xref: /openbmc/linux/fs/libfs.c (revision 23c2b932)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/mount.h>
11 #include <linux/vfs.h>
12 #include <linux/quotaops.h>
13 #include <linux/mutex.h>
14 #include <linux/namei.h>
15 #include <linux/exportfs.h>
16 #include <linux/writeback.h>
17 #include <linux/buffer_head.h> /* sync_mapping_buffers */
18 
19 #include <asm/uaccess.h>
20 
21 #include "internal.h"
22 
23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
24 		   struct kstat *stat)
25 {
26 	struct inode *inode = d_inode(dentry);
27 	generic_fillattr(inode, stat);
28 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
29 	return 0;
30 }
31 EXPORT_SYMBOL(simple_getattr);
32 
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
34 {
35 	buf->f_type = dentry->d_sb->s_magic;
36 	buf->f_bsize = PAGE_SIZE;
37 	buf->f_namelen = NAME_MAX;
38 	return 0;
39 }
40 EXPORT_SYMBOL(simple_statfs);
41 
42 /*
43  * Retaining negative dentries for an in-memory filesystem just wastes
44  * memory and lookup time: arrange for them to be deleted immediately.
45  */
46 int always_delete_dentry(const struct dentry *dentry)
47 {
48 	return 1;
49 }
50 EXPORT_SYMBOL(always_delete_dentry);
51 
52 const struct dentry_operations simple_dentry_operations = {
53 	.d_delete = always_delete_dentry,
54 };
55 EXPORT_SYMBOL(simple_dentry_operations);
56 
57 /*
58  * Lookup the data. This is trivial - if the dentry didn't already
59  * exist, we know it is negative.  Set d_op to delete negative dentries.
60  */
61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
62 {
63 	if (dentry->d_name.len > NAME_MAX)
64 		return ERR_PTR(-ENAMETOOLONG);
65 	if (!dentry->d_sb->s_d_op)
66 		d_set_d_op(dentry, &simple_dentry_operations);
67 	d_add(dentry, NULL);
68 	return NULL;
69 }
70 EXPORT_SYMBOL(simple_lookup);
71 
72 int dcache_dir_open(struct inode *inode, struct file *file)
73 {
74 	file->private_data = d_alloc_cursor(file->f_path.dentry);
75 
76 	return file->private_data ? 0 : -ENOMEM;
77 }
78 EXPORT_SYMBOL(dcache_dir_open);
79 
80 int dcache_dir_close(struct inode *inode, struct file *file)
81 {
82 	dput(file->private_data);
83 	return 0;
84 }
85 EXPORT_SYMBOL(dcache_dir_close);
86 
87 /* parent is locked at least shared */
88 static struct dentry *next_positive(struct dentry *parent,
89 				    struct list_head *from,
90 				    int count)
91 {
92 	unsigned *seq = &parent->d_inode->i_dir_seq, n;
93 	struct dentry *res;
94 	struct list_head *p;
95 	bool skipped;
96 	int i;
97 
98 retry:
99 	i = count;
100 	skipped = false;
101 	n = smp_load_acquire(seq) & ~1;
102 	res = NULL;
103 	rcu_read_lock();
104 	for (p = from->next; p != &parent->d_subdirs; p = p->next) {
105 		struct dentry *d = list_entry(p, struct dentry, d_child);
106 		if (!simple_positive(d)) {
107 			skipped = true;
108 		} else if (!--i) {
109 			res = d;
110 			break;
111 		}
112 	}
113 	rcu_read_unlock();
114 	if (skipped) {
115 		smp_rmb();
116 		if (unlikely(*seq != n))
117 			goto retry;
118 	}
119 	return res;
120 }
121 
122 static void move_cursor(struct dentry *cursor, struct list_head *after)
123 {
124 	struct dentry *parent = cursor->d_parent;
125 	unsigned n, *seq = &parent->d_inode->i_dir_seq;
126 	spin_lock(&parent->d_lock);
127 	for (;;) {
128 		n = *seq;
129 		if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
130 			break;
131 		cpu_relax();
132 	}
133 	__list_del(cursor->d_child.prev, cursor->d_child.next);
134 	if (after)
135 		list_add(&cursor->d_child, after);
136 	else
137 		list_add_tail(&cursor->d_child, &parent->d_subdirs);
138 	smp_store_release(seq, n + 2);
139 	spin_unlock(&parent->d_lock);
140 }
141 
142 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
143 {
144 	struct dentry *dentry = file->f_path.dentry;
145 	switch (whence) {
146 		case 1:
147 			offset += file->f_pos;
148 		case 0:
149 			if (offset >= 0)
150 				break;
151 		default:
152 			return -EINVAL;
153 	}
154 	if (offset != file->f_pos) {
155 		file->f_pos = offset;
156 		if (file->f_pos >= 2) {
157 			struct dentry *cursor = file->private_data;
158 			struct dentry *to;
159 			loff_t n = file->f_pos - 2;
160 
161 			inode_lock_shared(dentry->d_inode);
162 			to = next_positive(dentry, &dentry->d_subdirs, n);
163 			move_cursor(cursor, to ? &to->d_child : NULL);
164 			inode_unlock_shared(dentry->d_inode);
165 		}
166 	}
167 	return offset;
168 }
169 EXPORT_SYMBOL(dcache_dir_lseek);
170 
171 /* Relationship between i_mode and the DT_xxx types */
172 static inline unsigned char dt_type(struct inode *inode)
173 {
174 	return (inode->i_mode >> 12) & 15;
175 }
176 
177 /*
178  * Directory is locked and all positive dentries in it are safe, since
179  * for ramfs-type trees they can't go away without unlink() or rmdir(),
180  * both impossible due to the lock on directory.
