xref: /openbmc/linux/fs/libfs.c (revision 2be4f05a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26 
27 #include <linux/uaccess.h>
28 
29 #include "internal.h"
30 
31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 		   struct kstat *stat, u32 request_mask,
33 		   unsigned int query_flags)
34 {
35 	struct inode *inode = d_inode(path->dentry);
36 	generic_fillattr(&nop_mnt_idmap, inode, stat);
37 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41 
42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 	buf->f_type = dentry->d_sb->s_magic;
45 	buf->f_bsize = PAGE_SIZE;
46 	buf->f_namelen = NAME_MAX;
47 	return 0;
48 }
49 EXPORT_SYMBOL(simple_statfs);
50 
51 /*
52  * Retaining negative dentries for an in-memory filesystem just wastes
53  * memory and lookup time: arrange for them to be deleted immediately.
54  */
55 int always_delete_dentry(const struct dentry *dentry)
56 {
57 	return 1;
58 }
59 EXPORT_SYMBOL(always_delete_dentry);
60 
61 const struct dentry_operations simple_dentry_operations = {
62 	.d_delete = always_delete_dentry,
63 };
64 EXPORT_SYMBOL(simple_dentry_operations);
65 
66 /*
67  * Lookup the data. This is trivial - if the dentry didn't already
68  * exist, we know it is negative.  Set d_op to delete negative dentries.
69  */
70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 {
72 	if (dentry->d_name.len > NAME_MAX)
73 		return ERR_PTR(-ENAMETOOLONG);
74 	if (!dentry->d_sb->s_d_op)
75 		d_set_d_op(dentry, &simple_dentry_operations);
76 	d_add(dentry, NULL);
77 	return NULL;
78 }
79 EXPORT_SYMBOL(simple_lookup);
80 
81 int dcache_dir_open(struct inode *inode, struct file *file)
82 {
83 	file->private_data = d_alloc_cursor(file->f_path.dentry);
84 
85 	return file->private_data ? 0 : -ENOMEM;
86 }
87 EXPORT_SYMBOL(dcache_dir_open);
88 
89 int dcache_dir_close(struct inode *inode, struct file *file)
90 {
91 	dput(file->private_data);
92 	return 0;
93 }
94 EXPORT_SYMBOL(dcache_dir_close);
95 
96 /* parent is locked at least shared */
97 /*
98  * Returns an element of siblings' list.
99  * We are looking for <count>th positive after <p>; if
100  * found, dentry is grabbed and returned to caller.
101  * If no such element exists, NULL is returned.
102  */
103 static struct dentry *scan_positives(struct dentry *cursor,
104 					struct list_head *p,
105 					loff_t count,
106 					struct dentry *last)
107 {
108 	struct dentry *dentry = cursor->d_parent, *found = NULL;
109 
110 	spin_lock(&dentry->d_lock);
111 	while ((p = p->next) != &dentry->d_subdirs) {
112 		struct dentry *d = list_entry(p, struct dentry, d_child);
113 		// we must at least skip cursors, to avoid livelocks
114 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 			continue;
116 		if (simple_positive(d) && !--count) {
117 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 			if (simple_positive(d))
119 				found = dget_dlock(d);
120 			spin_unlock(&d->d_lock);
121 			if (likely(found))
122 				break;
123 			count = 1;
124 		}
125 		if (need_resched()) {
126 			list_move(&cursor->d_child, p);
127 			p = &cursor->d_child;
128 			spin_unlock(&dentry->d_lock);
129 			cond_resched();
130 			spin_lock(&dentry->d_lock);
131 		}
132 	}
133 	spin_unlock(&dentry->d_lock);
134 	dput(last);
135 	return found;
136 }
137 
138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139 {
140 	struct dentry *dentry = file->f_path.dentry;
141 	switch (whence) {
142 		case 1:
143 			offset += file->f_pos;
144 			fallthrough;
145 		case 0:
146 			if (offset >= 0)
147 				break;
148 			fallthrough;
149 		default:
150 			return -EINVAL;
151 	}
152 	if (offset != file->f_pos) {
153 		struct dentry *cursor = file->private_data;
154 		struct dentry *to = NULL;
155 
156 		inode_lock_shared(dentry->d_inode);
157 
158 		if (offset > 2)
159 			to = scan_positives(cursor, &dentry->d_subdirs,
160 					    offset - 2, NULL);
161 		spin_lock(&dentry->d_lock);
162 		if (to)
163 			list_move(&cursor->d_child, &to->d_child);
164 		else
165 			list_del_init(&cursor->d_child);
166 		spin_unlock(&dentry->d_lock);
167 		dput(to);
168 
169 		file->f_pos = offset;
170 
171 		inode_unlock_shared(dentry->d_inode);
172 	}
173 	return offset;
174 }
175 EXPORT_SYMBOL(dcache_dir_lseek);
176 
177 /*
178  * Directory is locked and all positive dentries in it are safe, since
179  * for ramfs-type trees they can't go away without unlink() or rmdir(),
180  * both impossible due to the lock on directory.
181  */
182 
183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 	struct dentry *dentry = file->f_path.dentry;
186 	struct dentry *cursor = file->private_data;
187 	struct list_head *anchor = &dentry->d_subdirs;
188 	struct dentry *next = NULL;
189 	struct list_head *p;
190 
191 	if (!dir_emit_dots(file, ctx))
192 		return 0;
193 
194 	if (ctx->pos == 2)
195 		p = anchor;
196 	else if (!list_empty(&cursor->d_child))
197 		p = &cursor->d_child;
198 	else
199 		return 0;
200 
201 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
202 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
203 			      d_inode(next)->i_ino,
204 			      fs_umode_to_dtype(d_inode(next)->i_mode)))
205 			break;
206 		ctx->pos++;
207 		p = &next->d_child;
208 	}
209 	spin_lock(&dentry->d_lock);
210 	if (next)
211 		list_move_tail(&cursor->d_child, &next->d_child);
212 	else
213 		list_del_init(&cursor->d_child);
214 	spin_unlock(&dentry->d_lock);
215 	dput(next);
216 
217 	return 0;
218 }
219 EXPORT_SYMBOL(dcache_readdir);
220 
221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222 {
223 	return -EISDIR;
224 }
225 EXPORT_SYMBOL(generic_read_dir);
226 
227 const struct file_operations simple_dir_operations = {
228 	.open		= dcache_dir_open,
229 	.release	= dcache_dir_close,
230 	.llseek		= dcache_dir_lseek,
231 	.read		= generic_read_dir,
232 	.iterate_shared	= dcache_readdir,
233 	.fsync		= noop_fsync,
234 };
235 EXPORT_SYMBOL(simple_dir_operations);
236 
237 const struct inode_operations simple_dir_inode_operations = {
238 	.lookup		= simple_lookup,
239 };
240 EXPORT_SYMBOL(simple_dir_inode_operations);
241 
242 static void offset_set(struct dentry *dentry, u32 offset)
243 {
244 	dentry->d_fsdata = (void *)((uintptr_t)(offset));
245 }
246 
247 static u32 dentry2offset(struct dentry *dentry)
248 {
249 	return (u32)((uintptr_t)(dentry->d_fsdata));
250 }
251 
252 static struct lock_class_key simple_offset_xa_lock;
253 
254 /**
255  * simple_offset_init - initialize an offset_ctx
256  * @octx: directory offset map to be initialized
257  *
258  */
259 void simple_offset_init(struct offset_ctx *octx)
260 {
261 	xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
262 	lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
263 
264 	/* 0 is '.', 1 is '..', so always start with offset 2 */
265 	octx->next_offset = 2;
266 }
267 
268 /**
269  * simple_offset_add - Add an entry to a directory's offset map
270  * @octx: directory offset ctx to be updated
271  * @dentry: new dentry being added
272  *
273  * Returns zero on success. @so_ctx and the dentry offset are updated.
