xref: /openbmc/linux/fs/libfs.c (revision 1fa0a7dc)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/cred.h>
11 #include <linux/mount.h>
12 #include <linux/vfs.h>
13 #include <linux/quotaops.h>
14 #include <linux/mutex.h>
15 #include <linux/namei.h>
16 #include <linux/exportfs.h>
17 #include <linux/writeback.h>
18 #include <linux/buffer_head.h> /* sync_mapping_buffers */
19 
20 #include <linux/uaccess.h>
21 
22 #include "internal.h"
23 
24 int simple_getattr(const struct path *path, struct kstat *stat,
25 		   u32 request_mask, unsigned int query_flags)
26 {
27 	struct inode *inode = d_inode(path->dentry);
28 	generic_fillattr(inode, stat);
29 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
30 	return 0;
31 }
32 EXPORT_SYMBOL(simple_getattr);
33 
34 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
35 {
36 	buf->f_type = dentry->d_sb->s_magic;
37 	buf->f_bsize = PAGE_SIZE;
38 	buf->f_namelen = NAME_MAX;
39 	return 0;
40 }
41 EXPORT_SYMBOL(simple_statfs);
42 
43 /*
44  * Retaining negative dentries for an in-memory filesystem just wastes
45  * memory and lookup time: arrange for them to be deleted immediately.
46  */
47 int always_delete_dentry(const struct dentry *dentry)
48 {
49 	return 1;
50 }
51 EXPORT_SYMBOL(always_delete_dentry);
52 
53 const struct dentry_operations simple_dentry_operations = {
54 	.d_delete = always_delete_dentry,
55 };
56 EXPORT_SYMBOL(simple_dentry_operations);
57 
58 /*
59  * Lookup the data. This is trivial - if the dentry didn't already
60  * exist, we know it is negative.  Set d_op to delete negative dentries.
61  */
62 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
63 {
64 	if (dentry->d_name.len > NAME_MAX)
65 		return ERR_PTR(-ENAMETOOLONG);
66 	if (!dentry->d_sb->s_d_op)
67 		d_set_d_op(dentry, &simple_dentry_operations);
68 	d_add(dentry, NULL);
69 	return NULL;
70 }
71 EXPORT_SYMBOL(simple_lookup);
72 
73 int dcache_dir_open(struct inode *inode, struct file *file)
74 {
75 	file->private_data = d_alloc_cursor(file->f_path.dentry);
76 
77 	return file->private_data ? 0 : -ENOMEM;
78 }
79 EXPORT_SYMBOL(dcache_dir_open);
80 
81 int dcache_dir_close(struct inode *inode, struct file *file)
82 {
83 	dput(file->private_data);
84 	return 0;
85 }
86 EXPORT_SYMBOL(dcache_dir_close);
87 
88 /* parent is locked at least shared */
89 static struct dentry *next_positive(struct dentry *parent,
90 				    struct list_head *from,
91 				    int count)
92 {
93 	unsigned *seq = &parent->d_inode->i_dir_seq, n;
94 	struct dentry *res;
95 	struct list_head *p;
96 	bool skipped;
97 	int i;
98 
99 retry:
100 	i = count;
101 	skipped = false;
102 	n = smp_load_acquire(seq) & ~1;
103 	res = NULL;
104 	rcu_read_lock();
105 	for (p = from->next; p != &parent->d_subdirs; p = p->next) {
106 		struct dentry *d = list_entry(p, struct dentry, d_child);
107 		if (!simple_positive(d)) {
108 			skipped = true;
109 		} else if (!--i) {
110 			res = d;
111 			break;
112 		}
113 	}
114 	rcu_read_unlock();
115 	if (skipped) {
116 		smp_rmb();
117 		if (unlikely(*seq != n))
118 			goto retry;
119 	}
120 	return res;
121 }
122 
123 static void move_cursor(struct dentry *cursor, struct list_head *after)
124 {
125 	struct dentry *parent = cursor->d_parent;
126 	unsigned n, *seq = &parent->d_inode->i_dir_seq;
127 	spin_lock(&parent->d_lock);
128 	for (;;) {
129 		n = *seq;
130 		if (!(n & 1) && cmpxchg(seq, n, n + 1) == n)
131 			break;
132 		cpu_relax();
133 	}
134 	__list_del(cursor->d_child.prev, cursor->d_child.next);
135 	if (after)
136 		list_add(&cursor->d_child, after);
137 	else
138 		list_add_tail(&cursor->d_child, &parent->d_subdirs);
139 	smp_store_release(seq, n + 2);
140 	spin_unlock(&parent->d_lock);
141 }
142 
143 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
144 {
145 	struct dentry *dentry = file->f_path.dentry;
146 	switch (whence) {
147 		case 1:
148 			offset += file->f_pos;
149 			/* fall through */
150 		case 0:
151 			if (offset >= 0)
152 				break;
153 			/* fall through */
154 		default:
155 			return -EINVAL;
156 	}
157 	if (offset != file->f_pos) {
158 		file->f_pos = offset;
159 		if (file->f_pos >= 2) {
160 			struct dentry *cursor = file->private_data;
161 			struct dentry *to;
162 			loff_t n = file->f_pos - 2;
163 
164 			inode_lock_shared(dentry->d_inode);
165 			to = next_positive(dentry, &dentry->d_subdirs, n);
166 			move_cursor(cursor, to ? &to->d_child : NULL);
167 			inode_unlock_shared(dentry->d_inode);
168 		}
169 	}
170 	return offset;
171 }
172 EXPORT_SYMBOL(dcache_dir_lseek);
173 
174 /* Relationship between i_mode and the DT_xxx types */
175 static inline unsigned char dt_type(struct inode *inode)
176 {
177 	return (inode->i_mode >> 12) & 15;
178 }
179 
180 /*
181  * Directory is locked and all positive dentries in it are safe, since
182  * for ramfs-type trees they can't go away without unlink() or rmdir(),
183  * both impossible due to the lock on directory.