181  */
182 
183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 	struct dentry *dentry = file->f_path.dentry;
186 	struct dentry *cursor = file->private_data;
187 	struct list_head *p = &cursor->d_child;
188 	struct dentry *next;
189 	bool moved = false;
190 
191 	if (!dir_emit_dots(file, ctx))
192 		return 0;
193 
194 	if (ctx->pos == 2)
195 		p = &dentry->d_subdirs;
196 	while ((next = next_positive(dentry, p, 1)) != NULL) {
197 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
198 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
199 			break;
200 		moved = true;
201 		p = &next->d_child;
202 		ctx->pos++;
203 	}
204 	if (moved)
205 		move_cursor(cursor, p);
206 	return 0;
207 }
208 EXPORT_SYMBOL(dcache_readdir);
209 
210 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
211 {
212 	return -EISDIR;
213 }
214 EXPORT_SYMBOL(generic_read_dir);
215 
216 const struct file_operations simple_dir_operations = {
217 	.open		= dcache_dir_open,
218 	.release	= dcache_dir_close,
219 	.llseek		= dcache_dir_lseek,
220 	.read		= generic_read_dir,
221 	.iterate_shared	= dcache_readdir,
222 	.fsync		= noop_fsync,
223 };
224 EXPORT_SYMBOL(simple_dir_operations);
225 
226 const struct inode_operations simple_dir_inode_operations = {
227 	.lookup		= simple_lookup,
228 };
229 EXPORT_SYMBOL(simple_dir_inode_operations);
230 
231 static const struct super_operations simple_super_operations = {
232 	.statfs		= simple_statfs,
233 };
234 
235 /*
236  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
237  * will never be mountable)
238  */
239 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
240 	const struct super_operations *ops,
241 	const struct dentry_operations *dops, unsigned long magic)
242 {
243 	struct super_block *s;
244 	struct dentry *dentry;
245 	struct inode *root;
246 	struct qstr d_name = QSTR_INIT(name, strlen(name));
247 
248 	s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
249 	if (IS_ERR(s))
250 		return ERR_CAST(s);
251 
252 	s->s_maxbytes = MAX_LFS_FILESIZE;
253 	s->s_blocksize = PAGE_SIZE;
254 	s->s_blocksize_bits = PAGE_SHIFT;
255 	s->s_magic = magic;
256 	s->s_op = ops ? ops : &simple_super_operations;
257 	s->s_time_gran = 1;
258 	root = new_inode(s);
259 	if (!root)
260 		goto Enomem;
261 	/*
262 	 * since this is the first inode, make it number 1. New inodes created
263 	 * after this must take care not to collide with it (by passing
264 	 * max_reserved of 1 to iunique).