274  * Otherwise, a negative errno value is returned.
275  */
276 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
277 {
278 	static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
279 	u32 offset;
280 	int ret;
281 
282 	if (dentry2offset(dentry) != 0)
283 		return -EBUSY;
284 
285 	ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
286 			      &octx->next_offset, GFP_KERNEL);
287 	if (ret < 0)
288 		return ret;
289 
290 	offset_set(dentry, offset);
291 	return 0;
292 }
293 
294 /**
295  * simple_offset_remove - Remove an entry to a directory's offset map
296  * @octx: directory offset ctx to be updated
297  * @dentry: dentry being removed
298  *
299  */
300 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
301 {
302 	u32 offset;
303 
304 	offset = dentry2offset(dentry);
305 	if (offset == 0)
306 		return;
307 
308 	xa_erase(&octx->xa, offset);
309 	offset_set(dentry, 0);
310 }
311 
312 /**
313  * simple_offset_rename_exchange - exchange rename with directory offsets
314  * @old_dir: parent of dentry being moved
315  * @old_dentry: dentry being moved
316  * @new_dir: destination parent
317  * @new_dentry: destination dentry
318  *
319  * Returns zero on success. Otherwise a negative errno is returned and the
320  * rename is rolled back.
321  */
322 int simple_offset_rename_exchange(struct inode *old_dir,
323 				  struct dentry *old_dentry,
324 				  struct inode *new_dir,
325 				  struct dentry *new_dentry)
326 {
327 	struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
328 	struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
329 	u32 old_index = dentry2offset(old_dentry);
330 	u32 new_index = dentry2offset(new_dentry);
331 	int ret;
332 
333 	simple_offset_remove(old_ctx, old_dentry);
334 	simple_offset_remove(new_ctx, new_dentry);
335 
336 	ret = simple_offset_add(new_ctx, old_dentry);
337 	if (ret)
338 		goto out_restore;
339 
340 	ret = simple_offset_add(old_ctx, new_dentry);
341 	if (ret) {
342 		simple_offset_remove(new_ctx, old_dentry);
343 		goto out_restore;
344 	}
345 
346 	ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
347 	if (ret) {
348 		simple_offset_remove(new_ctx, old_dentry);
349 		simple_offset_remove(old_ctx, new_dentry);
350 		goto out_restore;
351 	}
352 	return 0;
353 
354 out_restore:
355 	offset_set(old_dentry, old_index);
356 	xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL);
357 	offset_set(new_dentry, new_index);
358 	xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL);
359 	return ret;
360 }
361 
362 /**
363  * simple_offset_destroy - Release offset map
364  * @octx: directory offset ctx that is about to be destroyed
365  *
366  * During fs teardown (eg. umount), a directory's offset map might still
367  * contain entries. xa_destroy() cleans out anything that remains.
368  */
369 void simple_offset_destroy(struct offset_ctx *octx)
370 {
371 	xa_destroy(&octx->xa);
372 }
373 
374 /**
375  * offset_dir_llseek - Advance the read position of a directory descriptor
376  * @file: an open directory whose position is to be updated
377  * @offset: a byte offset
378  * @whence: enumerator describing the starting position for this update
379  *
380  * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
381  *
382  * Returns the updated read position if successful; otherwise a
383  * negative errno is returned and the read position remains unchanged.
384  */
385 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
386 {
387 	switch (whence) {
388 	case SEEK_CUR:
389 		offset += file->f_pos;
390 		fallthrough;
391 	case SEEK_SET:
392 		if (offset >= 0)
393 			break;
394 		fallthrough;
395 	default:
396 		return -EINVAL;
397 	}
398 
399 	return vfs_setpos(file, offset, U32_MAX);
400 }
401 
402 static struct dentry *offset_find_next(struct xa_state *xas)
403 {
404 	struct dentry *child, *found = NULL;
405 
406 	rcu_read_lock();
407 	child = xas_next_entry(xas, U32_MAX);
408 	if (!child)
409 		goto out;
410 	spin_lock(&child->d_lock);
411 	if (simple_positive(child))
412 		found = dget_dlock(child);
413 	spin_unlock(&child->d_lock);
414 out:
415 	rcu_read_unlock();
416 	return found;
417 }
418 
419 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
420 {
421 	u32 offset = dentry2offset(dentry);
422 	struct inode *inode = d_inode(dentry);
423 
424 	return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
425 			  inode->i_ino, fs_umode_to_dtype(inode->i_mode));
426 }
427 
428 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
429 {
430 	struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
431 	XA_STATE(xas, &so_ctx->xa, ctx->pos);
432 	struct dentry *dentry;
433 
434 	while (true) {
435 		dentry = offset_find_next(&xas);
436 		if (!dentry)
437 			break;
438 
439 		if (!offset_dir_emit(ctx, dentry)) {
440 			dput(dentry);
441 			break;
442 		}
443 
444 		dput(dentry);
445 		ctx->pos = xas.xa_index + 1;
446 	}
447 }
448 
449 /**
450  * offset_readdir - Emit entries starting at offset @ctx->pos
451  * @file: an open directory to iterate over
452  * @ctx: directory iteration context
453  *
454  * Caller must hold @file's i_rwsem to prevent insertion or removal of
455  * entries during this call.
456  *
457  * On entry, @ctx->pos contains an offset that represents the first entry
458  * to be read from the directory.
459  *
460  * The operation continues until there are no more entries to read, or
461  * until the ctx->actor indicates there is no more space in the caller's
462  * output buffer.
463  *
464  * On return, @ctx->pos contains an offset that will read the next entry
465  * in this directory when offset_readdir() is called again with @ctx.
