xref: /openbmc/linux/fs/libfs.c (revision 2c935bc5)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/mount.h>
11 #include <linux/vfs.h>
12 #include <linux/quotaops.h>
13 #include <linux/mutex.h>
14 #include <linux/namei.h>
15 #include <linux/exportfs.h>
16 #include <linux/writeback.h>
17 #include <linux/buffer_head.h> /* sync_mapping_buffers */
18 
19 #include <linux/uaccess.h>
20 
21 #include "internal.h"
22 
23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
24 		   struct kstat *stat)
25 {
26 	struct inode *inode = d_inode(dentry);
27 	generic_fillattr(inode, stat);
28 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
29 	return 0;
30 }
31 EXPORT_SYMBOL(simple_getattr);
32 
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
34 {
35 	buf->f_type = dentry->d_sb->s_magic;
36 	buf->f_bsize = PAGE_SIZE;
37 	buf->f_namelen = NAME_MAX;
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_statfs);
41 
42 /*
43  * Retaining negative dentries for an in-memory filesystem just wastes
44  * memory and lookup time: arrange for them to be deleted immediately.
45  */
46 int always_delete_dentry(const struct dentry *dentry)
47 {
48 	return 1;
49 }
50 EXPORT_SYMBOL(always_delete_dentry);
51 
52 const struct dentry_operations simple_dentry_operations = {
53 	.d_delete = always_delete_dentry,
54 };
55 EXPORT_SYMBOL(simple_dentry_operations);
56 
57 /*
58  * Lookup the data. This is trivial - if the dentry didn't already
59  * exist, we know it is negative.  Set d_op to delete negative dentries.
60  */
61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
62 {
63 	if (dentry->d_name.len > NAME_MAX)
64 		return ERR_PTR(-ENAMETOOLONG);
65 	if (!dentry->d_sb->s_d_op)
66 		d_set_d_op(dentry, &simple_dentry_operations);
67 	d_add(dentry, NULL);
68 	return NULL;
69 }
70 EXPORT_SYMBOL(simple_lookup);
71 
72 int dcache_dir_open(struct inode *inode, struct file *file)
73 {
74 	file->private_data = d_alloc_cursor(file->f_path.dentry);
75 
76 	return file->private_data ? 0 : -ENOMEM;
77 }
78 EXPORT_SYMBOL(dcache_dir_open);
79 
80 int dcache_dir_close(struct inode *inode, struct file *file)
81 {
82 	dput(file->private_data);
83 	return 0;
84 }
85 EXPORT_SYMBOL(dcache_dir_close);
86 
87 /* parent is locked at least shared */
88 static struct dentry *next_positive(struct dentry *parent,
89 				    struct list_head *from,
90 				    int count)
91 {
92 	unsigned *seq = &parent->d_inode->i_dir_seq, n;
93 	struct dentry *res;
94 	struct list_head *p;
95 	bool skipped;
96 	int i;
97 
98 retry:
99 	i = count;
100 	skipped = false;
101 	n = smp_load_acquire(seq) & ~1;
102 	res = NULL;
103 	rcu_read_lock();
104 	for (p = from->next; p != &parent->d_subdirs; p = p->next) {
105 		struct dentry *d = list_entry(p, struct dentry, d_child);
106 		if (!simple_positive(d)) {
107 			skipped = true;
108 		} else if (!--i) {
109 			res = d;
110 			break;
111 		}
112 	}
113 	rcu_read_unlock();
114 	if (skipped) {
115 		smp_rmb();
116 		if (unlikely(*seq != n))
117 			goto retry;
118 	}
119 	return res;
120 }
121 
122 static void move_cursor(struct dentry *cursor, struct list_head *after)
123 {
124 	struct dentry *parent = cursor->d_parent;
125 	unsigned n, *seq = &parent->d_inode->i_dir_seq;
126 	spin_lock(&parent->d_lock);
127 	for (;;) {
128 		n = *seq;
129 		if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
130 			break;
131 		cpu_relax();
132 	}
133 	__list_del(cursor->d_child.prev, cursor->d_child.next);
134 	if (after)
135 		list_add(&cursor->d_child, after);
136 	else
137 		list_add_tail(&cursor->d_child, &parent->d_subdirs);
138 	smp_store_release(seq, n + 2);
139 	spin_unlock(&parent->d_lock);
140 }
141 
142 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
143 {
144 	struct dentry *dentry = file->f_path.dentry;
145 	switch (whence) {
146 		case 1:
147 			offset += file->f_pos;
148 		case 0:
149 			if (offset >= 0)
150 				break;
151 		default:
152 			return -EINVAL;
153 	}
154 	if (offset != file->f_pos) {
155 		file->f_pos = offset;
156 		if (file->f_pos >= 2) {
157 			struct dentry *cursor = file->private_data;
158 			struct dentry *to;
159 			loff_t n = file->f_pos - 2;
160 
161 			inode_lock_shared(dentry->d_inode);
162 			to = next_positive(dentry, &dentry->d_subdirs, n);
163 			move_cursor(cursor, to ? &to->d_child : NULL);
164 			inode_unlock_shared(dentry->d_inode);
165 		}
166 	}
167 	return offset;
168 }
169 EXPORT_SYMBOL(dcache_dir_lseek);
170 
171 /* Relationship between i_mode and the DT_xxx types */
172 static inline unsigned char dt_type(struct inode *inode)
173 {
174 	return (inode->i_mode >> 12) & 15;
175 }
176 
177 /*
178  * Directory is locked and all positive dentries in it are safe, since
179  * for ramfs-type trees they can't go away without unlink() or rmdir(),
180  * both impossible due to the lock on directory.
