1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/writeback.h> 19 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 20 21 #include <linux/uaccess.h> 22 23 #include "internal.h" 24 25 int simple_getattr(const struct path *path, struct kstat *stat, 26 u32 request_mask, unsigned int query_flags) 27 { 28 struct inode *inode = d_inode(path->dentry); 29 generic_fillattr(inode, stat); 30 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 31 return 0; 32 } 33 EXPORT_SYMBOL(simple_getattr); 34 35 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 36 { 37 buf->f_type = dentry->d_sb->s_magic; 38 buf->f_bsize = PAGE_SIZE; 39 buf->f_namelen = NAME_MAX; 40 return 0; 41 } 42 EXPORT_SYMBOL(simple_statfs); 43 44 /* 45 * Retaining negative dentries for an in-memory filesystem just wastes 46 * memory and lookup time: arrange for them to be deleted immediately. 47 */ 48 int always_delete_dentry(const struct dentry *dentry) 49 { 50 return 1; 51 } 52 EXPORT_SYMBOL(always_delete_dentry); 53 54 const struct dentry_operations simple_dentry_operations = { 55 .d_delete = always_delete_dentry, 56 }; 57 EXPORT_SYMBOL(simple_dentry_operations); 58 59 /* 60 * Lookup the data. This is trivial - if the dentry didn't already 61 * exist, we know it is negative. Set d_op to delete negative dentries. 62 */ 63 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 64 { 65 if (dentry->d_name.len > NAME_MAX) 66 return ERR_PTR(-ENAMETOOLONG); 67 if (!dentry->d_sb->s_d_op) 68 d_set_d_op(dentry, &simple_dentry_operations); 69 d_add(dentry, NULL); 70 return NULL; 71 } 72 EXPORT_SYMBOL(simple_lookup); 73 74 int dcache_dir_open(struct inode *inode, struct file *file) 75 { 76 file->private_data = d_alloc_cursor(file->f_path.dentry); 77 78 return file->private_data ? 0 : -ENOMEM; 79 } 80 EXPORT_SYMBOL(dcache_dir_open); 81 82 int dcache_dir_close(struct inode *inode, struct file *file) 83 { 84 dput(file->private_data); 85 return 0; 86 } 87 EXPORT_SYMBOL(dcache_dir_close); 88 89 /* parent is locked at least shared */ 90 static struct dentry *next_positive(struct dentry *parent, 91 struct list_head *from, 92 int count) 93 { 94 unsigned *seq = &parent->d_inode->i_dir_seq, n; 95 struct dentry *res; 96 struct list_head *p; 97 bool skipped; 98 int i; 99 100 retry: 101 i = count; 102 skipped = false; 103 n = smp_load_acquire(seq) & ~1; 104 res = NULL; 105 rcu_read_lock(); 106 for (p = from->next; p != &parent->d_subdirs; p = p->next) { 107 struct dentry *d = list_entry(p, struct dentry, d_child); 108 if (!simple_positive(d)) { 109 skipped = true; 110 } else if (!--i) { 111 res = d; 112 break; 113 } 114 } 115 rcu_read_unlock(); 116 if (skipped) { 117 smp_rmb(); 118 if (unlikely(*seq != n)) 119 goto retry; 120 } 121 return res; 122 } 123 124 static void move_cursor(struct dentry *cursor, struct list_head *after) 125 { 126 struct dentry *parent = cursor->d_parent; 127 unsigned n, *seq = &parent->d_inode->i_dir_seq; 128 spin_lock(&parent->d_lock); 129 for (;;) { 130 n = *seq; 131 if (!(n & 1) && cmpxchg(seq, n, n + 1) == n) 132 break; 133 cpu_relax(); 134 } 135 __list_del(cursor->d_child.prev, cursor->d_child.next); 136 if (after) 137 list_add(&cursor->d_child, after); 138 else 139 list_add_tail(&cursor->d_child, &parent->d_subdirs); 140 smp_store_release(seq, n + 2); 141 spin_unlock(&parent->d_lock); 142 } 143 144 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 145 { 146 struct dentry *dentry = file->f_path.dentry; 147 switch (whence) { 148 case 1: 149 offset += file->f_pos; 150 /* fall through */ 151 case 0: 152 if (offset >= 0) 153 break; 154 /* fall through */ 155 default: 156 return -EINVAL; 157 } 158 if (offset != file->f_pos) { 159 file->f_pos = offset; 160 if (file->f_pos >= 2) { 161 struct dentry *cursor = file->private_data; 162 struct dentry *to; 163 loff_t n = file->f_pos - 2; 164 165 inode_lock_shared(dentry->d_inode); 166 to = next_positive(dentry, &dentry->d_subdirs, n); 167 move_cursor(cursor, to ? &to->d_child : NULL); 168 inode_unlock_shared(dentry->d_inode); 169 } 170 } 171 return offset; 172 } 173 EXPORT_SYMBOL(dcache_dir_lseek); 174 175 /* Relationship between i_mode and the DT_xxx types */ 176 static inline unsigned char dt_type(struct inode *inode) 177 { 178 return (inode->i_mode >> 12) & 15; 179 } 180 181 /* 182 * Directory is locked and all positive dentries in it are safe, since 183 * for ramfs-type trees they can't go away without unlink() or rmdir(), 184 * both impossible due to the lock on directory. 