file handle if it
1086  * is specified in the file handle, or NULL otherwise.
1087  */
1088 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1089 		int fh_len, int fh_type, struct inode *(*get_inode)
1090 			(struct super_block *sb, u64 ino, u32 gen))
1091 {
1092 	struct inode *inode = NULL;
1093 
1094 	if (fh_len <= 2)
1095 		return NULL;
1096 
1097 	switch (fh_type) {
1098 	case FILEID_INO32_GEN_PARENT:
1099 		inode = get_inode(sb, fid->i32.parent_ino,
1100 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1101 		break;
1102 	}
1103 
1104 	return d_obtain_alias(inode);
1105 }
1106 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1107 
1108 /**
1109  * __generic_file_fsync - generic fsync implementation for simple filesystems
1110  *
1111  * @file:	file to synchronize
1112  * @start:	start offset in bytes
1113  * @end:	end offset in bytes (inclusive)
1114  * @datasync:	only synchronize essential metadata if true
1115  *
1116  * This is a generic implementation of the fsync method for simple
1117  * filesystems which track all non-inode metadata in the buffers list
1118  * hanging off the address_space structure.
1119  */
1120 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1121 				 int datasync)
1122 {
1123 	struct inode *inode = file->f_mapping->host;
1124 	int err;
1125 	int ret;
1126 
1127 	err = file_write_and_wait_range(file, start, end);
1128 	if (err)
1129 		return err;
1130 
1131 	inode_lock(inode);
1132 	ret = sync_mapping_buffers(inode->i_mapping);
1133 	if (!(inode->i_state & I_DIRTY_ALL))
1134 		goto out;
1135 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1136 		goto out;
1137 
1138 	err = sync_inode_metadata(inode, 1);
1139 	if (ret == 0)
1140 		ret = err;
1141 
1142 out:
1143 	inode_unlock(inode);
1144 	/* check and advance again to catch errors after syncing out buffers */
1145 	err = file_check_and_advance_wb_err(file);
1146 	if (ret == 0)
1147 		ret = err;
1148 	return ret;
1149 }
1150 EXPORT_SYMBOL(__generic_file_fsync);
1151 
1152 /**
1153  * generic_file_fsync - generic fsync implementation for simple filesystems
1154  *			with flush
1155  * @file:	file to synchronize
1156  * @start:	start offset in bytes
1157  * @end:	end offset in bytes (inclusive)
1158  * @datasync:	only synchronize essential metadata if true
1159  *
1160  */
1161 
1162 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1163 		       int datasync)
1164 {
1165 	struct inode *inode = file->f_mapping->host;
1166 	int err;
1167 
1168 	err = __generic_file_fsync(file, start, end, datasync);
1169 	if (err)
1170 		return err;
1171 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1172 }
1173 EXPORT_SYMBOL(generic_file_fsync);
1174 
1175 /**
1176  * generic_check_addressable - Check addressability of file system
1177  * @blocksize_bits:	log of file system block size
1178  * @num_blocks:		number of blocks in file system
1179  *
1180  * Determine whether a file system with @num_blocks blocks (and a
1181  * block size of 2**@blocksize_bits) is addressable by the sector_t
1182  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1183  */
1184 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1185 {
1186 	u64 last_fs_block = num_blocks - 1;
1187 	u64 last_fs_page =
1188 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1189 
1190 	if (unlikely(num_blocks == 0))
1191 		return 0;
1192 
1193 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1194 		return -EINVAL;
1195 
1196 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1197 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1198 		return -EFBIG;
1199 	}
1200 	return 0;
1201 }
1202 EXPORT_SYMBOL(generic_check_addressable);
1203 
1204 /*
1205  * No-op implementation of ->fsync for in-memory filesystems.
1206  */
1207 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1208 {
1209 	return 0;
1210 }
1211 EXPORT_SYMBOL(noop_fsync);
1212 
1213 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1214 {
1215 	/*
1216 	 * iomap based filesystems support direct I/O without need for
1217 	 * this callback. However, it still needs to be set in
1218 	 * inode->a_ops so that open/fcntl know that direct I/O is
1219 	 * generally supported.