466  *
467  * Return values:
468  *   %0 - Complete
469  */
470 static int offset_readdir(struct file *file, struct dir_context *ctx)
471 {
472 	struct dentry *dir = file->f_path.dentry;
473 
474 	lockdep_assert_held(&d_inode(dir)->i_rwsem);
475 
476 	if (!dir_emit_dots(file, ctx))
477 		return 0;
478 
479 	offset_iterate_dir(d_inode(dir), ctx);
480 	return 0;
481 }
482 
483 const struct file_operations simple_offset_dir_operations = {
484 	.llseek		= offset_dir_llseek,
485 	.iterate_shared	= offset_readdir,
486 	.read		= generic_read_dir,
487 	.fsync		= noop_fsync,
488 };
489 
490 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
491 {
492 	struct dentry *child = NULL;
493 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
494 
495 	spin_lock(&parent->d_lock);
496 	while ((p = p->next) != &parent->d_subdirs) {
497 		struct dentry *d = container_of(p, struct dentry, d_child);
498 		if (simple_positive(d)) {
499 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
500 			if (simple_positive(d))
501 				child = dget_dlock(d);
502 			spin_unlock(&d->d_lock);
503 			if (likely(child))
504 				break;
505 		}
506 	}
507 	spin_unlock(&parent->d_lock);
508 	dput(prev);
509 	return child;
510 }
511 
512 void simple_recursive_removal(struct dentry *dentry,
513                               void (*callback)(struct dentry *))
514 {
515 	struct dentry *this = dget(dentry);
516 	while (true) {
517 		struct dentry *victim = NULL, *child;
518 		struct inode *inode = this->d_inode;
519 
520 		inode_lock(inode);
521 		if (d_is_dir(this))
522 			inode->i_flags |= S_DEAD;
523 		while ((child = find_next_child(this, victim)) == NULL) {
524 			// kill and ascend
525 			// update metadata while it's still locked
526 			inode->i_ctime = current_time(inode);
527 			clear_nlink(inode);
528 			inode_unlock(inode);
529 			victim = this;
530 			this = this->d_parent;
531 			inode = this->d_inode;
532 			inode_lock(inode);
533 			if (simple_positive(victim)) {
534 				d_invalidate(victim);	// avoid lost mounts
535 				if (d_is_dir(victim))
536 					fsnotify_rmdir(inode, victim);
537 				else
538 					fsnotify_unlink(inode, victim);
539 				if (callback)
540 					callback(victim);
541 				dput(victim);		// unpin it
542 			}
543 			if (victim == dentry) {
544 				inode->i_ctime = inode->i_mtime =
545 					current_time(inode);
546 				if (d_is_dir(dentry))
547 					drop_nlink(inode);
548 				inode_unlock(inode);
549 				dput(dentry);
550 				return;
551 			}
552 		}
553 		inode_unlock(inode);
554 		this = child;
555 	}
556 }
557 EXPORT_SYMBOL(simple_recursive_removal);
558 
559 static const struct super_operations simple_super_operations = {
560 	.statfs		= simple_statfs,
561 };
562 
563 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
564 {
565 	struct pseudo_fs_context *ctx = fc->fs_private;
566 	struct inode *root;
567 
568 	s->s_maxbytes = MAX_LFS_FILESIZE;
569 	s->s_blocksize = PAGE_SIZE;
570 	s->s_blocksize_bits = PAGE_SHIFT;
571 	s->s_magic = ctx->magic;
572 	s->s_op = ctx->ops ?: &simple_super_operations;
573 	s->s_xattr = ctx->xattr;
574 	s->s_time_gran = 1;
575 	root = new_inode(s);
576 	if (!root)
577 		return -ENOMEM;
578 
579 	/*
580 	 * since this is the first inode, make it number 1. New inodes created
581 	 * after this must take care not to collide with it (by passing
582 	 * max_reserved of 1 to iunique).
583 	 */
584 	root->i_ino = 1;
585 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
586 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
587 	s->s_root = d_make_root(root);
588 	if (!s->s_root)
589 		return -ENOMEM;
590 	s->s_d_op = ctx->dops;
591 	return 0;
592 }
593 
594 static int pseudo_fs_get_tree(struct fs_context *fc)
595 {
596 	return get_tree_nodev(fc, pseudo_fs_fill_super);
597 }
598 
599 static void pseudo_fs_free(struct fs_context *fc)
600 {
601 	kfree(fc->fs_private);
602 }
603 
604 static const struct fs_context_operations pseudo_fs_context_ops = {
605 	.free		= pseudo_fs_free,
606 	.get_tree	= pseudo_fs_get_tree,
607 };
608 
609 /*
610  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
611  * will never be mountable)
612  */
613 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
614 					unsigned long magic)
615 {
616 	struct pseudo_fs_context *ctx;
617 
618 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
619 	if (likely(ctx)) {
620 		ctx->magic = magic;
621 		fc->fs_private = ctx;
622 		fc->ops = &pseudo_fs_context_ops;
623 		fc->sb_flags |= SB_NOUSER;
624 		fc->global = true;
625 	}
626 	return ctx;
627 }
628 EXPORT_SYMBOL(init_pseudo);
629 
630 int simple_open(struct inode *inode, struct file *file)
631 {
632 	if (inode->i_private)
633 		file->private_data = inode->i_private;
634 	return 0;
635 }
636 EXPORT_SYMBOL(simple_open);
637 
638 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
639 {
640 	struct inode *inode = d_inode(old_dentry);
641 
642 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
643 	inc_nlink(inode);
644 	ihold(inode);
645 	dget(dentry);
646 	d_instantiate(dentry, inode);
647 	return 0;
648 }
649 EXPORT_SYMBOL(simple_link);
650 
651 int simple_empty(struct dentry *dentry)
652 {
653 	struct dentry *child;
654 	int ret = 0;
655 
656 	spin_lock(&dentry->d_lock);
657 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
658 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
659 		if (simple_positive(child)) {
660 			spin_unlock(&child->d_lock);
661 			goto out;
662 		}
663 		spin_unlock(&child->d_lock);
664 	}
665 	ret = 1;
666 out:
667 	spin_unlock(&dentry->d_lock);
668 	return ret;
669 }
670 EXPORT_SYMBOL(simple_empty);
671 
672 int simple_unlink(struct inode *dir, struct dentry *dentry)
673 {
674 	struct inode *inode = d_inode(dentry);
675 
676 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
677 	drop_nlink(inode);
678 	dput(dentry);
679 	return 0;
680 }
681 EXPORT_SYMBOL(simple_unlink);
682 
683 int simple_rmdir(struct inode *dir, struct dentry *dentry)
684 {
685 	if (!simple_empty(dentry))
686 		return -ENOTEMPTY;
687 
688 	drop_nlink(d_inode(dentry));
689 	simple_unlink(dir, dentry);
690 	drop_nlink(dir);
691 	return 0;
692 }
693 EXPORT_SYMBOL(simple_rmdir);
694 
695 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
696 			   struct inode *new_dir, struct dentry *new_dentry)
697 {
698 	bool old_is_dir = d_is_dir(old_dentry);
699 	bool new_is_dir = d_is_dir(new_dentry);
700 
701 	if (old_dir != new_dir && old_is_dir != new_is_dir) {
702 		if (old_is_dir) {
703 			drop_nlink(old_dir);
704 			inc_nlink(new_dir);
705 		} else {
706 			drop_nlink(new_dir);
707 			inc_nlink(old_dir);
708 		}
709 	}
710 	old_dir->i_ctime = old_dir->i_mtime =
711 	new_dir->i_ctime = new_dir->i_mtime =
712 	d_inode(old_dentry)->i_ctime =
713 	d_inode(new_dentry)->i_ctime = current_time(old_dir);
714 
715 	return 0;
716 }
717 EXPORT_SYMBOL_GPL(simple_rename_exchange);
718 
719 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
720 		  struct dentry *old_dentry, struct inode *new_dir,
721 		  struct dentry *new_dentry, unsigned int flags)
722 {
723 	struct inode *inode = d_inode(old_dentry);
724 	int they_are_dirs = d_is_dir(old_dentry);
725 
726 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
727 		return -EINVAL;
728 
729 	if (flags & RENAME_EXCHANGE)
730 		return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
731 
732 	if (!simple_empty(new_dentry))
733 		return -ENOTEMPTY;
734 
735 	if (d_really_is_positive(new_dentry)) {
736 		simple_unlink(new_dir, new_dentry);
737 		if (they_are_dirs) {
738 			drop_nlink(d_inode(new_dentry));
739 			drop_nlink(old_dir);
740 		}
741 	} else if (they_are_dirs) {
742 		drop_nlink(old_dir);
743 		inc_nlink(new_dir);
744 	}
745 
746 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
747 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
748 
749 	return 0;
750 }
751 EXPORT_SYMBOL(simple_rename);
752 
753 /**
754  * simple_setattr - setattr for simple filesystem
755  * @idmap: idmap of the target mount
756  * @dentry: dentry
757  * @iattr: iattr structure
758  *
759  * Returns 0 on success, -error on failure.
760  *
761  * simple_setattr is a simple ->setattr implementation without a proper
762  * implementation of size changes.