185 */ 186 187 int dcache_readdir(struct file *file, struct dir_context *ctx) 188 { 189 struct dentry *dentry = file->f_path.dentry; 190 struct dentry *cursor = file->private_data; 191 struct list_head *p = &cursor->d_child; 192 struct dentry *next; 193 bool moved = false; 194 195 if (!dir_emit_dots(file, ctx)) 196 return 0; 197 198 if (ctx->pos == 2) 199 p = &dentry->d_subdirs; 200 while ((next = next_positive(dentry, p, 1)) != NULL) { 201 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 202 d_inode(next)->i_ino, dt_type(d_inode(next)))) 203 break; 204 moved = true; 205 p = &next->d_child; 206 ctx->pos++; 207 } 208 if (moved) 209 move_cursor(cursor, p); 210 return 0; 211 } 212 EXPORT_SYMBOL(dcache_readdir); 213 214 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 215 { 216 return -EISDIR; 217 } 218 EXPORT_SYMBOL(generic_read_dir); 219 220 const struct file_operations simple_dir_operations = { 221 .open = dcache_dir_open, 222 .release = dcache_dir_close, 223 .llseek = dcache_dir_lseek, 224 .read = generic_read_dir, 225 .iterate_shared = dcache_readdir, 226 .fsync = noop_fsync, 227 }; 228 EXPORT_SYMBOL(simple_dir_operations); 229 230 const struct inode_operations simple_dir_inode_operations = { 231 .lookup = simple_lookup, 232 }; 233 EXPORT_SYMBOL(simple_dir_inode_operations); 234 235 static const struct super_operations simple_super_operations = { 236 .statfs = simple_statfs, 237 }; 238 239 /* 240 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 241 * will never be mountable) 242 */ 243 struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name, 244 const struct super_operations *ops, const struct xattr_handler **xattr, 245 const struct dentry_operations *dops, unsigned long magic) 246 { 247 struct super_block *s; 248 struct dentry *dentry; 249 struct inode *root; 250 struct qstr d_name = QSTR_INIT(name, strlen(name)); 251 252 s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER, 253 &init_user_ns, NULL); 254 if (IS_ERR(s)) 255 return ERR_CAST(s); 256 257 s->s_maxbytes = MAX_LFS_FILESIZE; 258 s->s_blocksize = PAGE_SIZE; 259 s->s_blocksize_bits = PAGE_SHIFT; 260 s->s_magic = magic; 261 s->s_op = ops ? ops : &simple_super_operations; 262 s->s_xattr = xattr; 263 s->s_time_gran = 1; 264 root = new_inode(s); 265 if (!root) 266 goto Enomem; 267 /* 268 * since this is the first inode, make it number 1. New inodes created 269 * after this must take care not to collide with it (by passing 270 * max_reserved of 1 to iunique). 271 */ 272 root->i_ino = 1; 273 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 274 root->i_atime = root->i_mtime = root->i_ctime = current_time(root); 275 dentry = __d_alloc(s, &d_name); 276 if (!dentry) { 277 iput(root); 278 goto Enomem; 279 } 280 d_instantiate(dentry, root); 281 s->s_root = dentry; 282 s->s_d_op = dops; 283 s->s_flags |= SB_ACTIVE; 284 return dget(s->s_root); 285 286 Enomem: 287 deactivate_locked_super(s); 288 return ERR_PTR(-ENOMEM); 289 } 290 EXPORT_SYMBOL(mount_pseudo_xattr); 291 292 int simple_open(struct inode *inode, struct file *file) 293 { 294 if (inode->i_private) 295 file->private_data = inode->i_private; 296 return 0; 297 } 298 EXPORT_SYMBOL(simple_open); 299 300 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 301 { 302 struct inode *inode = d_inode(old_dentry); 303 304 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 305 inc_nlink(inode); 306 ihold(inode); 307 dget(dentry); 308 d_instantiate(dentry, inode); 309 return 0; 310 } 311 EXPORT_SYMBOL(simple_link); 312 313 int simple_empty(struct dentry *dentry) 314 { 315 struct dentry *child; 316 int ret = 0; 317 318 spin_lock(&dentry->d_lock); 319 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 320 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 321 if (simple_positive(child)) { 322 spin_unlock(&child->d_lock); 323 goto out; 324 } 325 spin_unlock(&child->d_lock); 326 } 327 ret = 1; 328 out: 329 spin_unlock(&dentry->d_lock); 330 return ret; 331 } 332 EXPORT_SYMBOL(simple_empty); 333 334 int simple_unlink(struct inode *dir, struct dentry *dentry) 335 { 336 struct inode *inode = d_inode(dentry); 337 338 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode); 339 drop_nlink(inode); 340 dput(dentry); 341 return 0; 342 } 343 EXPORT_SYMBOL(simple_unlink); 344 345 int simple_rmdir(struct inode *dir, struct dentry *dentry) 346 { 347 if (!simple_empty(dentry)) 348 return -ENOTEMPTY; 349 350 drop_nlink(d_inode(dentry)); 351 simple_unlink(dir, dentry); 352 drop_nlink(dir); 