xref: /openbmc/linux/fs/libfs.c (revision 171f1bc7)
1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/module.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/exportfs.h>
14 #include <linux/writeback.h>
15 #include <linux/buffer_head.h>
16 
17 #include <asm/uaccess.h>
18 
19 #include "internal.h"
20 
21 static inline int simple_positive(struct dentry *dentry)
22 {
23 	return dentry->d_inode && !d_unhashed(dentry);
24 }
25 
26 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
27 		   struct kstat *stat)
28 {
29 	struct inode *inode = dentry->d_inode;
30 	generic_fillattr(inode, stat);
31 	stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
32 	return 0;
33 }
34 
35 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
36 {
37 	buf->f_type = dentry->d_sb->s_magic;
38 	buf->f_bsize = PAGE_CACHE_SIZE;
39 	buf->f_namelen = NAME_MAX;
40 	return 0;
41 }
42 
43 /*
44  * Retaining negative dentries for an in-memory filesystem just wastes
45  * memory and lookup time: arrange for them to be deleted immediately.
46  */
47 static int simple_delete_dentry(const struct dentry *dentry)
48 {
49 	return 1;
50 }
51 
52 /*
53  * Lookup the data. This is trivial - if the dentry didn't already
54  * exist, we know it is negative.  Set d_op to delete negative dentries.
55  */
56 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
57 {
58 	static const struct dentry_operations simple_dentry_operations = {
59 		.d_delete = simple_delete_dentry,
60 	};
61 
62 	if (dentry->d_name.len > NAME_MAX)
63 		return ERR_PTR(-ENAMETOOLONG);
64 	d_set_d_op(dentry, &simple_dentry_operations);
65 	d_add(dentry, NULL);
66 	return NULL;
67 }
68 
69 int dcache_dir_open(struct inode *inode, struct file *file)
70 {
71 	static struct qstr cursor_name = {.len = 1, .name = "."};
72 
73 	file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
74 
75 	return file->private_data ? 0 : -ENOMEM;
76 }
77 
78 int dcache_dir_close(struct inode *inode, struct file *file)
79 {
80 	dput(file->private_data);
81 	return 0;
82 }
83 
84 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int origin)
85 {
86 	struct dentry *dentry = file->f_path.dentry;
87 	mutex_lock(&dentry->d_inode->i_mutex);
88 	switch (origin) {
89 		case 1:
90 			offset += file->f_pos;
91 		case 0:
92 			if (offset >= 0)
93 				break;
94 		default:
95 			mutex_unlock(&dentry->d_inode->i_mutex);
96 			return -EINVAL;
97 	}
98 	if (offset != file->f_pos) {
99 		file->f_pos = offset;
100 		if (file->f_pos >= 2) {
101 			struct list_head *p;
102 			struct dentry *cursor = file->private_data;
103 			loff_t n = file->f_pos - 2;
104 
105 			spin_lock(&dentry->d_lock);
106 			/* d_lock not required for cursor */
107 			list_del(&cursor->d_u.d_child);
108 			p = dentry->d_subdirs.next;
109 			while (n && p != &dentry->d_subdirs) {
110 				struct dentry *next;
111 				next = list_entry(p, struct dentry, d_u.d_child);
112 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
113 				if (simple_positive(next))
114 					n--;
115 				spin_unlock(&next->d_lock);
116 				p = p->next;
117 			}
118 			list_add_tail(&cursor->d_u.d_child, p);
119 			spin_unlock(&dentry->d_lock);
120 		}
121 	}
122 	mutex_unlock(&dentry->d_inode->i_mutex);
123 	return offset;
124 }
125 
126 /* Relationship between i_mode and the DT_xxx types */
127 static inline unsigned char dt_type(struct inode *inode)
128 {
129 	return (inode->i_mode >> 12) & 15;
130 }
131 
132 /*
133  * Directory is locked and all positive dentries in it are safe, since
134  * for ramfs-type trees they can't go away without unlink() or rmdir(),
135  * both impossible due to the lock on directory.