181  */
182 
183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 	struct dentry *dentry = file->f_path.dentry;
186 	struct dentry *cursor = file->private_data;
187 	struct list_head *p = &cursor->d_child;
188 	struct dentry *next;
189 	bool moved = false;
190 
191 	if (!dir_emit_dots(file, ctx))
192 		return 0;
193 
194 	if (ctx->pos == 2)
195 		p = &dentry->d_subdirs;
196 	while ((next = next_positive(dentry, p, 1)) != NULL) {
197 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
198 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
199 			break;
200 		moved = true;
201 		p = &next->d_child;
202 		ctx->pos++;
203 	}
204 	if (moved)
205 		move_cursor(cursor, p);
206 	return 0;
207 }
208 EXPORT_SYMBOL(dcache_readdir);
209 
210 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
211 {
212 	return -EISDIR;
213 }
214 EXPORT_SYMBOL(generic_read_dir);
215 
216 const struct file_operations simple_dir_operations = {
217 	.open		= dcache_dir_open,
218 	.release	= dcache_dir_close,
219 	.llseek		= dcache_dir_lseek,
220 	.read		= generic_read_dir,
221 	.iterate_shared	= dcache_readdir,
222 	.fsync		= noop_fsync,
223 };
224 EXPORT_SYMBOL(simple_dir_operations);
225 
226 const struct inode_operations simple_dir_inode_operations = {
227 	.lookup		= simple_lookup,
228 };
229 EXPORT_SYMBOL(simple_dir_inode_operations);
230 
231 static const struct super_operations simple_super_operations = {
232 	.statfs		= simple_statfs,
233 };
234 
235 /*
236  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
237  * will never be mountable)
238  */
239 struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
240 	const struct super_operations *ops, const struct xattr_handler **xattr,
241 	const struct dentry_operations *dops, unsigned long magic)
242 {
243 	struct super_block *s;
244 	struct dentry *dentry;
245 	struct inode *root;
246 	struct qstr d_name = QSTR_INIT(name, strlen(name));
247 
248 	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
249 	if (IS_ERR(s))
250 		return ERR_CAST(s);
251 
252 	s->s_maxbytes = MAX_LFS_FILESIZE;
253 	s->s_blocksize = PAGE_SIZE;
254 	s->s_blocksize_bits = PAGE_SHIFT;
255 	s->s_magic = magic;
256 	s->s_op = ops ? ops : &simple_super_operations;
257 	s->s_xattr = xattr;
258 	s->s_time_gran = 1;
259 	root = new_inode(s);
260 	if (!root)
261 		goto Enomem;
262 	/*
263 	 * since this is the first inode, make it number 1. New inodes created
264 	 * after this must take care not to collide with it (by passing
265 	 * max_reserved of 1 to iunique).