353 return 0; 354 } 355 EXPORT_SYMBOL(simple_rmdir); 356 357 int simple_rename(struct inode *old_dir, struct dentry *old_dentry, 358 struct inode *new_dir, struct dentry *new_dentry, 359 unsigned int flags) 360 { 361 struct inode *inode = d_inode(old_dentry); 362 int they_are_dirs = d_is_dir(old_dentry); 363 364 if (flags & ~RENAME_NOREPLACE) 365 return -EINVAL; 366 367 if (!simple_empty(new_dentry)) 368 return -ENOTEMPTY; 369 370 if (d_really_is_positive(new_dentry)) { 371 simple_unlink(new_dir, new_dentry); 372 if (they_are_dirs) { 373 drop_nlink(d_inode(new_dentry)); 374 drop_nlink(old_dir); 375 } 376 } else if (they_are_dirs) { 377 drop_nlink(old_dir); 378 inc_nlink(new_dir); 379 } 380 381 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime = 382 new_dir->i_mtime = inode->i_ctime = current_time(old_dir); 383 384 return 0; 385 } 386 EXPORT_SYMBOL(simple_rename); 387 388 /** 389 * simple_setattr - setattr for simple filesystem 390 * @dentry: dentry 391 * @iattr: iattr structure 392 * 393 * Returns 0 on success, -error on failure. 394 * 395 * simple_setattr is a simple ->setattr implementation without a proper 396 * implementation of size changes. 397 * 398 * It can either be used for in-memory filesystems or special files 399 * on simple regular filesystems. Anything that needs to change on-disk 400 * or wire state on size changes needs its own setattr method. 401 */ 402 int simple_setattr(struct dentry *dentry, struct iattr *iattr) 403 { 404 struct inode *inode = d_inode(dentry); 405 int error; 406 407 error = setattr_prepare(dentry, iattr); 408 if (error) 409 return error; 410 411 if (iattr->ia_valid & ATTR_SIZE) 412 truncate_setsize(inode, iattr->ia_size); 413 setattr_copy(inode, iattr); 414 mark_inode_dirty(inode); 415 return 0; 416 } 417 EXPORT_SYMBOL(simple_setattr); 418 419 int simple_readpage(struct file *file, struct page *page) 420 { 421 clear_highpage(page); 422 flush_dcache_page(page); 423 SetPageUptodate(page); 424 unlock_page(page); 425 return 0; 426 } 427 EXPORT_SYMBOL(simple_readpage); 428 429 int simple_write_begin(struct file *file, struct address_space *mapping, 430 loff_t pos, unsigned len, unsigned flags, 431 struct page **pagep, void **fsdata) 432 { 433 struct page *page; 434 pgoff_t index; 435 436 index = pos >> PAGE_SHIFT; 437 438 page = grab_cache_page_write_begin(mapping, index, flags); 439 if (!page) 440 return -ENOMEM; 441 442 *pagep = page; 443 444 if (!PageUptodate(page) && (len != PAGE_SIZE)) { 445 unsigned from = pos & (PAGE_SIZE - 1); 446 447 zero_user_segments(page, 0, from, from + len, PAGE_SIZE); 448 } 449 return 0; 450 } 451 EXPORT_SYMBOL(simple_write_begin); 452 453 /** 454 * simple_write_end - .write_end helper for non-block-device FSes 455 * @available: See .write_end of address_space_operations 456 * @file: " 457 * @mapping: " 458 * @pos: " 459 * @len: " 460 * @copied: " 461 * @page: " 462 * @fsdata: " 463 * 464 * simple_write_end does the minimum needed for updating a page after writing is 465 * done. It has the same API signature as the .write_end of 466 * address_space_operations vector. So it can just be set onto .write_end for 467 * FSes that don't need any other processing. i_mutex is assumed to be held. 468 * Block based filesystems should use generic_write_end(). 469 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 470 * is not called, so a filesystem that actually does store data in .write_inode 471 * should extend on what's done here with a call to mark_inode_dirty() in the 472 * case that i_size has changed. 473 * 474 * Use *ONLY* with simple_readpage() 475 */ 476 int simple_write_end(struct file *file, struct address_space *mapping, 477 loff_t pos, unsigned len, unsigned copied, 478 struct page *page, void *fsdata) 479 { 480 struct inode *inode = page->mapping->host; 481 loff_t last_pos = pos + copied; 482 483 /* zero the stale part of the page if we did a short copy */ 484 if (!PageUptodate(page)) { 485 if (copied < len) { 486 unsigned from = pos & (PAGE_SIZE - 1); 487 488 zero_user(page, from + copied, len - copied); 489 } 490 SetPageUptodate(page); 491 } 492 /* 493 * No need to use i_size_read() here, the i_size 494 * cannot change under us because we hold the i_mutex. 495 */ 496 if (last_pos > inode->i_size) 497 i_size_write(inode, last_pos); 498 499 set_page_dirty(page); 500 unlock_page(page); 501 put_page(page); 502 503 return copied; 504 } 505 EXPORT_SYMBOL(simple_write_end); 506 507 /* 508 * the inodes created here are not hashed. If you use iunique to generate 509 * unique inode values later for this filesystem, then you must take care 510 * to pass it an appropriate max_reserved value to avoid collisions. 