1220 	 */
1221 	return -EINVAL;
1222 }
1223 EXPORT_SYMBOL_GPL(noop_direct_IO);
1224 
1225 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1226 void kfree_link(void *p)
1227 {
1228 	kfree(p);
1229 }
1230 EXPORT_SYMBOL(kfree_link);
1231 
1232 struct inode *alloc_anon_inode(struct super_block *s)
1233 {
1234 	static const struct address_space_operations anon_aops = {
1235 		.dirty_folio	= noop_dirty_folio,
1236 	};
1237 	struct inode *inode = new_inode_pseudo(s);
1238 
1239 	if (!inode)
1240 		return ERR_PTR(-ENOMEM);
1241 
1242 	inode->i_ino = get_next_ino();
1243 	inode->i_mapping->a_ops = &anon_aops;
1244 
1245 	/*
1246 	 * Mark the inode dirty from the very beginning,
1247 	 * that way it will never be moved to the dirty
1248 	 * list because mark_inode_dirty() will think
1249 	 * that it already _is_ on the dirty list.
1250 	 */
1251 	inode->i_state = I_DIRTY;
1252 	inode->i_mode = S_IRUSR | S_IWUSR;
1253 	inode->i_uid = current_fsuid();
1254 	inode->i_gid = current_fsgid();
1255 	inode->i_flags |= S_PRIVATE;
1256 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1257 	return inode;
1258 }
1259 EXPORT_SYMBOL(alloc_anon_inode);
1260 
1261 /**
1262  * simple_nosetlease - generic helper for prohibiting leases
1263  * @filp: file pointer
1264  * @arg: type of lease to obtain
1265  * @flp: new lease supplied for insertion
1266  * @priv: private data for lm_setup operation
1267  *
1268  * Generic helper for filesystems that do not wish to allow leases to be set.
1269  * All arguments are ignored and it just returns -EINVAL.
1270  */
1271 int
1272 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1273 		  void **priv)
1274 {
1275 	return -EINVAL;
1276 }
1277 EXPORT_SYMBOL(simple_nosetlease);
1278 
1279 /**
1280  * simple_get_link - generic helper to get the target of "fast" symlinks
1281  * @dentry: not used here
1282  * @inode: the symlink inode
1283  * @done: not used here
1284  *
1285  * Generic helper for filesystems to use for symlink inodes where a pointer to
1286  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1287  * since as an optimization the path lookup code uses any non-NULL ->i_link
1288  * directly, without calling ->get_link().  But ->get_link() still must be set,
1289  * to mark the inode_operations as being for a symlink.
1290  *
1291  * Return: the symlink target
1292  */
1293 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1294 			    struct delayed_call *done)
1295 {
1296 	return inode->i_link;
1297 }
1298 EXPORT_SYMBOL(simple_get_link);
1299 
1300 const struct inode_operations simple_symlink_inode_operations = {
1301 	.get_link = simple_get_link,
1302 };
1303 EXPORT_SYMBOL(simple_symlink_inode_operations);
1304 
1305 /*
1306  * Operations for a permanently empty directory.
1307  */
1308 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1309 {
1310 	return ERR_PTR(-ENOENT);
1311 }
1312 
1313 static int empty_dir_getattr(struct mnt_idmap *idmap,
1314 			     const struct path *path, struct kstat *stat,
1315 			     u32 request_mask, unsigned int query_flags)
1316 {
1317 	struct inode *inode = d_inode(path->dentry);
1318 	generic_fillattr(&nop_mnt_idmap, inode, stat);
1319 	return 0;
1320 }
1321 
1322 static int empty_dir_setattr(struct mnt_idmap *idmap,
1323 			     struct dentry *dentry, struct iattr *attr)
1324 {
1325 	return -EPERM;
1326 }
1327 
1328 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1329 {
1330 	return -EOPNOTSUPP;
1331 }
1332 
1333 static const struct inode_operations empty_dir_inode_operations = {
1334 	.lookup		= empty_dir_lookup,
1335 	.permission	= generic_permission,
1336 	.setattr	= empty_dir_setattr,
1337 	.getattr	= empty_dir_getattr,
1338 	.listxattr	= empty_dir_listxattr,
1339 };
1340 
1341 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1342 {
1343 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1344 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1345 }
1346 
1347 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1348 {
1349 	dir_emit_dots(file, ctx);
1350 	return 0;
1351 }
1352 
1353 static const struct file_operations empty_dir_operations = {
1354 	.llseek		= empty_dir_llseek,
1355 	.read		= generic_read_dir,
1356 	.iterate_shared	= empty_dir_readdir,
1357 	.fsync		= noop_fsync,
1358 };
1359 
1360 
1361 void make_empty_dir_inode(struct inode *inode)
1362 {
1363 	set_nlink(inode, 2);
1364 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1365 	inode->i_uid = GLOBAL_ROOT_UID;
1366 	inode->i_gid = GLOBAL_ROOT_GID;
1367 	inode->i_rdev = 0;
1368 	inode->i_size = 0;
1369 	inode->i_blkbits = PAGE_SHIFT;
1370 	inode->i_blocks = 0;
1371 
1372 	inode->i_op = &empty_dir_inode_operations;
1373 	inode->i_opflags &= ~IOP_XATTR;
1374 	inode->i_fop = &empty_dir_operations;
1375 }
1376 
1377 bool is_empty_dir_inode(struct inode *inode)
1378 {
1379 	return (inode->i_fop == &empty_dir_operations) &&
1380 		(inode->i_op == &empty_dir_inode_operations);
1381 }
1382 
1383 #if IS_ENABLED(CONFIG_UNICODE)
1384 /*
1385  * Determine if the name of a dentry should be casefolded.