763  *
764  * It can either be used for in-memory filesystems or special files
765  * on simple regular filesystems.  Anything that needs to change on-disk
766  * or wire state on size changes needs its own setattr method.
767  */
768 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
769 		   struct iattr *iattr)
770 {
771 	struct inode *inode = d_inode(dentry);
772 	int error;
773 
774 	error = setattr_prepare(idmap, dentry, iattr);
775 	if (error)
776 		return error;
777 
778 	if (iattr->ia_valid & ATTR_SIZE)
779 		truncate_setsize(inode, iattr->ia_size);
780 	setattr_copy(idmap, inode, iattr);
781 	mark_inode_dirty(inode);
782 	return 0;
783 }
784 EXPORT_SYMBOL(simple_setattr);
785 
786 static int simple_read_folio(struct file *file, struct folio *folio)
787 {
788 	folio_zero_range(folio, 0, folio_size(folio));
789 	flush_dcache_folio(folio);
790 	folio_mark_uptodate(folio);
791 	folio_unlock(folio);
792 	return 0;
793 }
794 
795 int simple_write_begin(struct file *file, struct address_space *mapping,
796 			loff_t pos, unsigned len,
797 			struct page **pagep, void **fsdata)
798 {
799 	struct page *page;
800 	pgoff_t index;
801 
802 	index = pos >> PAGE_SHIFT;
803 
804 	page = grab_cache_page_write_begin(mapping, index);
805 	if (!page)
806 		return -ENOMEM;
807 
808 	*pagep = page;
809 
810 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
811 		unsigned from = pos & (PAGE_SIZE - 1);
812 
813 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
814 	}
815 	return 0;
816 }
817 EXPORT_SYMBOL(simple_write_begin);
818 
819 /**
820  * simple_write_end - .write_end helper for non-block-device FSes
821  * @file: See .write_end of address_space_operations
822  * @mapping: 		"
823  * @pos: 		"
824  * @len: 		"
825  * @copied: 		"
826  * @page: 		"
827  * @fsdata: 		"
828  *
829  * simple_write_end does the minimum needed for updating a page after writing is
830  * done. It has the same API signature as the .write_end of
831  * address_space_operations vector. So it can just be set onto .write_end for
832  * FSes that don't need any other processing. i_mutex is assumed to be held.
833  * Block based filesystems should use generic_write_end().
834  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
835  * is not called, so a filesystem that actually does store data in .write_inode
836  * should extend on what's done here with a call to mark_inode_dirty() in the
837  * case that i_size has changed.
838  *
839  * Use *ONLY* with simple_read_folio()
840  */
841 static int simple_write_end(struct file *file, struct address_space *mapping,
842 			loff_t pos, unsigned len, unsigned copied,
843 			struct page *page, void *fsdata)
844 {
845 	struct inode *inode = page->mapping->host;
846 	loff_t last_pos = pos + copied;
847 
848 	/* zero the stale part of the page if we did a short copy */
849 	if (!PageUptodate(page)) {
850 		if (copied < len) {
851 			unsigned from = pos & (PAGE_SIZE - 1);
852 
853 			zero_user(page, from + copied, len - copied);
854 		}
855 		SetPageUptodate(page);
856 	}
857 	/*
858 	 * No need to use i_size_read() here, the i_size
859 	 * cannot change under us because we hold the i_mutex.
860 	 */
861 	if (last_pos > inode->i_size)
862 		i_size_write(inode, last_pos);
863 
864 	set_page_dirty(page);
865 	unlock_page(page);
866 	put_page(page);
867 
868 	return copied;
869 }
870 
871 /*
872  * Provides ramfs-style behavior: data in the pagecache, but no writeback.
873  */
874 const struct address_space_operations ram_aops = {
875 	.read_folio	= simple_read_folio,
876 	.write_begin	= simple_write_begin,
877 	.write_end	= simple_write_end,
878 	.dirty_folio	= noop_dirty_folio,
879 };
880 EXPORT_SYMBOL(ram_aops);
881 
882 /*
883  * the inodes created here are not hashed. If you use iunique to generate
884  * unique inode values later for this filesystem, then you must take care
885  * to pass it an appropriate max_reserved value to avoid collisions.
886  */
887 int simple_fill_super(struct super_block *s, unsigned long magic,
888 		      const struct tree_descr *files)
889 {
890 	struct inode *inode;
891 	struct dentry *root;
892 	struct dentry *dentry;
893 	int i;
894 
895 	s->s_blocksize = PAGE_SIZE;
896 	s->s_blocksize_bits = PAGE_SHIFT;
897 	s->s_magic = magic;
898 	s->s_op = &simple_super_operations;
899 	s->s_time_gran = 1;
900 
901 	inode = new_inode(s);
902 	if (!inode)
903 		return -ENOMEM;
904 	/*
905 	 * because the root inode is 1, the files array must not contain an
906 	 * entry at index 1
907 	 */
908 	inode->i_ino = 1;
909 	inode->i_mode = S_IFDIR | 0755;
910 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
911 	inode->i_op = &simple_dir_inode_operations;
912 	inode->i_fop = &simple_dir_operations;
913 	set_nlink(inode, 2);
914 	root = d_make_root(inode);
915 	if (!root)
916 		return -ENOMEM;
917 	for (i = 0; !files->name || files->name[0]; i++, files++) {
918 		if (!files->name)
919 			continue;
920 
921 		/* warn if it tries to conflict with the root inode */
922 		if (unlikely(i == 1))
923 			printk(KERN_WARNING "%s: %s passed in a files array"
924 				"with an index of 1!\n", __func__,
925 				s->s_type->name);
926 
927 		dentry = d_alloc_name(root, files->name);
928 		if (!dentry)
929 			goto out;
930 		inode = new_inode(s);
931 		if (!inode) {
932 			dput(dentry);
933 			goto out;
934 		}
935 		inode->i_mode = S_IFREG | files->mode;
936 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
937 		inode->i_fop = files->ops;
938 		inode->i_ino = i;
939 		d_add(dentry, inode);
940 	}
941 	s->s_root = root;
942 	return 0;
943 out:
944 	d_genocide(root);
945 	shrink_dcache_parent(root);
946 	dput(root);
947 	return -ENOMEM;
948 }
949 EXPORT_SYMBOL(simple_fill_super);
950 
951 static DEFINE_SPINLOCK(pin_fs_lock);
952 
953 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
954 {
955 	struct vfsmount *mnt = NULL;
956 	spin_lock(&pin_fs_lock);
957 	if (unlikely(!*mount)) {
958 		spin_unlock(&pin_fs_lock);
959 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
960 		if (IS_ERR(mnt))
961 			return PTR_ERR(mnt);
962 		spin_lock(&pin_fs_lock);
963 		if (!*mount)
964 			*mount = mnt;
965 	}
966 	mntget(*mount);
967 	++*count;
968 	spin_unlock(&pin_fs_lock);
969 	mntput(mnt);
970 	return 0;
971 }
972 EXPORT_SYMBOL(simple_pin_fs);
973 
974 void simple_release_fs(struct vfsmount **mount, int *count)
975 {
976 	struct vfsmount *mnt;
977 	spin_lock(&pin_fs_lock);
978 	mnt = *mount;
979 	if (!--*count)
980 		*mount = NULL;
981 	spin_unlock(&pin_fs_lock);
982 	mntput(mnt);
983 }
984 EXPORT_SYMBOL(simple_release_fs);
985 
986 /**
987  * simple_read_from_buffer - copy data from the buffer to user space
988  * @to: the user space buffer to read to
989  * @count: the maximum number of bytes to read
990  * @ppos: the current position in the buffer
991  * @from: the buffer to read from
992  * @available: the size of the buffer
993  *
994  * The simple_read_from_buffer() function reads up to @count bytes from the
995  * buffer @from at offset @ppos into the user space address starting at @to.