136  */
137 
138 int dcache_readdir(struct file * filp, void * dirent, filldir_t filldir)
139 {
140 	struct dentry *dentry = filp->f_path.dentry;
141 	struct dentry *cursor = filp->private_data;
142 	struct list_head *p, *q = &cursor->d_u.d_child;
143 	ino_t ino;
144 	int i = filp->f_pos;
145 
146 	switch (i) {
147 		case 0:
148 			ino = dentry->d_inode->i_ino;
149 			if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
150 				break;
151 			filp->f_pos++;
152 			i++;
153 			/* fallthrough */
154 		case 1:
155 			ino = parent_ino(dentry);
156 			if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
157 				break;
158 			filp->f_pos++;
159 			i++;
160 			/* fallthrough */
161 		default:
162 			spin_lock(&dentry->d_lock);
163 			if (filp->f_pos == 2)
164 				list_move(q, &dentry->d_subdirs);
165 
166 			for (p=q->next; p != &dentry->d_subdirs; p=p->next) {
167 				struct dentry *next;
168 				next = list_entry(p, struct dentry, d_u.d_child);
169 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
170 				if (!simple_positive(next)) {
171 					spin_unlock(&next->d_lock);
172 					continue;
173 				}
174 
175 				spin_unlock(&next->d_lock);
176 				spin_unlock(&dentry->d_lock);
177 				if (filldir(dirent, next->d_name.name,
178 					    next->d_name.len, filp->f_pos,
179 					    next->d_inode->i_ino,
180 					    dt_type(next->d_inode)) < 0)
181 					return 0;
182 				spin_lock(&dentry->d_lock);
183 				spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
184 				/* next is still alive */
185 				list_move(q, p);
186 				spin_unlock(&next->d_lock);
187 				p = q;
188 				filp->f_pos++;
189 			}
190 			spin_unlock(&dentry->d_lock);
191 	}
192 	return 0;
193 }
194 
195 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
196 {
197 	return -EISDIR;
198 }
199 
200 const struct file_operations simple_dir_operations = {
201 	.open		= dcache_dir_open,
202 	.release	= dcache_dir_close,
203 	.llseek		= dcache_dir_lseek,
204 	.read		= generic_read_dir,
205 	.readdir	= dcache_readdir,
206 	.fsync		= noop_fsync,
207 };
208 
209 const struct inode_operations simple_dir_inode_operations = {
210 	.lookup		= simple_lookup,
211 };
212 
213 static const struct super_operations simple_super_operations = {
214 	.statfs		= simple_statfs,
215 };
216 
217 /*
218  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
219  * will never be mountable)
220  */
221 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
222 	const struct super_operations *ops,
223 	const struct dentry_operations *dops, unsigned long magic)
224 {
225 	struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
226 	struct dentry *dentry;
227 	struct inode *root;
228 	struct qstr d_name = {.name = name, .len = strlen(name)};
229 
230 	if (IS_ERR(s))
231 		return ERR_CAST(s);
232 
233 	s->s_flags = MS_NOUSER;
234 	s->s_maxbytes = MAX_LFS_FILESIZE;
235 	s->s_blocksize = PAGE_SIZE;
236 	s->s_blocksize_bits = PAGE_SHIFT;
237 	s->s_magic = magic;
238 	s->s_op = ops ? ops : &simple_super_operations;
239 	s->s_time_gran = 1;
240 	root = new_inode(s);
241 	if (!root)
242 		goto Enomem;
243 	/*
244 	 * since this is the first inode, make it number 1. New inodes created
245 	 * after this must take care not to collide with it (by passing
246 	 * max_reserved of 1 to iunique).