266 	 */
267 	root->i_ino = 1;
268 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
269 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
270 	dentry = __d_alloc(s, &d_name);
271 	if (!dentry) {
272 		iput(root);
273 		goto Enomem;
274 	}
275 	d_instantiate(dentry, root);
276 	s->s_root = dentry;
277 	s->s_d_op = dops;
278 	s->s_flags |= MS_ACTIVE;
279 	return dget(s->s_root);
280 
281 Enomem:
282 	deactivate_locked_super(s);
283 	return ERR_PTR(-ENOMEM);
284 }
285 EXPORT_SYMBOL(mount_pseudo_xattr);
286 
287 int simple_open(struct inode *inode, struct file *file)
288 {
289 	if (inode->i_private)
290 		file->private_data = inode->i_private;
291 	return 0;
292 }
293 EXPORT_SYMBOL(simple_open);
294 
295 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
296 {
297 	struct inode *inode = d_inode(old_dentry);
298 
299 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
300 	inc_nlink(inode);
301 	ihold(inode);
302 	dget(dentry);
303 	d_instantiate(dentry, inode);
304 	return 0;
305 }
306 EXPORT_SYMBOL(simple_link);
307 
308 int simple_empty(struct dentry *dentry)
309 {
310 	struct dentry *child;
311 	int ret = 0;
312 
313 	spin_lock(&dentry->d_lock);
314 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
315 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
316 		if (simple_positive(child)) {
317 			spin_unlock(&child->d_lock);
318 			goto out;
319 		}
320 		spin_unlock(&child->d_lock);
321 	}
322 	ret = 1;
323 out:
324 	spin_unlock(&dentry->d_lock);
325 	return ret;
326 }
327 EXPORT_SYMBOL(simple_empty);
328 
329 int simple_unlink(struct inode *dir, struct dentry *dentry)
330 {
331 	struct inode *inode = d_inode(dentry);
332 
333 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
334 	drop_nlink(inode);
335 	dput(dentry);
336 	return 0;
337 }
338 EXPORT_SYMBOL(simple_unlink);
339 
340 int simple_rmdir(struct inode *dir, struct dentry *dentry)
341 {
342 	if (!simple_empty(dentry))
343 		return -ENOTEMPTY;
344 
345 	drop_nlink(d_inode(dentry));
346 	simple_unlink(dir, dentry);
347 	drop_nlink(dir);
348 	return 0;
349 }
350 EXPORT_SYMBOL(simple_rmdir);
351 
352 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
353 		  struct inode *new_dir, struct dentry *new_dentry,
354 		  unsigned int flags)
355 {
356 	struct inode *inode = d_inode(old_dentry);
357 	int they_are_dirs = d_is_dir(old_dentry);
358 
359 	if (flags & ~RENAME_NOREPLACE)
360 		return -EINVAL;
361 
362 	if (!simple_empty(new_dentry))
363 		return -ENOTEMPTY;
364 
365 	if (d_really_is_positive(new_dentry)) {
366 		simple_unlink(new_dir, new_dentry);
367 		if (they_are_dirs) {
368 			drop_nlink(d_inode(new_dentry));
369 			drop_nlink(old_dir);
370 		}
371 	} else if (they_are_dirs) {
372 		drop_nlink(old_dir);
373 		inc_nlink(new_dir);
374 	}
375 
376 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
377 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
378 
379 	return 0;
380 }
381 EXPORT_SYMBOL(simple_rename);
382 
383 /**
384  * simple_setattr - setattr for simple filesystem
385  * @dentry: dentry
386  * @iattr: iattr structure
387  *
388  * Returns 0 on success, -error on failure.
389  *
390  * simple_setattr is a simple ->setattr implementation without a proper
391  * implementation of size changes.
392  *
393  * It can either be used for in-memory filesystems or special files
394  * on simple regular filesystems.  Anything that needs to change on-disk
395  * or wire state on size changes needs its own setattr method.
396  */
397 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
398 {
399 	struct inode *inode = d_inode(dentry);
400 	int error;
401 
402 	error = setattr_prepare(dentry, iattr);
403 	if (error)
404 		return error;
405 
406 	if (iattr->ia_valid & ATTR_SIZE)
407 		truncate_setsize(inode, iattr->ia_size);
408 	setattr_copy(inode, iattr);
409 	mark_inode_dirty(inode);
410 	return 0;
411 }
412 EXPORT_SYMBOL(simple_setattr);
413 
414 int simple_readpage(struct file *file, struct page *page)
415 {
416 	clear_highpage(page);
417 	flush_dcache_page(page);
418 	SetPageUptodate(page);
419 	unlock_page(page);
420 	return 0;
421 }
422 EXPORT_SYMBOL(simple_readpage);
423 
424 int simple_write_begin(struct file *file, struct address_space *mapping,
425 			loff_t pos, unsigned len, unsigned flags,
426 			struct page **pagep, void **fsdata)
427 {
428 	struct page *page;
429 	pgoff_t index;
430 
431 	index = pos >> PAGE_SHIFT;
432 
433 	page = grab_cache_page_write_begin(mapping, index, flags);
434 	if (!page)
435 		return -ENOMEM;
436 
437 	*pagep = page;
438 
439 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
440 		unsigned from = pos & (PAGE_SIZE - 1);
441 
442 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
443 	}
444 	return 0;
445 }
446 EXPORT_SYMBOL(simple_write_begin);
447 
448 /**
449  * simple_write_end - .write_end helper for non-block-device FSes
450  * @available: See .write_end of address_space_operations
451  * @file: 		"
452  * @mapping: 		"
453  * @pos: 		"
454  * @len: 		"
455  * @copied: 		"
456  * @page: 		"
457  * @fsdata: 		"
458  *
459  * simple_write_end does the minimum needed for updating a page after writing is
460  * done. It has the same API signature as the .write_end of
461  * address_space_operations vector. So it can just be set onto .write_end for
462  * FSes that don't need any other processing. i_mutex is assumed to be held.