996  *
997  * On success, the number of bytes read is returned and the offset @ppos is
998  * advanced by this number, or negative value is returned on error.
999  **/
1000 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1001 				const void *from, size_t available)
1002 {
1003 	loff_t pos = *ppos;
1004 	size_t ret;
1005 
1006 	if (pos < 0)
1007 		return -EINVAL;
1008 	if (pos >= available || !count)
1009 		return 0;
1010 	if (count > available - pos)
1011 		count = available - pos;
1012 	ret = copy_to_user(to, from + pos, count);
1013 	if (ret == count)
1014 		return -EFAULT;
1015 	count -= ret;
1016 	*ppos = pos + count;
1017 	return count;
1018 }
1019 EXPORT_SYMBOL(simple_read_from_buffer);
1020 
1021 /**
1022  * simple_write_to_buffer - copy data from user space to the buffer
1023  * @to: the buffer to write to
1024  * @available: the size of the buffer
1025  * @ppos: the current position in the buffer
1026  * @from: the user space buffer to read from
1027  * @count: the maximum number of bytes to read
1028  *
1029  * The simple_write_to_buffer() function reads up to @count bytes from the user
1030  * space address starting at @from into the buffer @to at offset @ppos.
1031  *
1032  * On success, the number of bytes written is returned and the offset @ppos is
1033  * advanced by this number, or negative value is returned on error.
1034  **/
1035 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1036 		const void __user *from, size_t count)
1037 {
1038 	loff_t pos = *ppos;
1039 	size_t res;
1040 
1041 	if (pos < 0)
1042 		return -EINVAL;
1043 	if (pos >= available || !count)
1044 		return 0;
1045 	if (count > available - pos)
1046 		count = available - pos;
1047 	res = copy_from_user(to + pos, from, count);
1048 	if (res == count)
1049 		return -EFAULT;
1050 	count -= res;
1051 	*ppos = pos + count;
1052 	return count;
1053 }
1054 EXPORT_SYMBOL(simple_write_to_buffer);
1055 
1056 /**
1057  * memory_read_from_buffer - copy data from the buffer
1058  * @to: the kernel space buffer to read to
1059  * @count: the maximum number of bytes to read
1060  * @ppos: the current position in the buffer
1061  * @from: the buffer to read from
1062  * @available: the size of the buffer
1063  *
1064  * The memory_read_from_buffer() function reads up to @count bytes from the
1065  * buffer @from at offset @ppos into the kernel space address starting at @to.
1066  *
1067  * On success, the number of bytes read is returned and the offset @ppos is
1068  * advanced by this number, or negative value is returned on error.
1069  **/
1070 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1071 				const void *from, size_t available)
1072 {
1073 	loff_t pos = *ppos;
1074 
1075 	if (pos < 0)
1076 		return -EINVAL;
1077 	if (pos >= available)
1078 		return 0;
1079 	if (count > available - pos)
1080 		count = available - pos;
1081 	memcpy(to, from + pos, count);
1082 	*ppos = pos + count;
1083 
1084 	return count;
1085 }
1086 EXPORT_SYMBOL(memory_read_from_buffer);
1087 
1088 /*
1089  * Transaction based IO.
1090  * The file expects a single write which triggers the transaction, and then
1091  * possibly a read which collects the result - which is stored in a
1092  * file-local buffer.
1093  */
1094 
1095 void simple_transaction_set(struct file *file, size_t n)
1096 {
1097 	struct simple_transaction_argresp *ar = file->private_data;
1098 
1099 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1100 
1101 	/*
1102 	 * The barrier ensures that ar->size will really remain zero until
1103 	 * ar->data is ready for reading.
1104 	 */
1105 	smp_mb();
1106 	ar->size = n;
1107 }
1108 EXPORT_SYMBOL(simple_transaction_set);
1109 
1110 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1111 {
1112 	struct simple_transaction_argresp *ar;
1113 	static DEFINE_SPINLOCK(simple_transaction_lock);
1114 
1115 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1116 		return ERR_PTR(-EFBIG);
1117 
1118 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1119 	if (!ar)
1120 		return ERR_PTR(-ENOMEM);
1121 
1122 	spin_lock(&simple_transaction_lock);
1123 
1124 	/* only one write allowed per open */
1125 	if (file->private_data) {
1126 		spin_unlock(&simple_transaction_lock);
1127 		free_page((unsigned long)ar);
1128 		return ERR_PTR(-EBUSY);
1129 	}
1130 
1131 	file->private_data = ar;
1132 
1133 	spin_unlock(&simple_transaction_lock);
1134 
1135 	if (copy_from_user(ar->data, buf, size))
1136 		return ERR_PTR(-EFAULT);
1137 
1138 	return ar->data;
1139 }
1140 EXPORT_SYMBOL(simple_transaction_get);
1141 
1142 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1143 {
1144 	struct simple_transaction_argresp *ar = file->private_data;
1145 
1146 	if (!ar)
1147 		return 0;
1148 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1149 }
1150 EXPORT_SYMBOL(simple_transaction_read);
1151 
1152 int simple_transaction_release(struct inode *inode, struct file *file)
1153 {
1154 	free_page((unsigned long)file->private_data);
1155 	return 0;
1156 }
1157 EXPORT_SYMBOL(simple_transaction_release);
1158 
1159 /* Simple attribute files */
1160 
1161 struct simple_attr {
1162 	int (*get)(void *, u64 *);
1163 	int (*set)(void *, u64);
1164 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
1165 	char set_buf[24];
1166 	void *data;
1167 	const char *fmt;	/* format for read operation */
1168 	struct mutex mutex;	/* protects access to these buffers */
1169 };
1170 
1171 /* simple_attr_open is called by an actual attribute open file operation
1172  * to set the attribute specific access operations. */
1173 int simple_attr_open(struct inode *inode, struct file *file,
1174 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
1175 		     const char *fmt)
1176 {
1177 	struct simple_attr *attr;
1178 
1179 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1180 	if (!attr)
1181 		return -ENOMEM;
1182 
1183 	attr->get = get;
1184 	attr->set = set;
1185 	attr->data = inode->i_private;
1186 	attr->fmt = fmt;
1187 	mutex_init(&attr->mutex);
1188 
1189 	file->private_data = attr;
1190 
1191 	return nonseekable_open(inode, file);
1192 }
1193 EXPORT_SYMBOL_GPL(simple_attr_open);
1194 
1195 int simple_attr_release(struct inode *inode, struct file *file)
1196 {
1197 	kfree(file->private_data);
1198 	return 0;
1199 }
1200 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
1201 
1202 /* read from the buffer that is filled with the get function */
1203 ssize_t simple_attr_read(struct file *file, char __user *buf,
1204 			 size_t len, loff_t *ppos)
1205 {
1206 	struct simple_attr *attr;
1207 	size_t size;
1208 	ssize_t ret;
1209 
1210 	attr = file->private_data;
1211 
1212 	if (!attr->get)
1213 		return -EACCES;
1214 
1215 	ret = mutex_lock_interruptible(&attr->mutex);
1216 	if (ret)
1217 		return ret;
1218 
1219 	if (*ppos && attr->get_buf[0]) {
1220 		/* continued read */
1221 		size = strlen(attr->get_buf);
1222 	} else {
1223 		/* first read */
1224 		u64 val;
1225 		ret = attr->get(attr->data, &val);
1226 		if (ret)
1227 			goto out;
1228 
1229 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1230 				 attr->fmt, (unsigned long long)val);
1231 	}
1232 
1233 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1234 out:
1235 	mutex_unlock(&attr->mutex);
1236 	return ret;
1237 }
1238 EXPORT_SYMBOL_GPL(simple_attr_read);