1386  *
1387  * Return: if names will need casefolding
1388  */
1389 static bool needs_casefold(const struct inode *dir)
1390 {
1391 	return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1392 }
1393 
1394 /**
1395  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1396  * @dentry:	dentry whose name we are checking against
1397  * @len:	len of name of dentry
1398  * @str:	str pointer to name of dentry
1399  * @name:	Name to compare against
1400  *
1401  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1402  */
1403 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1404 				const char *str, const struct qstr *name)
1405 {
1406 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1407 	const struct inode *dir = READ_ONCE(parent->d_inode);
1408 	const struct super_block *sb = dentry->d_sb;
1409 	const struct unicode_map *um = sb->s_encoding;
1410 	struct qstr qstr = QSTR_INIT(str, len);
1411 	char strbuf[DNAME_INLINE_LEN];
1412 	int ret;
1413 
1414 	if (!dir || !needs_casefold(dir))
1415 		goto fallback;
1416 	/*
1417 	 * If the dentry name is stored in-line, then it may be concurrently
1418 	 * modified by a rename.  If this happens, the VFS will eventually retry
1419 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1420 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1421 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1422 	 */
1423 	if (len <= DNAME_INLINE_LEN - 1) {
1424 		memcpy(strbuf, str, len);
1425 		strbuf[len] = 0;
1426 		qstr.name = strbuf;
1427 		/* prevent compiler from optimizing out the temporary buffer */
1428 		barrier();
1429 	}
1430 	ret = utf8_strncasecmp(um, name, &qstr);
1431 	if (ret >= 0)
1432 		return ret;
1433 
1434 	if (sb_has_strict_encoding(sb))
1435 		return -EINVAL;
1436 fallback:
1437 	if (len != name->len)
1438 		return 1;
1439 	return !!memcmp(str, name->name, len);
1440 }
1441 
1442 /**
1443  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1444  * @dentry:	dentry of the parent directory
1445  * @str:	qstr of name whose hash we should fill in
1446  *
1447  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1448  */
1449 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1450 {
1451 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1452 	struct super_block *sb = dentry->d_sb;
1453 	const struct unicode_map *um = sb->s_encoding;
1454 	int ret = 0;
1455 
1456 	if (!dir || !needs_casefold(dir))
1457 		return 0;
1458 
1459 	ret = utf8_casefold_hash(um, dentry, str);
1460 	if (ret < 0 && sb_has_strict_encoding(sb))
1461 		return -EINVAL;
1462 	return 0;
1463 }
1464 
1465 static const struct dentry_operations generic_ci_dentry_ops = {
1466 	.d_hash = generic_ci_d_hash,
1467 	.d_compare = generic_ci_d_compare,
1468 };
1469 #endif
1470 
1471 #ifdef CONFIG_FS_ENCRYPTION
1472 static const struct dentry_operations generic_encrypted_dentry_ops = {
1473 	.d_revalidate = fscrypt_d_revalidate,
1474 };
1475 #endif
1476 
1477 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1478 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1479 	.d_hash = generic_ci_d_hash,
1480 	.d_compare = generic_ci_d_compare,
1481 	.d_revalidate = fscrypt_d_revalidate,
1482 };
1483 #endif
1484 
1485 /**
1486  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1487  * @dentry:	dentry to set ops on
1488  *
1489  * Casefolded directories need d_hash and d_compare set, so that the dentries
1490  * contained in them are handled case-insensitively.  Note that these operations
1491  * are needed on the parent directory rather than on the dentries in it, and
1492  * while the casefolding flag can be toggled on and off on an empty directory,
1493  * dentry_operations can't be changed later.  As a result, if the filesystem has
1494  * casefolding support enabled at all, we have to give all dentries the
1495  * casefolding operations even if their inode doesn't have the casefolding flag
1496  * currently (and thus the casefolding ops would be no-ops for now).