265 	 */
266 	root->i_ino = 1;
267 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
268 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
269 	dentry = __d_alloc(s, &d_name);
270 	if (!dentry) {
271 		iput(root);
272 		goto Enomem;
273 	}
274 	d_instantiate(dentry, root);
275 	s->s_root = dentry;
276 	s->s_d_op = dops;
277 	s->s_flags |= MS_ACTIVE;
278 	return dget(s->s_root);
279 
280 Enomem:
281 	deactivate_locked_super(s);
282 	return ERR_PTR(-ENOMEM);
283 }
284 EXPORT_SYMBOL(mount_pseudo);
285 
286 int simple_open(struct inode *inode, struct file *file)
287 {
288 	if (inode->i_private)
289 		file->private_data = inode->i_private;
290 	return 0;
291 }
292 EXPORT_SYMBOL(simple_open);
293 
294 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
295 {
296 	struct inode *inode = d_inode(old_dentry);
297 
298 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
299 	inc_nlink(inode);
300 	ihold(inode);
301 	dget(dentry);
302 	d_instantiate(dentry, inode);
303 	return 0;
304 }
305 EXPORT_SYMBOL(simple_link);
306 
307 int simple_empty(struct dentry *dentry)
308 {
309 	struct dentry *child;
310 	int ret = 0;
311 
312 	spin_lock(&dentry->d_lock);
313 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
314 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
315 		if (simple_positive(child)) {
316 			spin_unlock(&child->d_lock);
317 			goto out;
318 		}
319 		spin_unlock(&child->d_lock);
320 	}
321 	ret = 1;
322 out:
323 	spin_unlock(&dentry->d_lock);
324 	return ret;
325 }
326 EXPORT_SYMBOL(simple_empty);
327 
328 int simple_unlink(struct inode *dir, struct dentry *dentry)
329 {
330 	struct inode *inode = d_inode(dentry);
331 
332 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
333 	drop_nlink(inode);
334 	dput(dentry);
335 	return 0;
336 }
337 EXPORT_SYMBOL(simple_unlink);
338 
339 int simple_rmdir(struct inode *dir, struct dentry *dentry)
340 {
341 	if (!simple_empty(dentry))
342 		return -ENOTEMPTY;
343 
344 	drop_nlink(d_inode(dentry));
345 	simple_unlink(dir, dentry);
346 	drop_nlink(dir);
347 	return 0;
348 }
349 EXPORT_SYMBOL(simple_rmdir);
350 
351 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
352 		struct inode *new_dir, struct dentry *new_dentry)
353 {
354 	struct inode *inode = d_inode(old_dentry);
355 	int they_are_dirs = d_is_dir(old_dentry);
356 
357 	if (!simple_empty(new_dentry))
358 		return -ENOTEMPTY;
359 
360 	if (d_really_is_positive(new_dentry)) {
361 		simple_unlink(new_dir, new_dentry);
362 		if (they_are_dirs) {
363 			drop_nlink(d_inode(new_dentry));
364 			drop_nlink(old_dir);
365 		}
366 	} else if (they_are_dirs) {
367 		drop_nlink(old_dir);
368 		inc_nlink(new_dir);
369 	}
370 
371 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
372 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
373 
374 	return 0;
375 }
376 EXPORT_SYMBOL(simple_rename);
377 
378 /**
379  * simple_setattr - setattr for simple filesystem
380  * @dentry: dentry
381  * @iattr: iattr structure
382  *
383  * Returns 0 on success, -error on failure.
384  *
385  * simple_setattr is a simple ->setattr implementation without a proper
386  * implementation of size changes.
387  *
388  * It can either be used for in-memory filesystems or special files
389  * on simple regular filesystems.  Anything that needs to change on-disk
390  * or wire state on size changes needs its own setattr method.
391  */
392 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
393 {
394 	struct inode *inode = d_inode(dentry);
395 	int error;
396 
397 	error = inode_change_ok(inode, iattr);
398 	if (error)
399 		return error;
400 
401 	if (iattr->ia_valid & ATTR_SIZE)
402 		truncate_setsize(inode, iattr->ia_size);
403 	setattr_copy(inode, iattr);
404 	mark_inode_dirty(inode);
405 	return 0;
406 }
407 EXPORT_SYMBOL(simple_setattr);
408 
409 int simple_readpage(struct file *file, struct page *page)
410 {
411 	clear_highpage(page);
412 	flush_dcache_page(page);
413 	SetPageUptodate(page);
414 	unlock_page(page);
415 	return 0;
416 }
417 EXPORT_SYMBOL(simple_readpage);
418 
419 int simple_write_begin(struct file *file, struct address_space *mapping,
420 			loff_t pos, unsigned len, unsigned flags,
421 			struct page **pagep, void **fsdata)
422 {
423 	struct page *page;
424 	pgoff_t index;
425 
426 	index = pos >> PAGE_SHIFT;
427 
428 	page = grab_cache_page_write_begin(mapping, index, flags);
429 	if (!page)
430 		return -ENOMEM;
431 
432 	*pagep = page;
433 
434 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
435 		unsigned from = pos & (PAGE_SIZE - 1);
436 
437 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
438 	}
439 	return 0;
440 }
441 EXPORT_SYMBOL(simple_write_begin);
442 
443 /**
444  * simple_write_end - .write_end helper for non-block-device FSes
445  * @available: See .write_end of address_space_operations
446  * @file: 		"
447  * @mapping: 		"
448  * @pos: 		"
449  * @len: 		"
450  * @copied: 		"
451  * @page: 		"
452  * @fsdata: 		"
453  *
454  * simple_write_end does the minimum needed for updating a page after writing is
455  * done. It has the same API signature as the .write_end of
456  * address_space_operations vector. So it can just be set onto .write_end for
457  * FSes that don't need any other processing. i_mutex is assumed to be held.
458  * Block based filesystems should use generic_write_end().
459  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
460  * is not called, so a filesystem that actually does store data in .write_inode
461  * should extend on what's done here with a call to mark_inode_dirty() in the
462  * case that i_size has changed.