184  */
185 
186 int dcache_readdir(struct file *file, struct dir_context *ctx)
187 {
188 	struct dentry *dentry = file->f_path.dentry;
189 	struct dentry *cursor = file->private_data;
190 	struct list_head *p = &cursor->d_child;
191 	struct dentry *next;
192 	bool moved = false;
193 
194 	if (!dir_emit_dots(file, ctx))
195 		return 0;
196 
197 	if (ctx->pos == 2)
198 		p = &dentry->d_subdirs;
199 	while ((next = next_positive(dentry, p, 1)) != NULL) {
200 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
201 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
202 			break;
203 		moved = true;
204 		p = &next->d_child;
205 		ctx->pos++;
206 	}
207 	if (moved)
208 		move_cursor(cursor, p);
209 	return 0;
210 }
211 EXPORT_SYMBOL(dcache_readdir);
212 
213 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
214 {
215 	return -EISDIR;
216 }
217 EXPORT_SYMBOL(generic_read_dir);
218 
219 const struct file_operations simple_dir_operations = {
220 	.open		= dcache_dir_open,
221 	.release	= dcache_dir_close,
222 	.llseek		= dcache_dir_lseek,
223 	.read		= generic_read_dir,
224 	.iterate_shared	= dcache_readdir,
225 	.fsync		= noop_fsync,
226 };
227 EXPORT_SYMBOL(simple_dir_operations);
228 
229 const struct inode_operations simple_dir_inode_operations = {
230 	.lookup		= simple_lookup,
231 };
232 EXPORT_SYMBOL(simple_dir_inode_operations);
233 
234 static const struct super_operations simple_super_operations = {
235 	.statfs		= simple_statfs,
236 };
237 
238 /*
239  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
240  * will never be mountable)
241  */
242 struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
243 	const struct super_operations *ops, const struct xattr_handler **xattr,
244 	const struct dentry_operations *dops, unsigned long magic)
245 {
246 	struct super_block *s;
247 	struct dentry *dentry;
248 	struct inode *root;
249 	struct qstr d_name = QSTR_INIT(name, strlen(name));
250 
251 	s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER,
252 			&init_user_ns, NULL);
253 	if (IS_ERR(s))
254 		return ERR_CAST(s);
255 
256 	s->s_maxbytes = MAX_LFS_FILESIZE;
257 	s->s_blocksize = PAGE_SIZE;
258 	s->s_blocksize_bits = PAGE_SHIFT;
259 	s->s_magic = magic;
260 	s->s_op = ops ? ops : &simple_super_operations;
261 	s->s_xattr = xattr;
262 	s->s_time_gran = 1;
263 	root = new_inode(s);
264 	if (!root)
265 		goto Enomem;
266 	/*
267 	 * since this is the first inode, make it number 1. New inodes created
268 	 * after this must take care not to collide with it (by passing
269 	 * max_reserved of 1 to iunique).