1239 
1240 /* interpret the buffer as a number to call the set function with */
1241 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1242 			  size_t len, loff_t *ppos, bool is_signed)
1243 {
1244 	struct simple_attr *attr;
1245 	unsigned long long val;
1246 	size_t size;
1247 	ssize_t ret;
1248 
1249 	attr = file->private_data;
1250 	if (!attr->set)
1251 		return -EACCES;
1252 
1253 	ret = mutex_lock_interruptible(&attr->mutex);
1254 	if (ret)
1255 		return ret;
1256 
1257 	ret = -EFAULT;
1258 	size = min(sizeof(attr->set_buf) - 1, len);
1259 	if (copy_from_user(attr->set_buf, buf, size))
1260 		goto out;
1261 
1262 	attr->set_buf[size] = '\0';
1263 	if (is_signed)
1264 		ret = kstrtoll(attr->set_buf, 0, &val);
1265 	else
1266 		ret = kstrtoull(attr->set_buf, 0, &val);
1267 	if (ret)
1268 		goto out;
1269 	ret = attr->set(attr->data, val);
1270 	if (ret == 0)
1271 		ret = len; /* on success, claim we got the whole input */
1272 out:
1273 	mutex_unlock(&attr->mutex);
1274 	return ret;
1275 }
1276 
1277 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1278 			  size_t len, loff_t *ppos)
1279 {
1280 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
1281 }
1282 EXPORT_SYMBOL_GPL(simple_attr_write);
1283 
1284 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1285 			  size_t len, loff_t *ppos)
1286 {
1287 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
1288 }
1289 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1290 
1291 /**
1292  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1293  * @sb:		filesystem to do the file handle conversion on
1294  * @fid:	file handle to convert
1295  * @fh_len:	length of the file handle in bytes
1296  * @fh_type:	type of file handle
1297  * @get_inode:	filesystem callback to retrieve inode
1298  *
1299  * This function decodes @fid as long as it has one of the well-known
1300  * Linux filehandle types and calls @get_inode on it to retrieve the
1301  * inode for the object specified in the file handle.
1302  */
1303 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1304 		int fh_len, int fh_type, struct inode *(*get_inode)
1305 			(struct super_block *sb, u64 ino, u32 gen))
1306 {
1307 	struct inode *inode = NULL;
1308 
1309 	if (fh_len < 2)
1310 		return NULL;
1311 
1312 	switch (fh_type) {
1313 	case FILEID_INO32_GEN:
1314 	case FILEID_INO32_GEN_PARENT:
1315 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1316 		break;
1317 	}
1318 
1319 	return d_obtain_alias(inode);
1320 }
1321 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1322 
1323 /**
1324  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1325  * @sb:		filesystem to do the file handle conversion on
1326  * @fid:	file handle to convert
1327  * @fh_len:	length of the file handle in bytes
1328  * @fh_type:	type of file handle
1329  * @get_inode:	filesystem callback to retrieve inode
1330  *
1331  * This function decodes @fid as long as it has one of the well-known
1332  * Linux filehandle types and calls @get_inode on it to retrieve the
1333  * inode for the _parent_ object specified in the file handle if it
1334  * is specified in the file handle, or NULL otherwise.
1335  */
1336 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1337 		int fh_len, int fh_type, struct inode *(*get_inode)
1338 			(struct super_block *sb, u64 ino, u32 gen))
1339 {
1340 	struct inode *inode = NULL;
1341 
1342 	if (fh_len <= 2)
1343 		return NULL;
1344 
1345 	switch (fh_type) {
1346 	case FILEID_INO32_GEN_PARENT:
1347 		inode = get_inode(sb, fid->i32.parent_ino,
1348 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1349 		break;
1350 	}
1351 
1352 	return d_obtain_alias(inode);
1353 }
1354 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1355 
1356 /**
1357  * __generic_file_fsync - generic fsync implementation for simple filesystems
1358  *
1359  * @file:	file to synchronize
1360  * @start:	start offset in bytes
1361  * @end:	end offset in bytes (inclusive)
1362  * @datasync:	only synchronize essential metadata if true
1363  *
1364  * This is a generic implementation of the fsync method for simple
1365  * filesystems which track all non-inode metadata in the buffers list
1366  * hanging off the address_space structure.
1367  */
1368 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1369 				 int datasync)
1370 {
1371 	struct inode *inode = file->f_mapping->host;
1372 	int err;
1373 	int ret;
1374 
1375 	err = file_write_and_wait_range(file, start, end);
1376 	if (err)
1377 		return err;
1378 
1379 	inode_lock(inode);
1380 	ret = sync_mapping_buffers(inode->i_mapping);
1381 	if (!(inode->i_state & I_DIRTY_ALL))
1382 		goto out;
1383 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1384 		goto out;
1385 
1386 	err = sync_inode_metadata(inode, 1);
1387 	if (ret == 0)
1388 		ret = err;
1389 
1390 out:
1391 	inode_unlock(inode);
1392 	/* check and advance again to catch errors after syncing out buffers */
1393 	err = file_check_and_advance_wb_err(file);
1394 	if (ret == 0)
1395 		ret = err;
1396 	return ret;
1397 }
1398 EXPORT_SYMBOL(__generic_file_fsync);
1399 
1400 /**
1401  * generic_file_fsync - generic fsync implementation for simple filesystems
1402  *			with flush
1403  * @file:	file to synchronize
1404  * @start:	start offset in bytes
1405  * @end:	end offset in bytes (inclusive)
1406  * @datasync:	only synchronize essential metadata if true
1407  *
1408  */
1409 
1410 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1411 		       int datasync)
1412 {
1413 	struct inode *inode = file->f_mapping->host;
1414 	int err;
1415 
1416 	err = __generic_file_fsync(file, start, end, datasync);
1417 	if (err)
1418 		return err;
1419 	return blkdev_issue_flush(inode->i_sb->s_bdev);
1420 }
1421 EXPORT_SYMBOL(generic_file_fsync);
1422 
1423 /**
1424  * generic_check_addressable - Check addressability of file system
1425  * @blocksize_bits:	log of file system block size
1426  * @num_blocks:		number of blocks in file system
1427  *
1428  * Determine whether a file system with @num_blocks blocks (and a
1429  * block size of 2**@blocksize_bits) is addressable by the sector_t
1430  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1431  */
1432 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1433 {
1434 	u64 last_fs_block = num_blocks - 1;
1435 	u64 last_fs_page =
1436 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1437 
1438 	if (unlikely(num_blocks == 0))
1439 		return 0;
1440 
1441 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1442 		return -EINVAL;
1443 
1444 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1445 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1446 		return -EFBIG;
1447 	}
1448 	return 0;
1449 }
1450 EXPORT_SYMBOL(generic_check_addressable);
1451 
1452 /*
1453  * No-op implementation of ->fsync for in-memory filesystems.
1454  */
1455 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1456 {
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(noop_fsync);
1460 
1461 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1462 {
1463 	/*
1464 	 * iomap based filesystems support direct I/O without need for
1465 	 * this callback. However, it still needs to be set in
1466 	 * inode->a_ops so that open/fcntl know that direct I/O is
1467 	 * generally supported.