463  */
464 int simple_write_end(struct file *file, struct address_space *mapping,
465 			loff_t pos, unsigned len, unsigned copied,
466 			struct page *page, void *fsdata)
467 {
468 	struct inode *inode = page->mapping->host;
469 	loff_t last_pos = pos + copied;
470 
471 	/* zero the stale part of the page if we did a short copy */
472 	if (copied < len) {
473 		unsigned from = pos & (PAGE_SIZE - 1);
474 
475 		zero_user(page, from + copied, len - copied);
476 	}
477 
478 	if (!PageUptodate(page))
479 		SetPageUptodate(page);
480 	/*
481 	 * No need to use i_size_read() here, the i_size
482 	 * cannot change under us because we hold the i_mutex.
483 	 */
484 	if (last_pos > inode->i_size)
485 		i_size_write(inode, last_pos);
486 
487 	set_page_dirty(page);
488 	unlock_page(page);
489 	put_page(page);
490 
491 	return copied;
492 }
493 EXPORT_SYMBOL(simple_write_end);
494 
495 /*
496  * the inodes created here are not hashed. If you use iunique to generate
497  * unique inode values later for this filesystem, then you must take care
498  * to pass it an appropriate max_reserved value to avoid collisions.
499  */
500 int simple_fill_super(struct super_block *s, unsigned long magic,
501 		      struct tree_descr *files)
502 {
503 	struct inode *inode;
504 	struct dentry *root;
505 	struct dentry *dentry;
506 	int i;
507 
508 	s->s_blocksize = PAGE_SIZE;
509 	s->s_blocksize_bits = PAGE_SHIFT;
510 	s->s_magic = magic;
511 	s->s_op = &simple_super_operations;
512 	s->s_time_gran = 1;
513 
514 	inode = new_inode(s);
515 	if (!inode)
516 		return -ENOMEM;
517 	/*
518 	 * because the root inode is 1, the files array must not contain an
519 	 * entry at index 1
520 	 */
521 	inode->i_ino = 1;
522 	inode->i_mode = S_IFDIR | 0755;
523 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
524 	inode->i_op = &simple_dir_inode_operations;
525 	inode->i_fop = &simple_dir_operations;
526 	set_nlink(inode, 2);
527 	root = d_make_root(inode);
528 	if (!root)
529 		return -ENOMEM;
530 	for (i = 0; !files->name || files->name[0]; i++, files++) {
531 		if (!files->name)
532 			continue;
533 
534 		/* warn if it tries to conflict with the root inode */
535 		if (unlikely(i == 1))
536 			printk(KERN_WARNING "%s: %s passed in a files array"
537 				"with an index of 1!\n", __func__,
538 				s->s_type->name);
539 
540 		dentry = d_alloc_name(root, files->name);
541 		if (!dentry)
542 			goto out;
543 		inode = new_inode(s);
544 		if (!inode) {
545 			dput(dentry);
546 			goto out;
547 		}
548 		inode->i_mode = S_IFREG | files->mode;
549 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
550 		inode->i_fop = files->ops;
551 		inode->i_ino = i;
552 		d_add(dentry, inode);
553 	}
554 	s->s_root = root;
555 	return 0;
556 out:
557 	d_genocide(root);
558 	shrink_dcache_parent(root);
559 	dput(root);
560 	return -ENOMEM;
561 }
562 EXPORT_SYMBOL(simple_fill_super);
563 
564 static DEFINE_SPINLOCK(pin_fs_lock);
565 
566 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
567 {
568 	struct vfsmount *mnt = NULL;
569 	spin_lock(&pin_fs_lock);
570 	if (unlikely(!*mount)) {
571 		spin_unlock(&pin_fs_lock);
572 		mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
573 		if (IS_ERR(mnt))
574 			return PTR_ERR(mnt);
575 		spin_lock(&pin_fs_lock);
576 		if (!*mount)
577 			*mount = mnt;
578 	}
579 	mntget(*mount);
580 	++*count;
581 	spin_unlock(&pin_fs_lock);
582 	mntput(mnt);
583 	return 0;
584 }
585 EXPORT_SYMBOL(simple_pin_fs);
586 
587 void simple_release_fs(struct vfsmount **mount, int *count)
588 {
589 	struct vfsmount *mnt;
590 	spin_lock(&pin_fs_lock);
591 	mnt = *mount;
592 	if (!--*count)
593 		*mount = NULL;
594 	spin_unlock(&pin_fs_lock);
595 	mntput(mnt);
596 }
597 EXPORT_SYMBOL(simple_release_fs);
598 
599 /**
600  * simple_read_from_buffer - copy data from the buffer to user space
601  * @to: the user space buffer to read to
602  * @count: the maximum number of bytes to read
603  * @ppos: the current position in the buffer
604  * @from: the buffer to read from
605  * @available: the size of the buffer
606  *
607  * The simple_read_from_buffer() function reads up to @count bytes from the
608  * buffer @from at offset @ppos into the user space address starting at @to.