270 	 */
271 	root->i_ino = 1;
272 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
273 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
274 	dentry = __d_alloc(s, &d_name);
275 	if (!dentry) {
276 		iput(root);
277 		goto Enomem;
278 	}
279 	d_instantiate(dentry, root);
280 	s->s_root = dentry;
281 	s->s_d_op = dops;
282 	s->s_flags |= SB_ACTIVE;
283 	return dget(s->s_root);
284 
285 Enomem:
286 	deactivate_locked_super(s);
287 	return ERR_PTR(-ENOMEM);
288 }
289 EXPORT_SYMBOL(mount_pseudo_xattr);
290 
291 int simple_open(struct inode *inode, struct file *file)
292 {
293 	if (inode->i_private)
294 		file->private_data = inode->i_private;
295 	return 0;
296 }
297 EXPORT_SYMBOL(simple_open);
298 
299 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
300 {
301 	struct inode *inode = d_inode(old_dentry);
302 
303 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
304 	inc_nlink(inode);
305 	ihold(inode);
306 	dget(dentry);
307 	d_instantiate(dentry, inode);
308 	return 0;
309 }
310 EXPORT_SYMBOL(simple_link);
311 
312 int simple_empty(struct dentry *dentry)
313 {
314 	struct dentry *child;
315 	int ret = 0;
316 
317 	spin_lock(&dentry->d_lock);
318 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
319 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
320 		if (simple_positive(child)) {
321 			spin_unlock(&child->d_lock);
322 			goto out;
323 		}
324 		spin_unlock(&child->d_lock);
325 	}
326 	ret = 1;
327 out:
328 	spin_unlock(&dentry->d_lock);
329 	return ret;
330 }
331 EXPORT_SYMBOL(simple_empty);
332 
333 int simple_unlink(struct inode *dir, struct dentry *dentry)
334 {
335 	struct inode *inode = d_inode(dentry);
336 
337 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
338 	drop_nlink(inode);
339 	dput(dentry);
340 	return 0;
341 }
342 EXPORT_SYMBOL(simple_unlink);
343 
344 int simple_rmdir(struct inode *dir, struct dentry *dentry)
345 {
346 	if (!simple_empty(dentry))
347 		return -ENOTEMPTY;
348 
349 	drop_nlink(d_inode(dentry));
350 	simple_unlink(dir, dentry);
351 	drop_nlink(dir);
352 	return 0;
353 }
354 EXPORT_SYMBOL(simple_rmdir);
355 
356 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
357 		  struct inode *new_dir, struct dentry *new_dentry,
358 		  unsigned int flags)
359 {
360 	struct inode *inode = d_inode(old_dentry);
361 	int they_are_dirs = d_is_dir(old_dentry);
362 
363 	if (flags & ~RENAME_NOREPLACE)
364 		return -EINVAL;
365 
366 	if (!simple_empty(new_dentry))
367 		return -ENOTEMPTY;
368 
369 	if (d_really_is_positive(new_dentry)) {
370 		simple_unlink(new_dir, new_dentry);
371 		if (they_are_dirs) {
372 			drop_nlink(d_inode(new_dentry));
373 			drop_nlink(old_dir);
374 		}
375 	} else if (they_are_dirs) {
376 		drop_nlink(old_dir);
377 		inc_nlink(new_dir);
378 	}
379 
380 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
381 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
382 
383 	return 0;
384 }
385 EXPORT_SYMBOL(simple_rename);
386 
387 /**
388  * simple_setattr - setattr for simple filesystem
389  * @dentry: dentry
390  * @iattr: iattr structure
391  *
392  * Returns 0 on success, -error on failure.
393  *
394  * simple_setattr is a simple ->setattr implementation without a proper
395  * implementation of size changes.
396  *
397  * It can either be used for in-memory filesystems or special files
398  * on simple regular filesystems.  Anything that needs to change on-disk
399  * or wire state on size changes needs its own setattr method.
400  */
401 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
402 {
403 	struct inode *inode = d_inode(dentry);
404 	int error;
405 
406 	error = setattr_prepare(dentry, iattr);
407 	if (error)
408 		return error;
409 
410 	if (iattr->ia_valid & ATTR_SIZE)
411 		truncate_setsize(inode, iattr->ia_size);
412 	setattr_copy(inode, iattr);
413 	mark_inode_dirty(inode);
414 	return 0;
415 }
416 EXPORT_SYMBOL(simple_setattr);
417 
418 int simple_readpage(struct file *file, struct page *page)
419 {
420 	clear_highpage(page);
421 	flush_dcache_page(page);
422 	SetPageUptodate(page);
423 	unlock_page(page);
424 	return 0;
425 }
426 EXPORT_SYMBOL(simple_readpage);
427 
428 int simple_write_begin(struct file *file, struct address_space *mapping,
429 			loff_t pos, unsigned len, unsigned flags,
430 			struct page **pagep, void **fsdata)
431 {
432 	struct page *page;
433 	pgoff_t index;
434 
435 	index = pos >> PAGE_SHIFT;
436 
437 	page = grab_cache_page_write_begin(mapping, index, flags);
438 	if (!page)
439 		return -ENOMEM;
440 
441 	*pagep = page;
442 
443 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
444 		unsigned from = pos & (PAGE_SIZE - 1);
445 
446 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
447 	}
448 	return 0;
449 }
450 EXPORT_SYMBOL(simple_write_begin);
451 
452 /**
453  * simple_write_end - .write_end helper for non-block-device FSes
454  * @available: See .write_end of address_space_operations
455  * @file: 		"
456  * @mapping: 		"
457  * @pos: 		"
458  * @len: 		"
459  * @copied: 		"
460  * @page: 		"
461  * @fsdata: 		"
462  *
463  * simple_write_end does the minimum needed for updating a page after writing is
464  * done. It has the same API signature as the .write_end of
465  * address_space_operations vector. So it can just be set onto .write_end for
466  * FSes that don't need any other processing. i_mutex is assumed to be held.
467  * Block based filesystems should use generic_write_end().
468  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
469  * is not called, so a filesystem that actually does store data in .write_inode
470  * should extend on what's done here with a call to mark_inode_dirty() in the
471  * case that i_size has changed.