247 	 */
248 	root->i_ino = 1;
249 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
250 	root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
251 	dentry = __d_alloc(s, &d_name);
252 	if (!dentry) {
253 		iput(root);
254 		goto Enomem;
255 	}
256 	d_instantiate(dentry, root);
257 	s->s_root = dentry;
258 	s->s_d_op = dops;
259 	s->s_flags |= MS_ACTIVE;
260 	return dget(s->s_root);
261 
262 Enomem:
263 	deactivate_locked_super(s);
264 	return ERR_PTR(-ENOMEM);
265 }
266 
267 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
268 {
269 	struct inode *inode = old_dentry->d_inode;
270 
271 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
272 	inc_nlink(inode);
273 	ihold(inode);
274 	dget(dentry);
275 	d_instantiate(dentry, inode);
276 	return 0;
277 }
278 
279 int simple_empty(struct dentry *dentry)
280 {
281 	struct dentry *child;
282 	int ret = 0;
283 
284 	spin_lock(&dentry->d_lock);
285 	list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
286 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
287 		if (simple_positive(child)) {
288 			spin_unlock(&child->d_lock);
289 			goto out;
290 		}
291 		spin_unlock(&child->d_lock);
292 	}
293 	ret = 1;
294 out:
295 	spin_unlock(&dentry->d_lock);
296 	return ret;
297 }
298 
299 int simple_unlink(struct inode *dir, struct dentry *dentry)
300 {
301 	struct inode *inode = dentry->d_inode;
302 
303 	inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
304 	drop_nlink(inode);
305 	dput(dentry);
306 	return 0;
307 }
308 
309 int simple_rmdir(struct inode *dir, struct dentry *dentry)
310 {
311 	if (!simple_empty(dentry))
312 		return -ENOTEMPTY;
313 
314 	drop_nlink(dentry->d_inode);
315 	simple_unlink(dir, dentry);
316 	drop_nlink(dir);
317 	return 0;
318 }
319 
320 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
321 		struct inode *new_dir, struct dentry *new_dentry)
322 {
323 	struct inode *inode = old_dentry->d_inode;
324 	int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
325 
326 	if (!simple_empty(new_dentry))
327 		return -ENOTEMPTY;
328 
329 	if (new_dentry->d_inode) {
330 		simple_unlink(new_dir, new_dentry);
331 		if (they_are_dirs) {
332 			drop_nlink(new_dentry->d_inode);
333 			drop_nlink(old_dir);
334 		}
335 	} else if (they_are_dirs) {
336 		drop_nlink(old_dir);
337 		inc_nlink(new_dir);
338 	}
339 
340 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
341 		new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
342 
343 	return 0;
344 }
345 
346 /**
347  * simple_setattr - setattr for simple filesystem
348  * @dentry: dentry
349  * @iattr: iattr structure
350  *
351  * Returns 0 on success, -error on failure.
352  *
353  * simple_setattr is a simple ->setattr implementation without a proper
354  * implementation of size changes.
355  *
356  * It can either be used for in-memory filesystems or special files
357  * on simple regular filesystems.  Anything that needs to change on-disk
358  * or wire state on size changes needs its own setattr method.
359  */
360 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
361 {
362 	struct inode *inode = dentry->d_inode;
363 	int error;
364 
365 	WARN_ON_ONCE(inode->i_op->truncate);
366 
367 	error = inode_change_ok(inode, iattr);
368 	if (error)
369 		return error;
370 
371 	if (iattr->ia_valid & ATTR_SIZE)
372 		truncate_setsize(inode, iattr->ia_size);
373 	setattr_copy(inode, iattr);
374 	mark_inode_dirty(inode);
375 	return 0;
376 }
377 EXPORT_SYMBOL(simple_setattr);
378 
379 int simple_readpage(struct file *file, struct page *page)
380 {
381 	clear_highpage(page);
382 	flush_dcache_page(page);
383 	SetPageUptodate(page);
384 	unlock_page(page);
385 	return 0;
386 }
387 
388 int simple_write_begin(struct file *file, struct address_space *mapping,
389 			loff_t pos, unsigned len, unsigned flags,
390 			struct page **pagep, void **fsdata)
391 {
392 	struct page *page;
393 	pgoff_t index;
394 
395 	index = pos >> PAGE_CACHE_SHIFT;
396 
397 	page = grab_cache_page_write_begin(mapping, index, flags);
398 	if (!page)
399 		return -ENOMEM;
400 
401 	*pagep = page;
402 
403 	if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
404 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
405 
406 		zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
407 	}
408 	return 0;
409 }
410 
411 /**
412  * simple_write_end - .write_end helper for non-block-device FSes
413  * @available: See .write_end of address_space_operations
414  * @file: 		"
415  * @mapping: 		"
416  * @pos: 		"
417  * @len: 		"
418  * @copied: 		"
419  * @page: 		"
420  * @fsdata: 		"
421  *
422  * simple_write_end does the minimum needed for updating a page after writing is
423  * done. It has the same API signature as the .write_end of
424  * address_space_operations vector. So it can just be set onto .write_end for
425  * FSes that don't need any other processing. i_mutex is assumed to be held.