609  *
610  * On success, the number of bytes read is returned and the offset @ppos is
611  * advanced by this number, or negative value is returned on error.
612  **/
613 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
614 				const void *from, size_t available)
615 {
616 	loff_t pos = *ppos;
617 	size_t ret;
618 
619 	if (pos < 0)
620 		return -EINVAL;
621 	if (pos >= available || !count)
622 		return 0;
623 	if (count > available - pos)
624 		count = available - pos;
625 	ret = copy_to_user(to, from + pos, count);
626 	if (ret == count)
627 		return -EFAULT;
628 	count -= ret;
629 	*ppos = pos + count;
630 	return count;
631 }
632 EXPORT_SYMBOL(simple_read_from_buffer);
633 
634 /**
635  * simple_write_to_buffer - copy data from user space to the buffer
636  * @to: the buffer to write to
637  * @available: the size of the buffer
638  * @ppos: the current position in the buffer
639  * @from: the user space buffer to read from
640  * @count: the maximum number of bytes to read
641  *
642  * The simple_write_to_buffer() function reads up to @count bytes from the user
643  * space address starting at @from into the buffer @to at offset @ppos.
644  *
645  * On success, the number of bytes written is returned and the offset @ppos is
646  * advanced by this number, or negative value is returned on error.
647  **/
648 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
649 		const void __user *from, size_t count)
650 {
651 	loff_t pos = *ppos;
652 	size_t res;
653 
654 	if (pos < 0)
655 		return -EINVAL;
656 	if (pos >= available || !count)
657 		return 0;
658 	if (count > available - pos)
659 		count = available - pos;
660 	res = copy_from_user(to + pos, from, count);
661 	if (res == count)
662 		return -EFAULT;
663 	count -= res;
664 	*ppos = pos + count;
665 	return count;
666 }
667 EXPORT_SYMBOL(simple_write_to_buffer);
668 
669 /**
670  * memory_read_from_buffer - copy data from the buffer
671  * @to: the kernel space buffer to read to
672  * @count: the maximum number of bytes to read
673  * @ppos: the current position in the buffer
674  * @from: the buffer to read from
675  * @available: the size of the buffer
676  *
677  * The memory_read_from_buffer() function reads up to @count bytes from the
678  * buffer @from at offset @ppos into the kernel space address starting at @to.
679  *
680  * On success, the number of bytes read is returned and the offset @ppos is
681  * advanced by this number, or negative value is returned on error.
682  **/
683 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
684 				const void *from, size_t available)
685 {
686 	loff_t pos = *ppos;
687 
688 	if (pos < 0)
689 		return -EINVAL;
690 	if (pos >= available)
691 		return 0;
692 	if (count > available - pos)
693 		count = available - pos;
694 	memcpy(to, from + pos, count);
695 	*ppos = pos + count;
696 
697 	return count;
698 }
699 EXPORT_SYMBOL(memory_read_from_buffer);
700 
701 /*
702  * Transaction based IO.
703  * The file expects a single write which triggers the transaction, and then
704  * possibly a read which collects the result - which is stored in a
705  * file-local buffer.
706  */
707 
708 void simple_transaction_set(struct file *file, size_t n)
709 {
710 	struct simple_transaction_argresp *ar = file->private_data;
711 
712 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
713 
714 	/*
715 	 * The barrier ensures that ar->size will really remain zero until
716 	 * ar->data is ready for reading.