472  *
473  * Use *ONLY* with simple_readpage()
474  */
475 int simple_write_end(struct file *file, struct address_space *mapping,
476 			loff_t pos, unsigned len, unsigned copied,
477 			struct page *page, void *fsdata)
478 {
479 	struct inode *inode = page->mapping->host;
480 	loff_t last_pos = pos + copied;
481 
482 	/* zero the stale part of the page if we did a short copy */
483 	if (!PageUptodate(page)) {
484 		if (copied < len) {
485 			unsigned from = pos & (PAGE_SIZE - 1);
486 
487 			zero_user(page, from + copied, len - copied);
488 		}
489 		SetPageUptodate(page);
490 	}
491 	/*
492 	 * No need to use i_size_read() here, the i_size
493 	 * cannot change under us because we hold the i_mutex.
494 	 */
495 	if (last_pos > inode->i_size)
496 		i_size_write(inode, last_pos);
497 
498 	set_page_dirty(page);
499 	unlock_page(page);
500 	put_page(page);
501 
502 	return copied;
503 }
504 EXPORT_SYMBOL(simple_write_end);
505 
506 /*
507  * the inodes created here are not hashed. If you use iunique to generate
508  * unique inode values later for this filesystem, then you must take care
509  * to pass it an appropriate max_reserved value to avoid collisions.
510  */
511 int simple_fill_super(struct super_block *s, unsigned long magic,
512 		      const struct tree_descr *files)
513 {
514 	struct inode *inode;
515 	struct dentry *root;
516 	struct dentry *dentry;
517 	int i;
518 
519 	s->s_blocksize = PAGE_SIZE;
520 	s->s_blocksize_bits = PAGE_SHIFT;
521 	s->s_magic = magic;
522 	s->s_op = &simple_super_operations;
523 	s->s_time_gran = 1;
524 
525 	inode = new_inode(s);
526 	if (!inode)
527 		return -ENOMEM;
528 	/*
529 	 * because the root inode is 1, the files array must not contain an
530 	 * entry at index 1
531 	 */
532 	inode->i_ino = 1;
533 	inode->i_mode = S_IFDIR | 0755;
534 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
535 	inode->i_op = &simple_dir_inode_operations;
536 	inode->i_fop = &simple_dir_operations;
537 	set_nlink(inode, 2);
538 	root = d_make_root(inode);
539 	if (!root)
540 		return -ENOMEM;
541 	for (i = 0; !files->name || files->name[0]; i++, files++) {
542 		if (!files->name)
543 			continue;
544 
545 		/* warn if it tries to conflict with the root inode */
546 		if (unlikely(i == 1))
547 			printk(KERN_WARNING "%s: %s passed in a files array"
548 				"with an index of 1!\n", __func__,
549 				s->s_type->name);
550 
551 		dentry = d_alloc_name(root, files->name);
552 		if (!dentry)
553 			goto out;
554 		inode = new_inode(s);
555 		if (!inode) {
556 			dput(dentry);
557 			goto out;
558 		}
559 		inode->i_mode = S_IFREG | files->mode;
560 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
561 		inode->i_fop = files->ops;
562 		inode->i_ino = i;
563 		d_add(dentry, inode);
564 	}
565 	s->s_root = root;
566 	return 0;
567 out:
568 	d_genocide(root);
569 	shrink_dcache_parent(root);
570 	dput(root);
571 	return -ENOMEM;
572 }
573 EXPORT_SYMBOL(simple_fill_super);
574 
575 static DEFINE_SPINLOCK(pin_fs_lock);
576 
577 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
578 {
579 	struct vfsmount *mnt = NULL;
580 	spin_lock(&pin_fs_lock);
581 	if (unlikely(!*mount)) {
582 		spin_unlock(&pin_fs_lock);
583 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
584 		if (IS_ERR(mnt))
585 			return PTR_ERR(mnt);
586 		spin_lock(&pin_fs_lock);
587 		if (!*mount)
588 			*mount = mnt;
589 	}
590 	mntget(*mount);
591 	++*count;
592 	spin_unlock(&pin_fs_lock);
593 	mntput(mnt);
594 	return 0;
595 }
596 EXPORT_SYMBOL(simple_pin_fs);
597 
598 void simple_release_fs(struct vfsmount **mount, int *count)
599 {
600 	struct vfsmount *mnt;
601 	spin_lock(&pin_fs_lock);
602 	mnt = *mount;
603 	if (!--*count)
604 		*mount = NULL;
605 	spin_unlock(&pin_fs_lock);
606 	mntput(mnt);
607 }
608 EXPORT_SYMBOL(simple_release_fs);
609 
610 /**
611  * simple_read_from_buffer - copy data from the buffer to user space
612  * @to: the user space buffer to read to
613  * @count: the maximum number of bytes to read
614  * @ppos: the current position in the buffer
615  * @from: the buffer to read from
616  * @available: the size of the buffer
617  *
618  * The simple_read_from_buffer() function reads up to @count bytes from the
619  * buffer @from at offset @ppos into the user space address starting at @to.
620  *
621  * On success, the number of bytes read is returned and the offset @ppos is
622  * advanced by this number, or negative value is returned on error.