1497  *
1498  * Encryption works differently in that the only dentry operation it needs is
1499  * d_revalidate, which it only needs on dentries that have the no-key name flag.
1500  * The no-key flag can't be set "later", so we don't have to worry about that.
1501  *
1502  * Finally, to maximize compatibility with overlayfs (which isn't compatible
1503  * with certain dentry operations) and to avoid taking an unnecessary
1504  * performance hit, we use custom dentry_operations for each possible
1505  * combination rather than always installing all operations.
1506  */
1507 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1508 {
1509 #ifdef CONFIG_FS_ENCRYPTION
1510 	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1511 #endif
1512 #if IS_ENABLED(CONFIG_UNICODE)
1513 	bool needs_ci_ops = dentry->d_sb->s_encoding;
1514 #endif
1515 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1516 	if (needs_encrypt_ops && needs_ci_ops) {
1517 		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1518 		return;
1519 	}
1520 #endif
1521 #ifdef CONFIG_FS_ENCRYPTION
1522 	if (needs_encrypt_ops) {
1523 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1524 		return;
1525 	}
1526 #endif
1527 #if IS_ENABLED(CONFIG_UNICODE)
1528 	if (needs_ci_ops) {
1529 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1530 		return;
1531 	}
1532 #endif
1533 }
1534 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1535 
1536 /**
1537  * inode_maybe_inc_iversion - increments i_version
1538  * @inode: inode with the i_version that should be updated
1539  * @force: increment the counter even if it's not necessary?
1540  *
1541  * Every time the inode is modified, the i_version field must be seen to have
1542  * changed by any observer.
1543  *
1544  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1545  * the value, and clear the queried flag.
1546  *
1547  * In the common case where neither is set, then we can return "false" without
1548  * updating i_version.
1549  *
1550  * If this function returns false, and no other metadata has changed, then we
1551  * can avoid logging the metadata.
1552  */
1553 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1554 {
1555 	u64 cur, new;
1556 
1557 	/*
1558 	 * The i_version field is not strictly ordered with any other inode
1559 	 * information, but the legacy inode_inc_iversion code used a spinlock
1560 	 * to serialize increments.
1561 	 *
1562 	 * Here, we add full memory barriers to ensure that any de-facto
1563 	 * ordering with other info is preserved.
1564 	 *
1565 	 * This barrier pairs with the barrier in inode_query_iversion()
1566 	 */
1567 	smp_mb();
1568 	cur = inode_peek_iversion_raw(inode);
1569 	do {
1570 		/* If flag is clear then we needn't do anything */
1571 		if (!force && !(cur & I_VERSION_QUERIED))
1572 			return false;
1573 
1574 		/* Since lowest bit is flag, add 2 to avoid it */
1575 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1576 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1577 	return true;
1578 }
1579 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1580 
1581 /**
1582  * inode_query_iversion - read i_version for later use
1583  * @inode: inode from which i_version should be read
1584  *
1585  * Read the inode i_version counter. This should be used by callers that wish
1586  * to store the returned i_version for later comparison. This will guarantee
1587  * that a later query of the i_version will result in a different value if
1588  * anything has changed.
1589  *
1590  * In this implementation, we fetch the current value, set the QUERIED flag and
1591  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1592  * that fails, we try again with the newly fetched value from the cmpxchg.
1593  */
1594 u64 inode_query_iversion(struct inode *inode)
1595 {
1596 	u64 cur, new;
1597 
1598 	cur = inode_peek_iversion_raw(inode);
1599 	do {
1600 		/* If flag is already set, then no need to swap */
1601 		if (cur & I_VERSION_QUERIED) {
1602 			/*
1603 			 * This barrier (and the implicit barrier in the
1604 			 * cmpxchg below) pairs with the barrier in
1605 			 * inode_maybe_inc_iversion().
1606 			 */
1607 			smp_mb();
1608 			break;
1609 		}
1610 
1611 		new = cur | I_VERSION_QUERIED;
1612 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1613 	return cur >> I_VERSION_QUERIED_SHIFT;
1614 }
1615 EXPORT_SYMBOL(inode_query_iversion);
1616