717 	 */
718 	smp_mb();
719 	ar->size = n;
720 }
721 EXPORT_SYMBOL(simple_transaction_set);
722 
723 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
724 {
725 	struct simple_transaction_argresp *ar;
726 	static DEFINE_SPINLOCK(simple_transaction_lock);
727 
728 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
729 		return ERR_PTR(-EFBIG);
730 
731 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
732 	if (!ar)
733 		return ERR_PTR(-ENOMEM);
734 
735 	spin_lock(&simple_transaction_lock);
736 
737 	/* only one write allowed per open */
738 	if (file->private_data) {
739 		spin_unlock(&simple_transaction_lock);
740 		free_page((unsigned long)ar);
741 		return ERR_PTR(-EBUSY);
742 	}
743 
744 	file->private_data = ar;
745 
746 	spin_unlock(&simple_transaction_lock);
747 
748 	if (copy_from_user(ar->data, buf, size))
749 		return ERR_PTR(-EFAULT);
750 
751 	return ar->data;
752 }
753 EXPORT_SYMBOL(simple_transaction_get);
754 
755 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
756 {
757 	struct simple_transaction_argresp *ar = file->private_data;
758 
759 	if (!ar)
760 		return 0;
761 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
762 }
763 EXPORT_SYMBOL(simple_transaction_read);
764 
765 int simple_transaction_release(struct inode *inode, struct file *file)
766 {
767 	free_page((unsigned long)file->private_data);
768 	return 0;
769 }
770 EXPORT_SYMBOL(simple_transaction_release);
771 
772 /* Simple attribute files */
773 
774 struct simple_attr {
775 	int (*get)(void *, u64 *);
776 	int (*set)(void *, u64);
777 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
778 	char set_buf[24];
779 	void *data;
780 	const char *fmt;	/* format for read operation */
781 	struct mutex mutex;	/* protects access to these buffers */
782 };
783 
784 /* simple_attr_open is called by an actual attribute open file operation
785  * to set the attribute specific access operations. */
786 int simple_attr_open(struct inode *inode, struct file *file,
787 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
788 		     const char *fmt)
789 {
790 	struct simple_attr *attr;
791 
792 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
793 	if (!attr)
794 		return -ENOMEM;
795 
796 	attr->get = get;
797 	attr->set = set;
798 	attr->data = inode->i_private;
799 	attr->fmt = fmt;
800 	mutex_init(&attr->mutex);
801 
802 	file->private_data = attr;
803 
804 	return nonseekable_open(inode, file);
805 }
806 EXPORT_SYMBOL_GPL(simple_attr_open);
807 
808 int simple_attr_release(struct inode *inode, struct file *file)
809 {
810 	kfree(file->private_data);
811 	return 0;
812 }
813 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
814 
815 /* read from the buffer that is filled with the get function */
816 ssize_t simple_attr_read(struct file *file, char __user *buf,
817 			 size_t len, loff_t *ppos)
818 {
819 	struct simple_attr *attr;
820 	size_t size;
821 	ssize_t ret;
822 
823 	attr = file->private_data;
824 
825 	if (!attr->get)
826 		return -EACCES;
827 
828 	ret = mutex_lock_interruptible(&attr->mutex);
829 	if (ret)
830 		return ret;
831 
832 	if (*ppos) {		/* continued read */
833 		size = strlen(attr->get_buf);
834 	} else {		/* first read */
835 		u64 val;
836 		ret = attr->get(attr->data, &val);
837 		if (ret)
838 			goto out;
839 
840 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
841 				 attr->fmt, (unsigned long long)val);
842 	}
843 
844 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
845 out:
846 	mutex_unlock(&attr->mutex);
847 	return ret;
848 }
849 EXPORT_SYMBOL_GPL(simple_attr_read);
850 
851 /* interpret the buffer as a number to call the set function with */
852 ssize_t simple_attr_write(struct file *file, const char __user *buf,
853 			  size_t len, loff_t *ppos)
854 {
855 	struct simple_attr *attr;
856 	u64 val;
857 	size_t size;
858 	ssize_t ret;
859 
860 	attr = file->private_data;
861 	if (!attr->set)
862 		return -EACCES;
863 
864 	ret = mutex_lock_interruptible(&attr->mutex);
865 	if (ret)
866 		return ret;
867 
868 	ret = -EFAULT;
869 	size = min(sizeof(attr->set_buf) - 1, len);
870 	if (copy_from_user(attr->set_buf, buf, size))
871 		goto out;
872 
873 	attr->set_buf[size] = '\0';
874 	val = simple_strtoll(attr->set_buf, NULL, 0);
875 	ret = attr->set(attr->data, val);
876 	if (ret == 0)
877 		ret = len; /* on success, claim we got the whole input */
878 out:
879 	mutex_unlock(&attr->mutex);
880 	return ret;
881 }
882 EXPORT_SYMBOL_GPL(simple_attr_write);
883 
884 /**
885  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
886  * @sb:		filesystem to do the file handle conversion on
887  * @fid:	file handle to convert
888  * @fh_len:	length of the file handle in bytes
889  * @fh_type:	type of file handle
890  * @get_inode:	filesystem callback to retrieve inode
891  *
892  * This function decodes @fid as long as it has one of the well-known
893  * Linux filehandle types and calls @get_inode on it to retrieve the
894  * inode for the object specified in the file handle.
895  */
896 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
897 		int fh_len, int fh_type, struct inode *(*get_inode)
898 			(struct super_block *sb, u64 ino, u32 gen))
899 {
900 	struct inode *inode = NULL;
901 
902 	if (fh_len < 2)
903 		return NULL;
904 
905 	switch (fh_type) {
906 	case FILEID_INO32_GEN:
907 	case FILEID_INO32_GEN_PARENT:
908 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
909 		break;
910 	}
911 
912 	return d_obtain_alias(inode);
913 }
914 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
915 
916 /**
917  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
918  * @sb:		filesystem to do the file handle conversion on
919  * @fid:	file handle to convert
920  * @fh_len:	length of the file handle in bytes
921  * @fh_type:	type of file handle
922  * @get_inode:	filesystem callback to retrieve inode
923  *
924  * This function decodes @fid as long as it has one of the well-known
925  * Linux filehandle types and calls @get_inode on it to retrieve the
926  * inode for the _parent_ object specified in the file handle if it
927  * is specified in the file handle, or NULL otherwise.