623  **/
624 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
625 				const void *from, size_t available)
626 {
627 	loff_t pos = *ppos;
628 	size_t ret;
629 
630 	if (pos < 0)
631 		return -EINVAL;
632 	if (pos >= available || !count)
633 		return 0;
634 	if (count > available - pos)
635 		count = available - pos;
636 	ret = copy_to_user(to, from + pos, count);
637 	if (ret == count)
638 		return -EFAULT;
639 	count -= ret;
640 	*ppos = pos + count;
641 	return count;
642 }
643 EXPORT_SYMBOL(simple_read_from_buffer);
644 
645 /**
646  * simple_write_to_buffer - copy data from user space to the buffer
647  * @to: the buffer to write to
648  * @available: the size of the buffer
649  * @ppos: the current position in the buffer
650  * @from: the user space buffer to read from
651  * @count: the maximum number of bytes to read
652  *
653  * The simple_write_to_buffer() function reads up to @count bytes from the user
654  * space address starting at @from into the buffer @to at offset @ppos.
655  *
656  * On success, the number of bytes written is returned and the offset @ppos is
657  * advanced by this number, or negative value is returned on error.
658  **/
659 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
660 		const void __user *from, size_t count)
661 {
662 	loff_t pos = *ppos;
663 	size_t res;
664 
665 	if (pos < 0)
666 		return -EINVAL;
667 	if (pos >= available || !count)
668 		return 0;
669 	if (count > available - pos)
670 		count = available - pos;
671 	res = copy_from_user(to + pos, from, count);
672 	if (res == count)
673 		return -EFAULT;
674 	count -= res;
675 	*ppos = pos + count;
676 	return count;
677 }
678 EXPORT_SYMBOL(simple_write_to_buffer);
679 
680 /**
681  * memory_read_from_buffer - copy data from the buffer
682  * @to: the kernel space buffer to read to
683  * @count: the maximum number of bytes to read
684  * @ppos: the current position in the buffer
685  * @from: the buffer to read from
686  * @available: the size of the buffer
687  *
688  * The memory_read_from_buffer() function reads up to @count bytes from the
689  * buffer @from at offset @ppos into the kernel space address starting at @to.
690  *
691  * On success, the number of bytes read is returned and the offset @ppos is
692  * advanced by this number, or negative value is returned on error.
693  **/
694 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
695 				const void *from, size_t available)
696 {
697 	loff_t pos = *ppos;
698 
699 	if (pos < 0)
700 		return -EINVAL;
701 	if (pos >= available)
702 		return 0;
703 	if (count > available - pos)
704 		count = available - pos;
705 	memcpy(to, from + pos, count);
706 	*ppos = pos + count;
707 
708 	return count;
709 }
710 EXPORT_SYMBOL(memory_read_from_buffer);
711 
712 /*
713  * Transaction based IO.
714  * The file expects a single write which triggers the transaction, and then
715  * possibly a read which collects the result - which is stored in a
716  * file-local buffer.
717  */
718 
719 void simple_transaction_set(struct file *file, size_t n)
720 {
721 	struct simple_transaction_argresp *ar = file->private_data;
722 
723 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
724 
725 	/*
726 	 * The barrier ensures that ar->size will really remain zero until
727 	 * ar->data is ready for reading.
728 	 */
729 	smp_mb();
730 	ar->size = n;
731 }
732 EXPORT_SYMBOL(simple_transaction_set);
733 
734 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
735 {
736 	struct simple_transaction_argresp *ar;
737 	static DEFINE_SPINLOCK(simple_transaction_lock);
738 
739 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
740 		return ERR_PTR(-EFBIG);
741 
742 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
743 	if (!ar)
744 		return ERR_PTR(-ENOMEM);
745 
746 	spin_lock(&simple_transaction_lock);
747 
748 	/* only one write allowed per open */
749 	if (file->private_data) {
750 		spin_unlock(&simple_transaction_lock);
751 		free_page((unsigned long)ar);
752 		return ERR_PTR(-EBUSY);
753 	}
754 
755 	file->private_data = ar;
756 
757 	spin_unlock(&simple_transaction_lock);
758 
759 	if (copy_from_user(ar->data, buf, size))
760 		return ERR_PTR(-EFAULT);
761 
762 	return ar->data;
763 }
764 EXPORT_SYMBOL(simple_transaction_get);
765 
766 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
767 {
768 	struct simple_transaction_argresp *ar = file->private_data;
769 
770 	if (!ar)
771 		return 0;
772 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
773 }
774 EXPORT_SYMBOL(simple_transaction_read);
775 
776 int simple_transaction_release(struct inode *inode, struct file *file)
777 {
778 	free_page((unsigned long)file->private_data);
779 	return 0;
780 }
781 EXPORT_SYMBOL(simple_transaction_release);