511 */ 512 int simple_fill_super(struct super_block *s, unsigned long magic, 513 const struct tree_descr *files) 514 { 515 struct inode *inode; 516 struct dentry *root; 517 struct dentry *dentry; 518 int i; 519 520 s->s_blocksize = PAGE_SIZE; 521 s->s_blocksize_bits = PAGE_SHIFT; 522 s->s_magic = magic; 523 s->s_op = &simple_super_operations; 524 s->s_time_gran = 1; 525 526 inode = new_inode(s); 527 if (!inode) 528 return -ENOMEM; 529 /* 530 * because the root inode is 1, the files array must not contain an 531 * entry at index 1 532 */ 533 inode->i_ino = 1; 534 inode->i_mode = S_IFDIR | 0755; 535 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 536 inode->i_op = &simple_dir_inode_operations; 537 inode->i_fop = &simple_dir_operations; 538 set_nlink(inode, 2); 539 root = d_make_root(inode); 540 if (!root) 541 return -ENOMEM; 542 for (i = 0; !files->name || files->name[0]; i++, files++) { 543 if (!files->name) 544 continue; 545 546 /* warn if it tries to conflict with the root inode */ 547 if (unlikely(i == 1)) 548 printk(KERN_WARNING "%s: %s passed in a files array" 549 "with an index of 1!\n", __func__, 550 s->s_type->name); 551 552 dentry = d_alloc_name(root, files->name); 553 if (!dentry) 554 goto out; 555 inode = new_inode(s); 556 if (!inode) { 557 dput(dentry); 558 goto out; 559 } 560 inode->i_mode = S_IFREG | files->mode; 561 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 562 inode->i_fop = files->ops; 563 inode->i_ino = i; 564 d_add(dentry, inode); 565 } 566 s->s_root = root; 567 return 0; 568 out: 569 d_genocide(root); 570 shrink_dcache_parent(root); 571 dput(root); 572 return -ENOMEM; 573 } 574 EXPORT_SYMBOL(simple_fill_super); 575 576 static DEFINE_SPINLOCK(pin_fs_lock); 577 578 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 579 { 580 struct vfsmount *mnt = NULL; 581 spin_lock(&pin_fs_lock); 582 if (unlikely(!*mount)) { 583 spin_unlock(&pin_fs_lock); 584 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 585 if (IS_ERR(mnt)) 586 return PTR_ERR(mnt); 587 spin_lock(&pin_fs_lock); 588 if (!*mount) 589 *mount = mnt; 590 } 591 mntget(*mount); 592 ++*count; 593 spin_unlock(&pin_fs_lock); 594 mntput(mnt); 595 return 0; 596 } 597 EXPORT_SYMBOL(simple_pin_fs); 598 599 void simple_release_fs(struct vfsmount **mount, int *count) 600 { 601 struct vfsmount *mnt; 602 spin_lock(&pin_fs_lock); 603 mnt = *mount; 604 if (!--*count) 605 *mount = NULL; 606 spin_unlock(&pin_fs_lock); 607 mntput(mnt); 608 } 609 EXPORT_SYMBOL(simple_release_fs); 610 611 /** 612 * simple_read_from_buffer - copy data from the buffer to user space 613 * @to: the user space buffer to read to 614 * @count: the maximum number of bytes to read 615 * @ppos: the current position in the buffer 616 * @from: the buffer to read from 617 * @available: the size of the buffer 618 * 619 * The simple_read_from_buffer() function reads up to @count bytes from the 620 * buffer @from at offset @ppos into the user space address starting at @to. 621 * 622 * On success, the number of bytes read is returned and the offset @ppos is 623 * advanced by this number, or negative value is returned on error. 624 **/ 625 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 626 const void *from, size_t available) 627 { 628 loff_t pos = *ppos; 629 size_t ret; 630 631 if (pos < 0) 632 return -EINVAL; 633 if (pos >= available || !count) 634 return 0; 635 if (count > available - pos) 636 count = available - pos; 637 ret = copy_to_user(to, from + pos, count); 638 if (ret == count) 639 return -EFAULT; 640 count -= ret; 641 *ppos = pos + count; 642 return count; 643 } 644 EXPORT_SYMBOL(simple_read_from_buffer); 645 646 /** 647 * simple_write_to_buffer - copy data from user space to the buffer 648 * @to: the buffer to write to 649 * @available: the size of the buffer 650 * @ppos: the current position in the buffer 651 * @from: the user space buffer to read from 652 * @count: the maximum number of bytes to read 653 * 654 * The simple_write_to_buffer() function reads up to @count bytes from the user 655 * space address starting at @from into the buffer @to at offset @ppos. 656 * 657 * On success, the number of bytes written is returned and the offset @ppos is 658 * advanced by this number, or negative value is returned on error. 