928  */
929 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
930 		int fh_len, int fh_type, struct inode *(*get_inode)
931 			(struct super_block *sb, u64 ino, u32 gen))
932 {
933 	struct inode *inode = NULL;
934 
935 	if (fh_len <= 2)
936 		return NULL;
937 
938 	switch (fh_type) {
939 	case FILEID_INO32_GEN_PARENT:
940 		inode = get_inode(sb, fid->i32.parent_ino,
941 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
942 		break;
943 	}
944 
945 	return d_obtain_alias(inode);
946 }
947 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
948 
949 /**
950  * __generic_file_fsync - generic fsync implementation for simple filesystems
951  *
952  * @file:	file to synchronize
953  * @start:	start offset in bytes
954  * @end:	end offset in bytes (inclusive)
955  * @datasync:	only synchronize essential metadata if true
956  *
957  * This is a generic implementation of the fsync method for simple
958  * filesystems which track all non-inode metadata in the buffers list
959  * hanging off the address_space structure.
960  */
961 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
962 				 int datasync)
963 {
964 	struct inode *inode = file->f_mapping->host;
965 	int err;
966 	int ret;
967 
968 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
969 	if (err)
970 		return err;
971 
972 	inode_lock(inode);
973 	ret = sync_mapping_buffers(inode->i_mapping);
974 	if (!(inode->i_state & I_DIRTY_ALL))
975 		goto out;
976 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
977 		goto out;
978 
979 	err = sync_inode_metadata(inode, 1);
980 	if (ret == 0)
981 		ret = err;
982 
983 out:
984 	inode_unlock(inode);
985 	return ret;
986 }
987 EXPORT_SYMBOL(__generic_file_fsync);
988 
989 /**
990  * generic_file_fsync - generic fsync implementation for simple filesystems
991  *			with flush
992  * @file:	file to synchronize
993  * @start:	start offset in bytes
994  * @end:	end offset in bytes (inclusive)
995  * @datasync:	only synchronize essential metadata if true
996  *
997  */
998 
999 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1000 		       int datasync)
1001 {
1002 	struct inode *inode = file->f_mapping->host;
1003 	int err;
1004 
1005 	err = __generic_file_fsync(file, start, end, datasync);
1006 	if (err)
1007 		return err;
1008 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1009 }
1010 EXPORT_SYMBOL(generic_file_fsync);
1011 
1012 /**
1013  * generic_check_addressable - Check addressability of file system
1014  * @blocksize_bits:	log of file system block size
1015  * @num_blocks:		number of blocks in file system
1016  *
1017  * Determine whether a file system with @num_blocks blocks (and a
1018  * block size of 2**@blocksize_bits) is addressable by the sector_t
1019  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1020  */
1021 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1022 {
1023 	u64 last_fs_block = num_blocks - 1;
1024 	u64 last_fs_page =
1025 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1026 
1027 	if (unlikely(num_blocks == 0))
1028 		return 0;
1029 
1030 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1031 		return -EINVAL;
1032 
1033 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1034 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1035 		return -EFBIG;
1036 	}
1037 	return 0;
1038 }
1039 EXPORT_SYMBOL(generic_check_addressable);
1040 
1041 /*
1042  * No-op implementation of ->fsync for in-memory filesystems.
1043  */
1044 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1045 {
1046 	return 0;
1047 }
1048 EXPORT_SYMBOL(noop_fsync);
1049 
1050 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1051 void kfree_link(void *p)
1052 {
1053 	kfree(p);
1054 }
1055 EXPORT_SYMBOL(kfree_link);
1056 
1057 /*
1058  * nop .set_page_dirty method so that people can use .page_mkwrite on
1059  * anon inodes.
1060  */
1061 static int anon_set_page_dirty(struct page *page)
1062 {
1063 	return 0;
1064 };
1065 
1066 /*
1067  * A single inode exists for all anon_inode files. Contrary to pipes,
1068  * anon_inode inodes have no associated per-instance data, so we need
1069  * only allocate one of them.
1070  */
1071 struct inode *alloc_anon_inode(struct super_block *s)
1072 {
1073 	static const struct address_space_operations anon_aops = {
1074 		.set_page_dirty = anon_set_page_dirty,
1075 	};
1076 	struct inode *inode = new_inode_pseudo(s);
1077 
1078 	if (!inode)
1079 		return ERR_PTR(-ENOMEM);
1080 
1081 	inode->i_ino = get_next_ino();
1082 	inode->i_mapping->a_ops = &anon_aops;
1083 
1084 	/*
1085 	 * Mark the inode dirty from the very beginning,
1086 	 * that way it will never be moved to the dirty
1087 	 * list because mark_inode_dirty() will think
1088 	 * that it already _is_ on the dirty list.