1468 	 */
1469 	return -EINVAL;
1470 }
1471 EXPORT_SYMBOL_GPL(noop_direct_IO);
1472 
1473 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1474 void kfree_link(void *p)
1475 {
1476 	kfree(p);
1477 }
1478 EXPORT_SYMBOL(kfree_link);
1479 
1480 struct inode *alloc_anon_inode(struct super_block *s)
1481 {
1482 	static const struct address_space_operations anon_aops = {
1483 		.dirty_folio	= noop_dirty_folio,
1484 	};
1485 	struct inode *inode = new_inode_pseudo(s);
1486 
1487 	if (!inode)
1488 		return ERR_PTR(-ENOMEM);
1489 
1490 	inode->i_ino = get_next_ino();
1491 	inode->i_mapping->a_ops = &anon_aops;
1492 
1493 	/*
1494 	 * Mark the inode dirty from the very beginning,
1495 	 * that way it will never be moved to the dirty
1496 	 * list because mark_inode_dirty() will think
1497 	 * that it already _is_ on the dirty list.
1498 	 */
1499 	inode->i_state = I_DIRTY;
1500 	inode->i_mode = S_IRUSR | S_IWUSR;
1501 	inode->i_uid = current_fsuid();
1502 	inode->i_gid = current_fsgid();
1503 	inode->i_flags |= S_PRIVATE;
1504 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1505 	return inode;
1506 }
1507 EXPORT_SYMBOL(alloc_anon_inode);
1508 
1509 /**
1510  * simple_nosetlease - generic helper for prohibiting leases
1511  * @filp: file pointer
1512  * @arg: type of lease to obtain
1513  * @flp: new lease supplied for insertion
1514  * @priv: private data for lm_setup operation
1515  *
1516  * Generic helper for filesystems that do not wish to allow leases to be set.
1517  * All arguments are ignored and it just returns -EINVAL.
1518  */
1519 int
1520 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1521 		  void **priv)
1522 {
1523 	return -EINVAL;
1524 }
1525 EXPORT_SYMBOL(simple_nosetlease);
1526 
1527 /**
1528  * simple_get_link - generic helper to get the target of "fast" symlinks
1529  * @dentry: not used here
1530  * @inode: the symlink inode
1531  * @done: not used here
1532  *
1533  * Generic helper for filesystems to use for symlink inodes where a pointer to
1534  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1535  * since as an optimization the path lookup code uses any non-NULL ->i_link
1536  * directly, without calling ->get_link().  But ->get_link() still must be set,
1537  * to mark the inode_operations as being for a symlink.
1538  *
1539  * Return: the symlink target
1540  */
1541 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1542 			    struct delayed_call *done)
1543 {
1544 	return inode->i_link;
1545 }
1546 EXPORT_SYMBOL(simple_get_link);
1547 
1548 const struct inode_operations simple_symlink_inode_operations = {
1549 	.get_link = simple_get_link,
1550 };
1551 EXPORT_SYMBOL(simple_symlink_inode_operations);
1552 
1553 /*
1554  * Operations for a permanently empty directory.
1555  */
1556 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1557 {
1558 	return ERR_PTR(-ENOENT);
1559 }
1560 
1561 static int empty_dir_getattr(struct mnt_idmap *idmap,
1562 			     const struct path *path, struct kstat *stat,
1563 			     u32 request_mask, unsigned int query_flags)
1564 {
1565 	struct inode *inode = d_inode(path->dentry);
1566 	generic_fillattr(&nop_mnt_idmap, inode, stat);
1567 	return 0;
1568 }
1569 
1570 static int empty_dir_setattr(struct mnt_idmap *idmap,
1571 			     struct dentry *dentry, struct iattr *attr)
1572 {
1573 	return -EPERM;
1574 }
1575 
1576 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1577 {
1578 	return -EOPNOTSUPP;
1579 }
1580 
1581 static const struct inode_operations empty_dir_inode_operations = {
1582 	.lookup		= empty_dir_lookup,
1583 	.permission	= generic_permission,
1584 	.setattr	= empty_dir_setattr,
1585 	.getattr	= empty_dir_getattr,
1586 	.listxattr	= empty_dir_listxattr,
1587 };
1588 
1589 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1590 {
1591 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1592 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1593 }
1594 
1595 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1596 {
1597 	dir_emit_dots(file, ctx);
1598 	return 0;
1599 }
1600 
1601 static const struct file_operations empty_dir_operations = {
1602 	.llseek		= empty_dir_llseek,
1603 	.read		= generic_read_dir,
1604 	.iterate_shared	= empty_dir_readdir,
1605 	.fsync		= noop_fsync,
1606 };
1607 
1608 
1609 void make_empty_dir_inode(struct inode *inode)
1610 {
1611 	set_nlink(inode, 2);
1612 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1613 	inode->i_uid = GLOBAL_ROOT_UID;
1614 	inode->i_gid = GLOBAL_ROOT_GID;
1615 	inode->i_rdev = 0;
1616 	inode->i_size = 0;
1617 	inode->i_blkbits = PAGE_SHIFT;
1618 	inode->i_blocks = 0;
1619 
1620 	inode->i_op = &empty_dir_inode_operations;
1621 	inode->i_opflags &= ~IOP_XATTR;
1622 	inode->i_fop = &empty_dir_operations;
1623 }
1624 
1625 bool is_empty_dir_inode(struct inode *inode)
1626 {
1627 	return (inode->i_fop == &empty_dir_operations) &&
1628 		(inode->i_op == &empty_dir_inode_operations);
1629 }
1630 
1631 #if IS_ENABLED(CONFIG_UNICODE)
1632 /*
1633  * Determine if the name of a dentry should be casefolded.