463  * Block based filesystems should use generic_write_end().
464  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
465  * is not called, so a filesystem that actually does store data in .write_inode
466  * should extend on what's done here with a call to mark_inode_dirty() in the
467  * case that i_size has changed.
468  *
469  * Use *ONLY* with simple_readpage()
470  */
471 int simple_write_end(struct file *file, struct address_space *mapping,
472 			loff_t pos, unsigned len, unsigned copied,
473 			struct page *page, void *fsdata)
474 {
475 	struct inode *inode = page->mapping->host;
476 	loff_t last_pos = pos + copied;
477 
478 	/* zero the stale part of the page if we did a short copy */
479 	if (!PageUptodate(page)) {
480 		if (copied < len) {
481 			unsigned from = pos & (PAGE_SIZE - 1);
482 
483 			zero_user(page, from + copied, len - copied);
484 		}
485 		SetPageUptodate(page);
486 	}
487 	/*
488 	 * No need to use i_size_read() here, the i_size
489 	 * cannot change under us because we hold the i_mutex.
490 	 */
491 	if (last_pos > inode->i_size)
492 		i_size_write(inode, last_pos);
493 
494 	set_page_dirty(page);
495 	unlock_page(page);
496 	put_page(page);
497 
498 	return copied;
499 }
500 EXPORT_SYMBOL(simple_write_end);
501 
502 /*
503  * the inodes created here are not hashed. If you use iunique to generate
504  * unique inode values later for this filesystem, then you must take care
505  * to pass it an appropriate max_reserved value to avoid collisions.
506  */
507 int simple_fill_super(struct super_block *s, unsigned long magic,
508 		      struct tree_descr *files)
509 {
510 	struct inode *inode;
511 	struct dentry *root;
512 	struct dentry *dentry;
513 	int i;
514 
515 	s->s_blocksize = PAGE_SIZE;
516 	s->s_blocksize_bits = PAGE_SHIFT;
517 	s->s_magic = magic;
518 	s->s_op = &simple_super_operations;
519 	s->s_time_gran = 1;
520 
521 	inode = new_inode(s);
522 	if (!inode)
523 		return -ENOMEM;
524 	/*
525 	 * because the root inode is 1, the files array must not contain an
526 	 * entry at index 1
527 	 */
528 	inode->i_ino = 1;
529 	inode->i_mode = S_IFDIR | 0755;
530 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
531 	inode->i_op = &simple_dir_inode_operations;
532 	inode->i_fop = &simple_dir_operations;
533 	set_nlink(inode, 2);
534 	root = d_make_root(inode);
535 	if (!root)
536 		return -ENOMEM;
537 	for (i = 0; !files->name || files->name[0]; i++, files++) {
538 		if (!files->name)
539 			continue;
540 
541 		/* warn if it tries to conflict with the root inode */
542 		if (unlikely(i == 1))
543 			printk(KERN_WARNING "%s: %s passed in a files array"
544 				"with an index of 1!\n", __func__,
545 				s->s_type->name);
546 
547 		dentry = d_alloc_name(root, files->name);
548 		if (!dentry)
549 			goto out;
550 		inode = new_inode(s);
551 		if (!inode) {
552 			dput(dentry);
553 			goto out;
554 		}
555 		inode->i_mode = S_IFREG | files->mode;
556 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
557 		inode->i_fop = files->ops;
558 		inode->i_ino = i;
559 		d_add(dentry, inode);
560 	}
561 	s->s_root = root;
562 	return 0;
563 out:
564 	d_genocide(root);
565 	shrink_dcache_parent(root);
566 	dput(root);
567 	return -ENOMEM;
568 }
569 EXPORT_SYMBOL(simple_fill_super);
570 
571 static DEFINE_SPINLOCK(pin_fs_lock);
572 
573 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
574 {
575 	struct vfsmount *mnt = NULL;
576 	spin_lock(&pin_fs_lock);
577 	if (unlikely(!*mount)) {
578 		spin_unlock(&pin_fs_lock);
579 		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
580 		if (IS_ERR(mnt))
581 			return PTR_ERR(mnt);
582 		spin_lock(&pin_fs_lock);
583 		if (!*mount)
584 			*mount = mnt;
585 	}
586 	mntget(*mount);
587 	++*count;
588 	spin_unlock(&pin_fs_lock);
589 	mntput(mnt);
590 	return 0;
591 }
592 EXPORT_SYMBOL(simple_pin_fs);
593 
594 void simple_release_fs(struct vfsmount **mount, int *count)
595 {
596 	struct vfsmount *mnt;
597 	spin_lock(&pin_fs_lock);
598 	mnt = *mount;
599 	if (!--*count)
600 		*mount = NULL;
601 	spin_unlock(&pin_fs_lock);
602 	mntput(mnt);
603 }
604 EXPORT_SYMBOL(simple_release_fs);
605 
606 /**
607  * simple_read_from_buffer - copy data from the buffer to user space
608  * @to: the user space buffer to read to
609  * @count: the maximum number of bytes to read
610  * @ppos: the current position in the buffer
611  * @from: the buffer to read from
612  * @available: the size of the buffer
613  *
614  * The simple_read_from_buffer() function reads up to @count bytes from the
615  * buffer @from at offset @ppos into the user space address starting at @to.