1089 	 */
1090 	inode->i_state = I_DIRTY;
1091 	inode->i_mode = S_IRUSR | S_IWUSR;
1092 	inode->i_uid = current_fsuid();
1093 	inode->i_gid = current_fsgid();
1094 	inode->i_flags |= S_PRIVATE;
1095 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1096 	return inode;
1097 }
1098 EXPORT_SYMBOL(alloc_anon_inode);
1099 
1100 /**
1101  * simple_nosetlease - generic helper for prohibiting leases
1102  * @filp: file pointer
1103  * @arg: type of lease to obtain
1104  * @flp: new lease supplied for insertion
1105  * @priv: private data for lm_setup operation
1106  *
1107  * Generic helper for filesystems that do not wish to allow leases to be set.
1108  * All arguments are ignored and it just returns -EINVAL.
1109  */
1110 int
1111 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1112 		  void **priv)
1113 {
1114 	return -EINVAL;
1115 }
1116 EXPORT_SYMBOL(simple_nosetlease);
1117 
1118 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1119 			    struct delayed_call *done)
1120 {
1121 	return inode->i_link;
1122 }
1123 EXPORT_SYMBOL(simple_get_link);
1124 
1125 const struct inode_operations simple_symlink_inode_operations = {
1126 	.get_link = simple_get_link,
1127 	.readlink = generic_readlink
1128 };
1129 EXPORT_SYMBOL(simple_symlink_inode_operations);
1130 
1131 /*
1132  * Operations for a permanently empty directory.
1133  */
1134 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1135 {
1136 	return ERR_PTR(-ENOENT);
1137 }
1138 
1139 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1140 				 struct kstat *stat)
1141 {
1142 	struct inode *inode = d_inode(dentry);
1143 	generic_fillattr(inode, stat);
1144 	return 0;
1145 }
1146 
1147 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1148 {
1149 	return -EPERM;
1150 }
1151 
1152 static int empty_dir_setxattr(struct dentry *dentry, struct inode *inode,
1153 			      const char *name, const void *value,
1154 			      size_t size, int flags)
1155 {
1156 	return -EOPNOTSUPP;
1157 }
1158 
1159 static ssize_t empty_dir_getxattr(struct dentry *dentry, struct inode *inode,
1160 				  const char *name, void *value, size_t size)
1161 {
1162 	return -EOPNOTSUPP;
1163 }
1164 
1165 static int empty_dir_removexattr(struct dentry *dentry, const char *name)
1166 {
1167 	return -EOPNOTSUPP;
1168 }
1169 
1170 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1171 {
1172 	return -EOPNOTSUPP;
1173 }
1174 
1175 static const struct inode_operations empty_dir_inode_operations = {
1176 	.lookup		= empty_dir_lookup,
1177 	.permission	= generic_permission,
1178 	.setattr	= empty_dir_setattr,
1179 	.getattr	= empty_dir_getattr,
1180 	.setxattr	= empty_dir_setxattr,
1181 	.getxattr	= empty_dir_getxattr,
1182 	.removexattr	= empty_dir_removexattr,
1183 	.listxattr	= empty_dir_listxattr,
1184 };
1185 
1186 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1187 {
1188 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1189 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1190 }
1191 
1192 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1193 {
1194 	dir_emit_dots(file, ctx);
1195 	return 0;
1196 }
1197 
1198 static const struct file_operations empty_dir_operations = {
1199 	.llseek		= empty_dir_llseek,
1200 	.read		= generic_read_dir,
1201 	.iterate_shared	= empty_dir_readdir,
1202 	.fsync		= noop_fsync,
1203 };
1204 
1205 
1206 void make_empty_dir_inode(struct inode *inode)
1207 {
1208 	set_nlink(inode, 2);
1209 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1210 	inode->i_uid = GLOBAL_ROOT_UID;
1211 	inode->i_gid = GLOBAL_ROOT_GID;
1212 	inode->i_rdev = 0;
1213 	inode->i_size = 0;
1214 	inode->i_blkbits = PAGE_SHIFT;
1215 	inode->i_blocks = 0;
1216 
1217 	inode->i_op = &empty_dir_inode_operations;
1218 	inode->i_fop = &empty_dir_operations;
1219 }
1220 
1221 bool is_empty_dir_inode(struct inode *inode)
1222 {
1223 	return (inode->i_fop == &empty_dir_operations) &&
1224 		(inode->i_op == &empty_dir_inode_operations);
1225 }
1226