782 
783 /* Simple attribute files */
784 
785 struct simple_attr {
786 	int (*get)(void *, u64 *);
787 	int (*set)(void *, u64);
788 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
789 	char set_buf[24];
790 	void *data;
791 	const char *fmt;	/* format for read operation */
792 	struct mutex mutex;	/* protects access to these buffers */
793 };
794 
795 /* simple_attr_open is called by an actual attribute open file operation
796  * to set the attribute specific access operations. */
797 int simple_attr_open(struct inode *inode, struct file *file,
798 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
799 		     const char *fmt)
800 {
801 	struct simple_attr *attr;
802 
803 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
804 	if (!attr)
805 		return -ENOMEM;
806 
807 	attr->get = get;
808 	attr->set = set;
809 	attr->data = inode->i_private;
810 	attr->fmt = fmt;
811 	mutex_init(&attr->mutex);
812 
813 	file->private_data = attr;
814 
815 	return nonseekable_open(inode, file);
816 }
817 EXPORT_SYMBOL_GPL(simple_attr_open);
818 
819 int simple_attr_release(struct inode *inode, struct file *file)
820 {
821 	kfree(file->private_data);
822 	return 0;
823 }
824 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
825 
826 /* read from the buffer that is filled with the get function */
827 ssize_t simple_attr_read(struct file *file, char __user *buf,
828 			 size_t len, loff_t *ppos)
829 {
830 	struct simple_attr *attr;
831 	size_t size;
832 	ssize_t ret;
833 
834 	attr = file->private_data;
835 
836 	if (!attr->get)
837 		return -EACCES;
838 
839 	ret = mutex_lock_interruptible(&attr->mutex);
840 	if (ret)
841 		return ret;
842 
843 	if (*ppos) {		/* continued read */
844 		size = strlen(attr->get_buf);
845 	} else {		/* first read */
846 		u64 val;
847 		ret = attr->get(attr->data, &val);
848 		if (ret)
849 			goto out;
850 
851 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
852 				 attr->fmt, (unsigned long long)val);
853 	}
854 
855 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
856 out:
857 	mutex_unlock(&attr->mutex);
858 	return ret;
859 }
860 EXPORT_SYMBOL_GPL(simple_attr_read);
861 
862 /* interpret the buffer as a number to call the set function with */
863 ssize_t simple_attr_write(struct file *file, const char __user *buf,
864 			  size_t len, loff_t *ppos)
865 {
866 	struct simple_attr *attr;
867 	u64 val;
868 	size_t size;
869 	ssize_t ret;
870 
871 	attr = file->private_data;
872 	if (!attr->set)
873 		return -EACCES;
874 
875 	ret = mutex_lock_interruptible(&attr->mutex);
876 	if (ret)
877 		return ret;
878 
879 	ret = -EFAULT;
880 	size = min(sizeof(attr->set_buf) - 1, len);
881 	if (copy_from_user(attr->set_buf, buf, size))
882 		goto out;
883 
884 	attr->set_buf[size] = '\0';
885 	val = simple_strtoll(attr->set_buf, NULL, 0);
886 	ret = attr->set(attr->data, val);
887 	if (ret == 0)
888 		ret = len; /* on success, claim we got the whole input */
889 out:
890 	mutex_unlock(&attr->mutex);
891 	return ret;
892 }
893 EXPORT_SYMBOL_GPL(simple_attr_write);
894 
895 /**
896  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
897  * @sb:		filesystem to do the file handle conversion on
898  * @fid:	file handle to convert
899  * @fh_len:	length of the file handle in bytes
900  * @fh_type:	type of file handle
901  * @get_inode:	filesystem callback to retrieve inode
902  *
903  * This function decodes @fid as long as it has one of the well-known
904  * Linux filehandle types and calls @get_inode on it to retrieve the
905  * inode for the object specified in the file handle.
906  */
907 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
908 		int fh_len, int fh_type, struct inode *(*get_inode)
909 			(struct super_block *sb, u64 ino, u32 gen))
910 {
911 	struct inode *inode = NULL;
912 
913 	if (fh_len < 2)
914 		return NULL;
915 
916 	switch (fh_type) {
917 	case FILEID_INO32_GEN:
918 	case FILEID_INO32_GEN_PARENT:
919 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
920 		break;
921 	}
922 
923 	return d_obtain_alias(inode);
924 }
925 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
926 
927 /**
928  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
929  * @sb:		filesystem to do the file handle conversion on
930  * @fid:	file handle to convert
931  * @fh_len:	length of the file handle in bytes
932  * @fh_type:	type of file handle
933  * @get_inode:	filesystem callback to retrieve inode
934  *
935  * This function decodes @fid as long as it has one of the well-known
936  * Linux filehandle types and calls @get_inode on it to retrieve the
937  * inode for the _parent_ object specified in the file handle if it
938  * is specified in the file handle, or NULL otherwise.