659 **/ 660 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 661 const void __user *from, size_t count) 662 { 663 loff_t pos = *ppos; 664 size_t res; 665 666 if (pos < 0) 667 return -EINVAL; 668 if (pos >= available || !count) 669 return 0; 670 if (count > available - pos) 671 count = available - pos; 672 res = copy_from_user(to + pos, from, count); 673 if (res == count) 674 return -EFAULT; 675 count -= res; 676 *ppos = pos + count; 677 return count; 678 } 679 EXPORT_SYMBOL(simple_write_to_buffer); 680 681 /** 682 * memory_read_from_buffer - copy data from the buffer 683 * @to: the kernel space buffer to read to 684 * @count: the maximum number of bytes to read 685 * @ppos: the current position in the buffer 686 * @from: the buffer to read from 687 * @available: the size of the buffer 688 * 689 * The memory_read_from_buffer() function reads up to @count bytes from the 690 * buffer @from at offset @ppos into the kernel space address starting at @to. 691 * 692 * On success, the number of bytes read is returned and the offset @ppos is 693 * advanced by this number, or negative value is returned on error. 694 **/ 695 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 696 const void *from, size_t available) 697 { 698 loff_t pos = *ppos; 699 700 if (pos < 0) 701 return -EINVAL; 702 if (pos >= available) 703 return 0; 704 if (count > available - pos) 705 count = available - pos; 706 memcpy(to, from + pos, count); 707 *ppos = pos + count; 708 709 return count; 710 } 711 EXPORT_SYMBOL(memory_read_from_buffer); 712 713 /* 714 * Transaction based IO. 715 * The file expects a single write which triggers the transaction, and then 716 * possibly a read which collects the result - which is stored in a 717 * file-local buffer. 718 */ 719 720 void simple_transaction_set(struct file *file, size_t n) 721 { 722 struct simple_transaction_argresp *ar = file->private_data; 723 724 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 725 726 /* 727 * The barrier ensures that ar->size will really remain zero until 728 * ar->data is ready for reading. 729 */ 730 smp_mb(); 731 ar->size = n; 732 } 733 EXPORT_SYMBOL(simple_transaction_set); 734 735 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 736 { 737 struct simple_transaction_argresp *ar; 738 static DEFINE_SPINLOCK(simple_transaction_lock); 739 740 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 741 return ERR_PTR(-EFBIG); 742 743 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 744 if (!ar) 745 return ERR_PTR(-ENOMEM); 746 747 spin_lock(&simple_transaction_lock); 748 749 /* only one write allowed per open */ 750 if (file->private_data) { 751 spin_unlock(&simple_transaction_lock); 752 free_page((unsigned long)ar); 753 return ERR_PTR(-EBUSY); 754 } 755 756 file->private_data = ar; 757 758 spin_unlock(&simple_transaction_lock); 759 760 if (copy_from_user(ar->data, buf, size)) 761 return ERR_PTR(-EFAULT); 762 763 return ar->data; 764 } 765 EXPORT_SYMBOL(simple_transaction_get); 766 767 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 768 { 769 struct simple_transaction_argresp *ar = file->private_data; 770 771 if (!ar) 772 return 0; 773 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 774 } 775 EXPORT_SYMBOL(simple_transaction_read); 776 777 int simple_transaction_release(struct inode *inode, struct file *file) 778 { 779 free_page((unsigned long)file->private_data); 780 return 0; 781 } 782 EXPORT_SYMBOL(simple_transaction_release); 783 784 /* Simple attribute files */ 785 786 struct simple_attr { 787 int (*get)(void *, u64 *); 788 int (*set)(void *, u64); 789 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 790 char set_buf[24]; 791 void *data; 792 const char *fmt; /* format for read operation */ 793 struct mutex mutex; /* protects access to these buffers */ 794 }; 795 796 /* simple_attr_open is called by an actual attribute open file operation 797 * to set the attribute specific access operations. */ 798 int simple_attr_open(struct inode *inode, struct file *file, 799 int (*get)(void *, u64 *), int (*set)(void *, u64), 800 const char *fmt) 801 { 802 struct simple_attr *attr; 803 804 attr = kmalloc(sizeof(*attr), GFP_KERNEL); 805 if (!attr) 806 return -ENOMEM; 807 808 attr->get = get; 809 attr->set = set; 810 attr->data = inode->i_private; 811 attr->fmt = fmt; 812 mutex_init(&attr->mutex); 813 814 file->private_data = attr; 815 816 return nonseekable_open(inode, file); 817 } 818 EXPORT_SYMBOL_GPL(simple_attr_open); 819 820 int simple_attr_release(struct