616  *
617  * On success, the number of bytes read is returned and the offset @ppos is
618  * advanced by this number, or negative value is returned on error.
619  **/
620 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
621 				const void *from, size_t available)
622 {
623 	loff_t pos = *ppos;
624 	size_t ret;
625 
626 	if (pos < 0)
627 		return -EINVAL;
628 	if (pos >= available || !count)
629 		return 0;
630 	if (count > available - pos)
631 		count = available - pos;
632 	ret = copy_to_user(to, from + pos, count);
633 	if (ret == count)
634 		return -EFAULT;
635 	count -= ret;
636 	*ppos = pos + count;
637 	return count;
638 }
639 EXPORT_SYMBOL(simple_read_from_buffer);
640 
641 /**
642  * simple_write_to_buffer - copy data from user space to the buffer
643  * @to: the buffer to write to
644  * @available: the size of the buffer
645  * @ppos: the current position in the buffer
646  * @from: the user space buffer to read from
647  * @count: the maximum number of bytes to read
648  *
649  * The simple_write_to_buffer() function reads up to @count bytes from the user
650  * space address starting at @from into the buffer @to at offset @ppos.
651  *
652  * On success, the number of bytes written is returned and the offset @ppos is
653  * advanced by this number, or negative value is returned on error.
654  **/
655 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
656 		const void __user *from, size_t count)
657 {
658 	loff_t pos = *ppos;
659 	size_t res;
660 
661 	if (pos < 0)
662 		return -EINVAL;
663 	if (pos >= available || !count)
664 		return 0;
665 	if (count > available - pos)
666 		count = available - pos;
667 	res = copy_from_user(to + pos, from, count);
668 	if (res == count)
669 		return -EFAULT;
670 	count -= res;
671 	*ppos = pos + count;
672 	return count;
673 }
674 EXPORT_SYMBOL(simple_write_to_buffer);
675 
676 /**
677  * memory_read_from_buffer - copy data from the buffer
678  * @to: the kernel space buffer to read to
679  * @count: the maximum number of bytes to read
680  * @ppos: the current position in the buffer
681  * @from: the buffer to read from
682  * @available: the size of the buffer
683  *
684  * The memory_read_from_buffer() function reads up to @count bytes from the
685  * buffer @from at offset @ppos into the kernel space address starting at @to.
686  *
687  * On success, the number of bytes read is returned and the offset @ppos is
688  * advanced by this number, or negative value is returned on error.
689  **/
690 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
691 				const void *from, size_t available)
692 {
693 	loff_t pos = *ppos;
694 
695 	if (pos < 0)
696 		return -EINVAL;
697 	if (pos >= available)
698 		return 0;
699 	if (count > available - pos)
700 		count = available - pos;
701 	memcpy(to, from + pos, count);
702 	*ppos = pos + count;
703 
704 	return count;
705 }
706 EXPORT_SYMBOL(memory_read_from_buffer);
707 
708 /*
709  * Transaction based IO.
710  * The file expects a single write which triggers the transaction, and then
711  * possibly a read which collects the result - which is stored in a
712  * file-local buffer.
713  */
714 
715 void simple_transaction_set(struct file *file, size_t n)
716 {
717 	struct simple_transaction_argresp *ar = file->private_data;
718 
719 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
720 
721 	/*
722 	 * The barrier ensures that ar->size will really remain zero until
723 	 * ar->data is ready for reading.