939  */
940 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
941 		int fh_len, int fh_type, struct inode *(*get_inode)
942 			(struct super_block *sb, u64 ino, u32 gen))
943 {
944 	struct inode *inode = NULL;
945 
946 	if (fh_len <= 2)
947 		return NULL;
948 
949 	switch (fh_type) {
950 	case FILEID_INO32_GEN_PARENT:
951 		inode = get_inode(sb, fid->i32.parent_ino,
952 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
953 		break;
954 	}
955 
956 	return d_obtain_alias(inode);
957 }
958 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
959 
960 /**
961  * __generic_file_fsync - generic fsync implementation for simple filesystems
962  *
963  * @file:	file to synchronize
964  * @start:	start offset in bytes
965  * @end:	end offset in bytes (inclusive)
966  * @datasync:	only synchronize essential metadata if true
967  *
968  * This is a generic implementation of the fsync method for simple
969  * filesystems which track all non-inode metadata in the buffers list
970  * hanging off the address_space structure.
971  */
972 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
973 				 int datasync)
974 {
975 	struct inode *inode = file->f_mapping->host;
976 	int err;
977 	int ret;
978 
979 	err = file_write_and_wait_range(file, start, end);
980 	if (err)
981 		return err;
982 
983 	inode_lock(inode);
984 	ret = sync_mapping_buffers(inode->i_mapping);
985 	if (!(inode->i_state & I_DIRTY_ALL))
986 		goto out;
987 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
988 		goto out;
989 
990 	err = sync_inode_metadata(inode, 1);
991 	if (ret == 0)
992 		ret = err;
993 
994 out:
995 	inode_unlock(inode);
996 	/* check and advance again to catch errors after syncing out buffers */
997 	err = file_check_and_advance_wb_err(file);
998 	if (ret == 0)
999 		ret = err;
1000 	return ret;
1001 }
1002 EXPORT_SYMBOL(__generic_file_fsync);
1003 
1004 /**
1005  * generic_file_fsync - generic fsync implementation for simple filesystems
1006  *			with flush
1007  * @file:	file to synchronize
1008  * @start:	start offset in bytes
1009  * @end:	end offset in bytes (inclusive)
1010  * @datasync:	only synchronize essential metadata if true
1011  *
1012  */
1013 
1014 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1015 		       int datasync)
1016 {
1017 	struct inode *inode = file->f_mapping->host;
1018 	int err;
1019 
1020 	err = __generic_file_fsync(file, start, end, datasync);
1021 	if (err)
1022 		return err;
1023 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1024 }
1025 EXPORT_SYMBOL(generic_file_fsync);
1026 
1027 /**
1028  * generic_check_addressable - Check addressability of file system
1029  * @blocksize_bits:	log of file system block size
1030  * @num_blocks:		number of blocks in file system
1031  *
1032  * Determine whether a file system with @num_blocks blocks (and a
1033  * block size of 2**@blocksize_bits) is addressable by the sector_t
1034  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1035  */
1036 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1037 {
1038 	u64 last_fs_block = num_blocks - 1;
1039 	u64 last_fs_page =
1040 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1041 
1042 	if (unlikely(num_blocks == 0))
1043 		return 0;
1044 
1045 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1046 		return -EINVAL;
1047 
1048 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1049 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1050 		return -EFBIG;
1051 	}
1052 	return 0;
1053 }
1054 EXPORT_SYMBOL(generic_check_addressable);
1055 
1056 /*
1057  * No-op implementation of ->fsync for in-memory filesystems.
1058  */
1059 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1060 {
1061 	return 0;
1062 }
1063 EXPORT_SYMBOL(noop_fsync);
1064 
1065 int noop_set_page_dirty(struct page *page)
1066 {
1067 	/*
1068 	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1069 	 * tracking in the page object, dax does all dirty tracking in
1070 	 * the inode address_space in response to mkwrite faults. In the
1071 	 * dax case we only need to worry about potentially dirty CPU
1072 	 * caches, not dirty page cache pages to write back.
1073 	 *
1074 	 * This callback is defined to prevent fallback to
1075 	 * __set_page_dirty_buffers() in set_page_dirty().
1076 	 */
1077 	return 0;
1078 }
1079 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1080 
1081 void noop_invalidatepage(struct page *page, unsigned int offset,
1082 		unsigned int length)
1083 {
1084 	/*
1085 	 * There is no page cache to invalidate in the dax case, however
1086 	 * we need this callback defined to prevent falling back to
1087 	 * block_invalidatepage() in do_invalidatepage().
1088 	 */
1089 }
1090 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1091 
1092 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1093 {
1094 	/*
1095 	 * iomap based filesystems support direct I/O without need for
1096 	 * this callback. However, it still needs to be set in
1097 	 * inode->a_ops so that open/fcntl know that direct I/O is
1098 	 * generally supported.
1099 	 */
1100 	return -EINVAL;
1101 }
1102 EXPORT_SYMBOL_GPL(noop_direct_IO);
1103 
1104 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1105 void kfree_link(void *p)
1106 {
1107 	kfree(p);
1108 }
1109 EXPORT_SYMBOL(kfree_link);
1110 
1111 /*
1112  * nop .set_page_dirty method so that people can use .page_mkwrite on
1113  * anon inodes.
1114  */
1115 static int anon_set_page_dirty(struct page *page)
1116 {
1117 	return 0;
1118 };
1119 
1120 /*
1121  * A single inode exists for all anon_inode files. Contrary to pipes,
1122  * anon_inode inodes have no associated per-instance data, so we need
1123  * only allocate one of them.