inode *inode, struct file *file) 821 { 822 kfree(file->private_data); 823 return 0; 824 } 825 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 826 827 /* read from the buffer that is filled with the get function */ 828 ssize_t simple_attr_read(struct file *file, char __user *buf, 829 size_t len, loff_t *ppos) 830 { 831 struct simple_attr *attr; 832 size_t size; 833 ssize_t ret; 834 835 attr = file->private_data; 836 837 if (!attr->get) 838 return -EACCES; 839 840 ret = mutex_lock_interruptible(&attr->mutex); 841 if (ret) 842 return ret; 843 844 if (*ppos) { /* continued read */ 845 size = strlen(attr->get_buf); 846 } else { /* first read */ 847 u64 val; 848 ret = attr->get(attr->data, &val); 849 if (ret) 850 goto out; 851 852 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 853 attr->fmt, (unsigned long long)val); 854 } 855 856 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 857 out: 858 mutex_unlock(&attr->mutex); 859 return ret; 860 } 861 EXPORT_SYMBOL_GPL(simple_attr_read); 862 863 /* interpret the buffer as a number to call the set function with */ 864 ssize_t simple_attr_write(struct file *file, const char __user *buf, 865 size_t len, loff_t *ppos) 866 { 867 struct simple_attr *attr; 868 u64 val; 869 size_t size; 870 ssize_t ret; 871 872 attr = file->private_data; 873 if (!attr->set) 874 return -EACCES; 875 876 ret = mutex_lock_interruptible(&attr->mutex); 877 if (ret) 878 return ret; 879 880 ret = -EFAULT; 881 size = min(sizeof(attr->set_buf) - 1, len); 882 if (copy_from_user(attr->set_buf, buf, size)) 883 goto out; 884 885 attr->set_buf[size] = '\0'; 886 val = simple_strtoll(attr->set_buf, NULL, 0); 887 ret = attr->set(attr->data, val); 888 if (ret == 0) 889 ret = len; /* on success, claim we got the whole input */ 890 out: 891 mutex_unlock(&attr->mutex); 892 return ret; 893 } 894 EXPORT_SYMBOL_GPL(simple_attr_write); 895 896 /** 897 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 898 * @sb: filesystem to do the file handle conversion on 899 * @fid: file handle to convert 900 * @fh_len: length of the file handle in bytes 901 * @fh_type: type of file handle 902 * @get_inode: filesystem callback to retrieve inode 903 * 904 * This function decodes @fid as long as it has one of the well-known 905 * Linux filehandle types and calls @get_inode on it to retrieve the 906 * inode for the object specified in the file handle. 907 */ 908 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 909 int fh_len, int fh_type, struct inode *(*get_inode) 910 (struct super_block *sb, u64 ino, u32 gen)) 911 { 912 struct inode *inode = NULL; 913 914 if (fh_len < 2) 915 return NULL; 916 917 switch (fh_type) { 918 case FILEID_INO32_GEN: 919 case FILEID_INO32_GEN_PARENT: 920 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 921 break; 922 } 923 924 return d_obtain_alias(inode); 925 } 926 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 927 928 /** 929 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 930 * @sb: filesystem to do the file handle conversion on 931 * @fid: file handle to convert 932 * @fh_len: length of the file handle in bytes 933 * @fh_type: type of file handle 934 * @get_inode: filesystem callback to retrieve inode 935 * 936 * This function decodes @fid as long as it has one of the well-known 937 * Linux filehandle types and calls @get_inode on it to retrieve the 938 * inode for the _parent_ object specified in the file handle if it 939 * is specified in the file handle, or NULL otherwise. 940 */ 941 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 942 int fh_len, int fh_type, struct inode *(*get_inode) 943 (struct super_block *sb, u64 ino, u32 gen)) 944 { 945 struct inode *inode = NULL; 946 947 if (fh_len <= 2) 948 return NULL; 949 950 switch (fh_type) { 951 case FILEID_INO32_GEN_PARENT: 952 inode = get_inode(sb, fid->i32.parent_ino, 953 (fh_len > 3 ? fid->i32.parent_gen : 0)); 954 break; 955 } 956 957 return d_obtain_alias(inode); 958 } 959 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 960 961 /** 962 * __generic_file_fsync - generic fsync implementation for simple filesystems 963 * 964 * @file: file to synchronize 965 * @start: start offset in bytes 966 * @end: end offset in bytes (inclusive) 967 * @datasync: only synchronize essential metadata if true 968 * 969 * This is a generic implementation of the fsync method for simple 970 * filesystems which track all non-inode metadata in the buffers list 971 * hanging off the address_space structure. 