724 	 */
725 	smp_mb();
726 	ar->size = n;
727 }
728 EXPORT_SYMBOL(simple_transaction_set);
729 
730 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
731 {
732 	struct simple_transaction_argresp *ar;
733 	static DEFINE_SPINLOCK(simple_transaction_lock);
734 
735 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
736 		return ERR_PTR(-EFBIG);
737 
738 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
739 	if (!ar)
740 		return ERR_PTR(-ENOMEM);
741 
742 	spin_lock(&simple_transaction_lock);
743 
744 	/* only one write allowed per open */
745 	if (file->private_data) {
746 		spin_unlock(&simple_transaction_lock);
747 		free_page((unsigned long)ar);
748 		return ERR_PTR(-EBUSY);
749 	}
750 
751 	file->private_data = ar;
752 
753 	spin_unlock(&simple_transaction_lock);
754 
755 	if (copy_from_user(ar->data, buf, size))
756 		return ERR_PTR(-EFAULT);
757 
758 	return ar->data;
759 }
760 EXPORT_SYMBOL(simple_transaction_get);
761 
762 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
763 {
764 	struct simple_transaction_argresp *ar = file->private_data;
765 
766 	if (!ar)
767 		return 0;
768 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
769 }
770 EXPORT_SYMBOL(simple_transaction_read);
771 
772 int simple_transaction_release(struct inode *inode, struct file *file)
773 {
774 	free_page((unsigned long)file->private_data);
775 	return 0;
776 }
777 EXPORT_SYMBOL(simple_transaction_release);
778 
779 /* Simple attribute files */
780 
781 struct simple_attr {
782 	int (*get)(void *, u64 *);
783 	int (*set)(void *, u64);
784 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
785 	char set_buf[24];
786 	void *data;
787 	const char *fmt;	/* format for read operation */
788 	struct mutex mutex;	/* protects access to these buffers */
789 };
790 
791 /* simple_attr_open is called by an actual attribute open file operation
792  * to set the attribute specific access operations. */
793 int simple_attr_open(struct inode *inode, struct file *file,
794 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
795 		     const char *fmt)
796 {
797 	struct simple_attr *attr;
798 
799 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
800 	if (!attr)
801 		return -ENOMEM;
802 
803 	attr->get = get;
804 	attr->set = set;
805 	attr->data = inode->i_private;
806 	attr->fmt = fmt;
807 	mutex_init(&attr->mutex);
808 
809 	file->private_data = attr;
810 
811 	return nonseekable_open(inode, file);
812 }
813 EXPORT_SYMBOL_GPL(simple_attr_open);
814 
815 int simple_attr_release(struct inode *inode, struct file *file)
816 {
817 	kfree(file->private_data);
818 	return 0;
819 }
820 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
821 
822 /* read from the buffer that is filled with the get function */
823 ssize_t simple_attr_read(struct file *file, char __user *buf,
824 			 size_t len, loff_t *ppos)
825 {
826 	struct simple_attr *attr;
827 	size_t size;
828 	ssize_t ret;
829 
830 	attr = file->private_data;
831 
832 	if (!attr->get)
833 		return -EACCES;
834 
835 	ret = mutex_lock_interruptible(&attr->mutex);
836 	if (ret)
837 		return ret;
838 
839 	if (*ppos) {		/* continued read */
840 		size = strlen(attr->get_buf);
841 	} else {		/* first read */
842 		u64 val;
843 		ret = attr->get(attr->data, &val);
844 		if (ret)
845 			goto out;
846 
847 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
848 				 attr->fmt, (unsigned long long)val);
849 	}
850 
851 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
852 out:
853 	mutex_unlock(&attr->mutex);
854 	return ret;
855 }
856 EXPORT_SYMBOL_GPL(simple_attr_read);
857 
858 /* interpret the buffer as a number to call the set function with */
859 ssize_t simple_attr_write(struct file *file, const char __user *buf,
860 			  size_t len, loff_t *ppos)
861 {
862 	struct simple_attr *attr;
863 	u64 val;
864 	size_t size;
865 	ssize_t ret;
866 
867 	attr = file->private_data;
868 	if (!attr->set)
869 		return -EACCES;
870 
871 	ret = mutex_lock_interruptible(&attr->mutex);
872 	if (ret)
873 		return ret;
874 
875 	ret = -EFAULT;
876 	size = min(sizeof(attr->set_buf) - 1, len);
877 	if (copy_from_user(attr->set_buf, buf, size))
878 		goto out;
879 
880 	attr->set_buf[size] = '\0';
881 	val = simple_strtoll(attr->set_buf, NULL, 0);
882 	ret = attr->set(attr->data, val);
883 	if (ret == 0)
884 		ret = len; /* on success, claim we got the whole input */
885 out:
886 	mutex_unlock(&attr->mutex);
887 	return ret;
888 }
889 EXPORT_SYMBOL_GPL(simple_attr_write);
890 
891 /**
892  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
893  * @sb:		filesystem to do the file handle conversion on
894  * @fid:	file handle to convert
895  * @fh_len:	length of the file handle in bytes
896  * @fh_type:	type of file handle
897  * @get_inode:	filesystem callback to retrieve inode
898  *
899  * This function decodes @fid as long as it has one of the well-known
900  * Linux filehandle types and calls @get_inode on it to retrieve the
901  * inode for the object specified in the file handle.