1124  */
1125 struct inode *alloc_anon_inode(struct super_block *s)
1126 {
1127 	static const struct address_space_operations anon_aops = {
1128 		.set_page_dirty = anon_set_page_dirty,
1129 	};
1130 	struct inode *inode = new_inode_pseudo(s);
1131 
1132 	if (!inode)
1133 		return ERR_PTR(-ENOMEM);
1134 
1135 	inode->i_ino = get_next_ino();
1136 	inode->i_mapping->a_ops = &anon_aops;
1137 
1138 	/*
1139 	 * Mark the inode dirty from the very beginning,
1140 	 * that way it will never be moved to the dirty
1141 	 * list because mark_inode_dirty() will think
1142 	 * that it already _is_ on the dirty list.
1143 	 */
1144 	inode->i_state = I_DIRTY;
1145 	inode->i_mode = S_IRUSR | S_IWUSR;
1146 	inode->i_uid = current_fsuid();
1147 	inode->i_gid = current_fsgid();
1148 	inode->i_flags |= S_PRIVATE;
1149 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1150 	return inode;
1151 }
1152 EXPORT_SYMBOL(alloc_anon_inode);
1153 
1154 /**
1155  * simple_nosetlease - generic helper for prohibiting leases
1156  * @filp: file pointer
1157  * @arg: type of lease to obtain
1158  * @flp: new lease supplied for insertion
1159  * @priv: private data for lm_setup operation
1160  *
1161  * Generic helper for filesystems that do not wish to allow leases to be set.
1162  * All arguments are ignored and it just returns -EINVAL.
1163  */
1164 int
1165 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1166 		  void **priv)
1167 {
1168 	return -EINVAL;
1169 }
1170 EXPORT_SYMBOL(simple_nosetlease);
1171 
1172 /**
1173  * simple_get_link - generic helper to get the target of "fast" symlinks
1174  * @dentry: not used here
1175  * @inode: the symlink inode
1176  * @done: not used here
1177  *
1178  * Generic helper for filesystems to use for symlink inodes where a pointer to
1179  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1180  * since as an optimization the path lookup code uses any non-NULL ->i_link
1181  * directly, without calling ->get_link().  But ->get_link() still must be set,
1182  * to mark the inode_operations as being for a symlink.
1183  *
1184  * Return: the symlink target
1185  */
1186 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1187 			    struct delayed_call *done)
1188 {
1189 	return inode->i_link;
1190 }
1191 EXPORT_SYMBOL(simple_get_link);
1192 
1193 const struct inode_operations simple_symlink_inode_operations = {
1194 	.get_link = simple_get_link,
1195 };
1196 EXPORT_SYMBOL(simple_symlink_inode_operations);
1197 
1198 /*
1199  * Operations for a permanently empty directory.
1200  */
1201 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1202 {
1203 	return ERR_PTR(-ENOENT);
1204 }
1205 
1206 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1207 			     u32 request_mask, unsigned int query_flags)
1208 {
1209 	struct inode *inode = d_inode(path->dentry);
1210 	generic_fillattr(inode, stat);
1211 	return 0;
1212 }
1213 
1214 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1215 {
1216 	return -EPERM;
1217 }
1218 
1219 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1220 {
1221 	return -EOPNOTSUPP;
1222 }
1223 
1224 static const struct inode_operations empty_dir_inode_operations = {
1225 	.lookup		= empty_dir_lookup,
1226 	.permission	= generic_permission,
1227 	.setattr	= empty_dir_setattr,
1228 	.getattr	= empty_dir_getattr,
1229 	.listxattr	= empty_dir_listxattr,
1230 };
1231 
1232 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1233 {
1234 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1235 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1236 }
1237 
1238 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1239 {
1240 	dir_emit_dots(file, ctx);
1241 	return 0;
1242 }
1243 
1244 static const struct file_operations empty_dir_operations = {
1245 	.llseek		= empty_dir_llseek,
1246 	.read		= generic_read_dir,
1247 	.iterate_shared	= empty_dir_readdir,
1248 	.fsync		= noop_fsync,
1249 };
1250 
1251 
1252 void make_empty_dir_inode(struct inode *inode)
1253 {
1254 	set_nlink(inode, 2);
1255 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1256 	inode->i_uid = GLOBAL_ROOT_UID;
1257 	inode->i_gid = GLOBAL_ROOT_GID;
1258 	inode->i_rdev = 0;
1259 	inode->i_size = 0;
1260 	inode->i_blkbits = PAGE_SHIFT;
1261 	inode->i_blocks = 0;
1262 
1263 	inode->i_op = &empty_dir_inode_operations;
1264 	inode->i_opflags &= ~IOP_XATTR;
1265 	inode->i_fop = &empty_dir_operations;
1266 }
1267 
1268 bool is_empty_dir_inode(struct inode *inode)
1269 {
1270 	return (inode->i_fop == &empty_dir_operations) &&
1271 		(inode->i_op == &empty_dir_inode_operations);
1272 }
1273