972 */ 973 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 974 int datasync) 975 { 976 struct inode *inode = file->f_mapping->host; 977 int err; 978 int ret; 979 980 err = file_write_and_wait_range(file, start, end); 981 if (err) 982 return err; 983 984 inode_lock(inode); 985 ret = sync_mapping_buffers(inode->i_mapping); 986 if (!(inode->i_state & I_DIRTY_ALL)) 987 goto out; 988 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 989 goto out; 990 991 err = sync_inode_metadata(inode, 1); 992 if (ret == 0) 993 ret = err; 994 995 out: 996 inode_unlock(inode); 997 /* check and advance again to catch errors after syncing out buffers */ 998 err = file_check_and_advance_wb_err(file); 999 if (ret == 0) 1000 ret = err; 1001 return ret; 1002 } 1003 EXPORT_SYMBOL(__generic_file_fsync); 1004 1005 /** 1006 * generic_file_fsync - generic fsync implementation for simple filesystems 1007 * with flush 1008 * @file: file to synchronize 1009 * @start: start offset in bytes 1010 * @end: end offset in bytes (inclusive) 1011 * @datasync: only synchronize essential metadata if true 1012 * 1013 */ 1014 1015 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1016 int datasync) 1017 { 1018 struct inode *inode = file->f_mapping->host; 1019 int err; 1020 1021 err = __generic_file_fsync(file, start, end, datasync); 1022 if (err) 1023 return err; 1024 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL); 1025 } 1026 EXPORT_SYMBOL(generic_file_fsync); 1027 1028 /** 1029 * generic_check_addressable - Check addressability of file system 1030 * @blocksize_bits: log of file system block size 1031 * @num_blocks: number of blocks in file system 1032 * 1033 * Determine whether a file system with @num_blocks blocks (and a 1034 * block size of 2**@blocksize_bits) is addressable by the sector_t 1035 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1036 */ 1037 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1038 { 1039 u64 last_fs_block = num_blocks - 1; 1040 u64 last_fs_page = 1041 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1042 1043 if (unlikely(num_blocks == 0)) 1044 return 0; 1045 1046 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1047 return -EINVAL; 1048 1049 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1050 (last_fs_page > (pgoff_t)(~0ULL))) { 1051 return -EFBIG; 1052 } 1053 return 0; 1054 } 1055 EXPORT_SYMBOL(generic_check_addressable); 1056 1057 /* 1058 * No-op implementation of ->fsync for in-memory filesystems. 1059 */ 1060 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1061 { 1062 return 0; 1063 } 1064 EXPORT_SYMBOL(noop_fsync); 1065 1066 int noop_set_page_dirty(struct page *page) 1067 { 1068 /* 1069 * Unlike __set_page_dirty_no_writeback that handles dirty page 1070 * tracking in the page object, dax does all dirty tracking in 1071 * the inode address_space in response to mkwrite faults. In the 1072 * dax case we only need to worry about potentially dirty CPU 1073 * caches, not dirty page cache pages to write back. 1074 * 1075 * This callback is defined to prevent fallback to 1076 * __set_page_dirty_buffers() in set_page_dirty(). 1077 */ 1078 return 0; 1079 } 1080 EXPORT_SYMBOL_GPL(noop_set_page_dirty); 1081 1082 void noop_invalidatepage(struct page *page, unsigned int offset, 1083 unsigned int length) 1084 { 1085 /* 1086 * There is no page cache to invalidate in the dax case, however 1087 * we need this callback defined to prevent falling back to 1088 * block_invalidatepage() in do_invalidatepage(). 1089 */ 1090 } 1091 EXPORT_SYMBOL_GPL(noop_invalidatepage); 1092 1093 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1094 { 1095 /* 1096 * iomap based filesystems support direct I/O without need for 1097 * this callback. However, it still needs to be set in 1098 * inode->a_ops so that open/fcntl know that direct I/O is 1099 * generally supported. 1100 */ 1101 return -EINVAL; 1102 } 1103 EXPORT_SYMBOL_GPL(noop_direct_IO); 1104 1105 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1106 void kfree_link(void *p) 1107 { 1108 kfree(p); 1109 } 1110 EXPORT_SYMBOL(kfree_link); 1111 1112 /* 1113 * nop .set_page_dirty method so that people can use .page_mkwrite on 1114 * anon inodes. 