902  */
903 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
904 		int fh_len, int fh_type, struct inode *(*get_inode)
905 			(struct super_block *sb, u64 ino, u32 gen))
906 {
907 	struct inode *inode = NULL;
908 
909 	if (fh_len < 2)
910 		return NULL;
911 
912 	switch (fh_type) {
913 	case FILEID_INO32_GEN:
914 	case FILEID_INO32_GEN_PARENT:
915 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
916 		break;
917 	}
918 
919 	return d_obtain_alias(inode);
920 }
921 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
922 
923 /**
924  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
925  * @sb:		filesystem to do the file handle conversion on
926  * @fid:	file handle to convert
927  * @fh_len:	length of the file handle in bytes
928  * @fh_type:	type of file handle
929  * @get_inode:	filesystem callback to retrieve inode
930  *
931  * This function decodes @fid as long as it has one of the well-known
932  * Linux filehandle types and calls @get_inode on it to retrieve the
933  * inode for the _parent_ object specified in the file handle if it
934  * is specified in the file handle, or NULL otherwise.
935  */
936 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
937 		int fh_len, int fh_type, struct inode *(*get_inode)
938 			(struct super_block *sb, u64 ino, u32 gen))
939 {
940 	struct inode *inode = NULL;
941 
942 	if (fh_len <= 2)
943 		return NULL;
944 
945 	switch (fh_type) {
946 	case FILEID_INO32_GEN_PARENT:
947 		inode = get_inode(sb, fid->i32.parent_ino,
948 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
949 		break;
950 	}
951 
952 	return d_obtain_alias(inode);
953 }
954 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
955 
956 /**
957  * __generic_file_fsync - generic fsync implementation for simple filesystems
958  *
959  * @file:	file to synchronize
960  * @start:	start offset in bytes
961  * @end:	end offset in bytes (inclusive)
962  * @datasync:	only synchronize essential metadata if true
963  *
964  * This is a generic implementation of the fsync method for simple
965  * filesystems which track all non-inode metadata in the buffers list
966  * hanging off the address_space structure.
967  */
968 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
969 				 int datasync)
970 {
971 	struct inode *inode = file->f_mapping->host;
972 	int err;
973 	int ret;
974 
975 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
976 	if (err)
977 		return err;
978 
979 	inode_lock(inode);
980 	ret = sync_mapping_buffers(inode->i_mapping);
981 	if (!(inode->i_state & I_DIRTY_ALL))
982 		goto out;
983 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
984 		goto out;
985 
986 	err = sync_inode_metadata(inode, 1);
987 	if (ret == 0)
988 		ret = err;
989 
990 out:
991 	inode_unlock(inode);
992 	return ret;
993 }
994 EXPORT_SYMBOL(__generic_file_fsync);
995 
996 /**
997  * generic_file_fsync - generic fsync implementation for simple filesystems
998  *			with flush
999  * @file:	file to synchronize
1000  * @start:	start offset in bytes
1001  * @end:	end offset in bytes (inclusive)
1002  * @datasync:	only synchronize essential metadata if true
1003  *
1004  */
1005 
1006 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1007 		       int datasync)
1008 {
1009 	struct inode *inode = file->f_mapping->host;
1010 	int err;
1011 
1012 	err = __generic_file_fsync(file, start, end, datasync);
1013 	if (err)
1014 		return err;
1015 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1016 }
1017 EXPORT_SYMBOL(generic_file_fsync);
1018 
1019 /**
1020  * generic_check_addressable - Check addressability of file system
1021  * @blocksize_bits:	log of file system block size
1022  * @num_blocks:		number of blocks in file system
1023  *
1024  * Determine whether a file system with @num_blocks blocks (and a
1025  * block size of 2**@blocksize_bits) is addressable by the sector_t
1026  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1027  */
1028 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1029 {
1030 	u64 last_fs_block = num_blocks - 1;
1031 	u64 last_fs_page =
1032 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1033 
1034 	if (unlikely(num_blocks == 0))
1035 		return 0;
1036 
1037 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1038 		return -EINVAL;
1039 
1040 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1041 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1042 		return -EFBIG;
1043 	}
1044 	return 0;
1045 }
1046 EXPORT_SYMBOL(generic_check_addressable);
1047 
1048 /*
1049  * No-op implementation of ->fsync for in-memory filesystems.
1050  */
1051 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1052 {
1053 	return 0;
1054 }
1055 EXPORT_SYMBOL(noop_fsync);
1056 
1057 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1058 void kfree_link(void *p)
1059 {
1060 	kfree(p);
1061 }
1062 EXPORT_SYMBOL(kfree_link);
1063 
1064 /*
1065  * nop .set_page_dirty method so that people can use .page_mkwrite on
1066  * anon inodes.