1634  *
1635  * Return: if names will need casefolding
1636  */
1637 static bool needs_casefold(const struct inode *dir)
1638 {
1639 	return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1640 }
1641 
1642 /**
1643  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1644  * @dentry:	dentry whose name we are checking against
1645  * @len:	len of name of dentry
1646  * @str:	str pointer to name of dentry
1647  * @name:	Name to compare against
1648  *
1649  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1650  */
1651 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1652 				const char *str, const struct qstr *name)
1653 {
1654 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1655 	const struct inode *dir = READ_ONCE(parent->d_inode);
1656 	const struct super_block *sb = dentry->d_sb;
1657 	const struct unicode_map *um = sb->s_encoding;
1658 	struct qstr qstr = QSTR_INIT(str, len);
1659 	char strbuf[DNAME_INLINE_LEN];
1660 	int ret;
1661 
1662 	if (!dir || !needs_casefold(dir))
1663 		goto fallback;
1664 	/*
1665 	 * If the dentry name is stored in-line, then it may be concurrently
1666 	 * modified by a rename.  If this happens, the VFS will eventually retry
1667 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1668 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1669 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1670 	 */
1671 	if (len <= DNAME_INLINE_LEN - 1) {
1672 		memcpy(strbuf, str, len);
1673 		strbuf[len] = 0;
1674 		qstr.name = strbuf;
1675 		/* prevent compiler from optimizing out the temporary buffer */
1676 		barrier();
1677 	}
1678 	ret = utf8_strncasecmp(um, name, &qstr);
1679 	if (ret >= 0)
1680 		return ret;
1681 
1682 	if (sb_has_strict_encoding(sb))
1683 		return -EINVAL;
1684 fallback:
1685 	if (len != name->len)
1686 		return 1;
1687 	return !!memcmp(str, name->name, len);
1688 }
1689 
1690 /**
1691  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1692  * @dentry:	dentry of the parent directory
1693  * @str:	qstr of name whose hash we should fill in
1694  *
1695  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1696  */
1697 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1698 {
1699 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1700 	struct super_block *sb = dentry->d_sb;
1701 	const struct unicode_map *um = sb->s_encoding;
1702 	int ret = 0;
1703 
1704 	if (!dir || !needs_casefold(dir))
1705 		return 0;
1706 
1707 	ret = utf8_casefold_hash(um, dentry, str);
1708 	if (ret < 0 && sb_has_strict_encoding(sb))
1709 		return -EINVAL;
1710 	return 0;
1711 }
1712 
1713 static const struct dentry_operations generic_ci_dentry_ops = {
1714 	.d_hash = generic_ci_d_hash,
1715 	.d_compare = generic_ci_d_compare,
1716 };
1717 #endif
1718 
1719 #ifdef CONFIG_FS_ENCRYPTION
1720 static const struct dentry_operations generic_encrypted_dentry_ops = {
1721 	.d_revalidate = fscrypt_d_revalidate,
1722 };
1723 #endif
1724 
1725 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1726 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1727 	.d_hash = generic_ci_d_hash,
1728 	.d_compare = generic_ci_d_compare,
1729 	.d_revalidate = fscrypt_d_revalidate,
1730 };
1731 #endif
1732 
1733 /**
1734  * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1735  * @dentry:	dentry to set ops on
1736  *
1737  * Casefolded directories need d_hash and d_compare set, so that the dentries
1738  * contained in them are handled case-insensitively.  Note that these operations
1739  * are needed on the parent directory rather than on the dentries in it, and
1740  * while the casefolding flag can be toggled on and off on an empty directory,
1741  * dentry_operations can't be changed later.  As a result, if the filesystem has
1742  * casefolding support enabled at all, we have to give all dentries the
1743  * casefolding operations even if their inode doesn't have the casefolding flag
1744  * currently (and thus the casefolding ops would be no-ops for now).
1745  *
1746  * Encryption works differently in that the only dentry operation it needs is
1747  * d_revalidate, which it only needs on dentries that have the no-key name flag.
1748  * The no-key flag can't be set "later", so we don't have to worry about that.
1749  *
1750  * Finally, to maximize compatibility with overlayfs (which isn't compatible
1751  * with certain dentry operations) and to avoid taking an unnecessary
1752  * performance hit, we use custom dentry_operations for each possible
1753  * combination rather than always installing all operations.
1754  */
1755 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1756 {
1757 #ifdef CONFIG_FS_ENCRYPTION
1758 	bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1759 #endif
1760 #if IS_ENABLED(CONFIG_UNICODE)
1761 	bool needs_ci_ops = dentry->d_sb->s_encoding;
1762 #endif
1763 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1764 	if (needs_encrypt_ops && needs_ci_ops) {
1765 		d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1766 		return;
1767 	}
1768 #endif
1769 #ifdef CONFIG_FS_ENCRYPTION
1770 	if (needs_encrypt_ops) {
1771 		d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1772 		return;
1773 	}
1774 #endif
1775 #if IS_ENABLED(CONFIG_UNICODE)
1776 	if (needs_ci_ops) {
1777 		d_set_d_op(dentry, &generic_ci_dentry_ops);
1778 		return;
1779 	}
1780 #endif
1781 }
1782 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1783 
1784 /**
1785  * inode_maybe_inc_iversion - increments i_version
1786  * @inode: inode with the i_version that should be updated
1787  * @force: increment the counter even if it's not necessary?
1788  *
1789  * Every time the inode is modified, the i_version field must be seen to have
1790  * changed by any observer.
1791  *
1792  * If "force" is set or the QUERIED flag is set, then ensure that we increment
1793  * the value, and clear the queried flag.
1794  *
1795  * In the common case where neither is set, then we can return "false" without
1796  * updating i_version.
1797  *
1798  * If this function returns false, and no other metadata has changed, then we
1799  * can avoid logging the metadata.
1800  */
1801 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1802 {
1803 	u64 cur, new;
1804 
1805 	/*
1806 	 * The i_version field is not strictly ordered with any other inode
1807 	 * information, but the legacy inode_inc_iversion code used a spinlock
1808 	 * to serialize increments.
1809 	 *
1810 	 * Here, we add full memory barriers to ensure that any de-facto
1811 	 * ordering with other info is preserved.
1812 	 *
1813 	 * This barrier pairs with the barrier in inode_query_iversion()
1814 	 */
1815 	smp_mb();
1816 	cur = inode_peek_iversion_raw(inode);
1817 	do {
1818 		/* If flag is clear then we needn't do anything */
1819 		if (!force && !(cur & I_VERSION_QUERIED))
1820 			return false;
1821 
1822 		/* Since lowest bit is flag, add 2 to avoid it */
1823 		new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1824 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1825 	return true;
1826 }
1827 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1828 
1829 /**
1830  * inode_query_iversion - read i_version for later use
1831  * @inode: inode from which i_version should be read
1832  *
1833  * Read the inode i_version counter. This should be used by callers that wish
1834  * to store the returned i_version for later comparison. This will guarantee
1835  * that a later query of the i_version will result in a different value if
1836  * anything has changed.
1837  *
1838  * In this implementation, we fetch the current value, set the QUERIED flag and
1839  * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1840  * that fails, we try again with the newly fetched value from the cmpxchg.
1841  */
1842 u64 inode_query_iversion(struct inode *inode)
1843 {
1844 	u64 cur, new;
1845 
1846 	cur = inode_peek_iversion_raw(inode);
1847 	do {
1848 		/* If flag is already set, then no need to swap */
1849 		if (cur & I_VERSION_QUERIED) {
1850 			/*
1851 			 * This barrier (and the implicit barrier in the
1852 			 * cmpxchg below) pairs with the barrier in
1853 			 * inode_maybe_inc_iversion().
1854 			 */
1855 			smp_mb();
1856 			break;
1857 		}
1858 
1859 		new = cur | I_VERSION_QUERIED;
1860 	} while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1861 	return cur >> I_VERSION_QUERIED_SHIFT;
1862 }
1863 EXPORT_SYMBOL(inode_query_iversion);
1864 
1865 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1866 		ssize_t direct_written, ssize_t buffered_written)
1867 {
1868 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1869 	loff_t pos = iocb->ki_pos - buffered_written;
1870 	loff_t end = iocb->ki_pos - 1;
1871 	int err;
1872 
1873 	/*
1874 	 * If the buffered write fallback returned an error, we want to return
1875 	 * the number of bytes which were written by direct I/O, or the error
1876 	 * code if that was zero.
1877 	 *
1878 	 * Note that this differs from normal direct-io semantics, which will
1879 	 * return -EFOO even if some bytes were written.
1880 	 */
1881 	if (unlikely(buffered_written < 0)) {
1882 		if (direct_written)
1883 			return direct_written;
1884 		return buffered_written;
1885 	}
1886 
1887 	/*
1888 	 * We need to ensure that the page cache pages are written to disk and
1889 	 * invalidated to preserve the expected O_DIRECT semantics.
1890 	 */
1891 	err = filemap_write_and_wait_range(mapping, pos, end);
1892 	if (err < 0) {
1893 		/*
1894 		 * We don't know how much we wrote, so just return the number of
1895 		 * bytes which were direct-written
1896 		 */
1897 		if (direct_written)
1898 			return direct_written;
1899 		return err;
1900 	}
1901 	invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1902 	return direct_written + buffered_written;
1903 }
1904 EXPORT_SYMBOL_GPL(direct_write_fallback);
1905