1115 */ 1116 static int anon_set_page_dirty(struct page *page) 1117 { 1118 return 0; 1119 }; 1120 1121 /* 1122 * A single inode exists for all anon_inode files. Contrary to pipes, 1123 * anon_inode inodes have no associated per-instance data, so we need 1124 * only allocate one of them. 1125 */ 1126 struct inode *alloc_anon_inode(struct super_block *s) 1127 { 1128 static const struct address_space_operations anon_aops = { 1129 .set_page_dirty = anon_set_page_dirty, 1130 }; 1131 struct inode *inode = new_inode_pseudo(s); 1132 1133 if (!inode) 1134 return ERR_PTR(-ENOMEM); 1135 1136 inode->i_ino = get_next_ino(); 1137 inode->i_mapping->a_ops = &anon_aops; 1138 1139 /* 1140 * Mark the inode dirty from the very beginning, 1141 * that way it will never be moved to the dirty 1142 * list because mark_inode_dirty() will think 1143 * that it already _is_ on the dirty list. 1144 */ 1145 inode->i_state = I_DIRTY; 1146 inode->i_mode = S_IRUSR | S_IWUSR; 1147 inode->i_uid = current_fsuid(); 1148 inode->i_gid = current_fsgid(); 1149 inode->i_flags |= S_PRIVATE; 1150 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 1151 return inode; 1152 } 1153 EXPORT_SYMBOL(alloc_anon_inode); 1154 1155 /** 1156 * simple_nosetlease - generic helper for prohibiting leases 1157 * @filp: file pointer 1158 * @arg: type of lease to obtain 1159 * @flp: new lease supplied for insertion 1160 * @priv: private data for lm_setup operation 1161 * 1162 * Generic helper for filesystems that do not wish to allow leases to be set. 1163 * All arguments are ignored and it just returns -EINVAL. 1164 */ 1165 int 1166 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp, 1167 void **priv) 1168 { 1169 return -EINVAL; 1170 } 1171 EXPORT_SYMBOL(simple_nosetlease); 1172 1173 /** 1174 * simple_get_link - generic helper to get the target of "fast" symlinks 1175 * @dentry: not used here 1176 * @inode: the symlink inode 1177 * @done: not used here 1178 * 1179 * Generic helper for filesystems to use for symlink inodes where a pointer to 1180 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1181 * since as an optimization the path lookup code uses any non-NULL ->i_link 1182 * directly, without calling ->get_link(). But ->get_link() still must be set, 1183 * to mark the inode_operations as being for a symlink. 1184 * 1185 * Return: the symlink target 1186 */ 1187 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1188 struct delayed_call *done) 1189 { 1190 return inode->i_link; 1191 } 1192 EXPORT_SYMBOL(simple_get_link); 1193 1194 const struct inode_operations simple_symlink_inode_operations = { 1195 .get_link = simple_get_link, 1196 }; 1197 EXPORT_SYMBOL(simple_symlink_inode_operations); 1198 1199 /* 1200 * Operations for a permanently empty directory. 1201 */ 1202 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1203 { 1204 return ERR_PTR(-ENOENT); 1205 } 1206 1207 static int empty_dir_getattr(const struct path *path, struct kstat *stat, 1208 u32 request_mask, unsigned int query_flags) 1209 { 1210 struct inode *inode = d_inode(path->dentry); 1211 generic_fillattr(inode, stat); 1212 return 0; 1213 } 1214 1215 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr) 1216 { 1217 return -EPERM; 1218 } 1219 1220 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1221 { 1222 return -EOPNOTSUPP; 1223 } 1224 1225 static const struct inode_operations empty_dir_inode_operations = { 1226 .lookup = empty_dir_lookup, 1227 .permission = generic_permission, 1228 .setattr = empty_dir_setattr, 1229 .getattr = empty_dir_getattr, 1230 .listxattr = empty_dir_listxattr, 1231 }; 1232 1233 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1234 { 1235 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1236 return generic_file_llseek_size(file, offset, whence, 2, 2); 1237 } 1238 1239 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1240 { 1241 dir_emit_dots(file, ctx); 1242 return 0; 1243 } 1244 1245 static const struct file_operations empty_dir_operations = { 1246 .llseek = empty_dir_llseek, 1247 .read = generic_read_dir, 1248 .iterate_shared = empty_dir_readdir, 1249 .fsync = noop_fsync, 1250 }; 1251 1252 1253 void make_empty_dir_inode(struct inode *inode) 1254 { 1255 set_nlink(inode, 2); 1256 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1257 inode->i_uid = GLOBAL_ROOT_UID; 1258 inode->i_gid = GLOBAL_ROOT_GID; 1259 inode->i_rdev = 0; 1260 inode->i_size = 0; 1261 inode->i_blkbits = PAGE_SHIFT; 1262 inode->i_blocks = 0; 1263 1264 inode->i_op = &empty_dir_inode_operations; 1265 inode->i_opflags &= ~IOP_XATTR; 1266 inode->i_fop = &empty_dir_operations; 1267 } 1268 1269 bool is_empty_dir_inode(struct inode *inode) 1270 { 1271 return (inode->i_fop == &empty_dir_operations) && 1272 (inode->i_op == &empty_dir_inode_operations); 1273 } 1274