1067  */
1068 static int anon_set_page_dirty(struct page *page)
1069 {
1070 	return 0;
1071 };
1072 
1073 /*
1074  * A single inode exists for all anon_inode files. Contrary to pipes,
1075  * anon_inode inodes have no associated per-instance data, so we need
1076  * only allocate one of them.
1077  */
1078 struct inode *alloc_anon_inode(struct super_block *s)
1079 {
1080 	static const struct address_space_operations anon_aops = {
1081 		.set_page_dirty = anon_set_page_dirty,
1082 	};
1083 	struct inode *inode = new_inode_pseudo(s);
1084 
1085 	if (!inode)
1086 		return ERR_PTR(-ENOMEM);
1087 
1088 	inode->i_ino = get_next_ino();
1089 	inode->i_mapping->a_ops = &anon_aops;
1090 
1091 	/*
1092 	 * Mark the inode dirty from the very beginning,
1093 	 * that way it will never be moved to the dirty
1094 	 * list because mark_inode_dirty() will think
1095 	 * that it already _is_ on the dirty list.
1096 	 */
1097 	inode->i_state = I_DIRTY;
1098 	inode->i_mode = S_IRUSR | S_IWUSR;
1099 	inode->i_uid = current_fsuid();
1100 	inode->i_gid = current_fsgid();
1101 	inode->i_flags |= S_PRIVATE;
1102 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1103 	return inode;
1104 }
1105 EXPORT_SYMBOL(alloc_anon_inode);
1106 
1107 /**
1108  * simple_nosetlease - generic helper for prohibiting leases
1109  * @filp: file pointer
1110  * @arg: type of lease to obtain
1111  * @flp: new lease supplied for insertion
1112  * @priv: private data for lm_setup operation
1113  *
1114  * Generic helper for filesystems that do not wish to allow leases to be set.
1115  * All arguments are ignored and it just returns -EINVAL.
1116  */
1117 int
1118 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1119 		  void **priv)
1120 {
1121 	return -EINVAL;
1122 }
1123 EXPORT_SYMBOL(simple_nosetlease);
1124 
1125 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1126 			    struct delayed_call *done)
1127 {
1128 	return inode->i_link;
1129 }
1130 EXPORT_SYMBOL(simple_get_link);
1131 
1132 const struct inode_operations simple_symlink_inode_operations = {
1133 	.get_link = simple_get_link,
1134 };
1135 EXPORT_SYMBOL(simple_symlink_inode_operations);
1136 
1137 /*
1138  * Operations for a permanently empty directory.
1139  */
1140 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1141 {
1142 	return ERR_PTR(-ENOENT);
1143 }
1144 
1145 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1146 				 struct kstat *stat)
1147 {
1148 	struct inode *inode = d_inode(dentry);
1149 	generic_fillattr(inode, stat);
1150 	return 0;
1151 }
1152 
1153 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1154 {
1155 	return -EPERM;
1156 }
1157 
1158 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1159 {
1160 	return -EOPNOTSUPP;
1161 }
1162 
1163 static const struct inode_operations empty_dir_inode_operations = {
1164 	.lookup		= empty_dir_lookup,
1165 	.permission	= generic_permission,
1166 	.setattr	= empty_dir_setattr,
1167 	.getattr	= empty_dir_getattr,
1168 	.listxattr	= empty_dir_listxattr,
1169 };
1170 
1171 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1172 {
1173 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1174 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1175 }
1176 
1177 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1178 {
1179 	dir_emit_dots(file, ctx);
1180 	return 0;
1181 }
1182 
1183 static const struct file_operations empty_dir_operations = {
1184 	.llseek		= empty_dir_llseek,
1185 	.read		= generic_read_dir,
1186 	.iterate_shared	= empty_dir_readdir,
1187 	.fsync		= noop_fsync,
1188 };
1189 
1190 
1191 void make_empty_dir_inode(struct inode *inode)
1192 {
1193 	set_nlink(inode, 2);
1194 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1195 	inode->i_uid = GLOBAL_ROOT_UID;
1196 	inode->i_gid = GLOBAL_ROOT_GID;
1197 	inode->i_rdev = 0;
1198 	inode->i_size = 0;
1199 	inode->i_blkbits = PAGE_SHIFT;
1200 	inode->i_blocks = 0;
1201 
1202 	inode->i_op = &empty_dir_inode_operations;
1203 	inode->i_opflags &= ~IOP_XATTR;
1204 	inode->i_fop = &empty_dir_operations;
1205 }
1206 
1207 bool is_empty_dir_inode(struct inode *inode)
1208 {
1209 	return (inode->i_fop == &empty_dir_operations) &&
1210 		(inode->i_op == &empty_dir_inode_operations);
1211 }
1212