426  * Block based filesystems should use generic_write_end().
427  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
428  * is not called, so a filesystem that actually does store data in .write_inode
429  * should extend on what's done here with a call to mark_inode_dirty() in the
430  * case that i_size has changed.
431  */
432 int simple_write_end(struct file *file, struct address_space *mapping,
433 			loff_t pos, unsigned len, unsigned copied,
434 			struct page *page, void *fsdata)
435 {
436 	struct inode *inode = page->mapping->host;
437 	loff_t last_pos = pos + copied;
438 
439 	/* zero the stale part of the page if we did a short copy */
440 	if (copied < len) {
441 		unsigned from = pos & (PAGE_CACHE_SIZE - 1);
442 
443 		zero_user(page, from + copied, len - copied);
444 	}
445 
446 	if (!PageUptodate(page))
447 		SetPageUptodate(page);
448 	/*
449 	 * No need to use i_size_read() here, the i_size
450 	 * cannot change under us because we hold the i_mutex.
451 	 */
452 	if (last_pos > inode->i_size)
453 		i_size_write(inode, last_pos);
454 
455 	set_page_dirty(page);
456 	unlock_page(page);
457 	page_cache_release(page);
458 
459 	return copied;
460 }
461 
462 /*
463  * the inodes created here are not hashed. If you use iunique to generate
464  * unique inode values later for this filesystem, then you must take care
465  * to pass it an appropriate max_reserved value to avoid collisions.
466  */
467 int simple_fill_super(struct super_block *s, unsigned long magic,
468 		      struct tree_descr *files)
469 {
470 	struct inode *inode;
471 	struct dentry *root;
472 	struct dentry *dentry;
473 	int i;
474 
475 	s->s_blocksize = PAGE_CACHE_SIZE;
476 	s->s_blocksize_bits = PAGE_CACHE_SHIFT;
477 	s->s_magic = magic;
478 	s->s_op = &simple_super_operations;
479 	s->s_time_gran = 1;
480 
481 	inode = new_inode(s);
482 	if (!inode)
483 		return -ENOMEM;
484 	/*
485 	 * because the root inode is 1, the files array must not contain an
486 	 * entry at index 1
487 	 */
488 	inode->i_ino = 1;
489 	inode->i_mode = S_IFDIR | 0755;
490 	inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
491 	inode->i_op = &simple_dir_inode_operations;
492 	inode->i_fop = &simple_dir_operations;
493 	set_nlink(inode, 2);
494 	root = d_alloc_root(inode);
495 	if (!root) {
496 		iput(inode);
497 		return -ENOMEM;
498 	}
499 	for (i = 0; !files->name || files->name[0]; i++, files++) {
500 		if (!files->name)
501 			continue;
502 
503 		/* warn if it tries to conflict with the root inode */
504 		if (unlikely(i == 1))
505 			printk(KERN_WARNING "%s: %s passed in a files array"
506 				"with an index of 1!\n", __func__,
507 				s->s_type->name);
508 
509 		dentry = d_alloc_name(root, files->name);
510 		if (!dentry)
511 			goto out;
512 		inode = new_inode(s);
513 		if (!inode) {
514 			dput(dentry);
515 			goto out;
516 		}
517 		inode->i_mode = S_IFREG | files->mode;
518 		inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
519 		inode->i_fop = files->ops;
520 		inode->i_ino = i;
521 		d_add(dentry, inode);
522 	}
523 	s->s_root = root;
524 	return 0;
525 out:
526 	d_genocide(root);
527 	dput(root);
528 	return -ENOMEM;
529 }
530 
531 static DEFINE_SPINLOCK(pin_fs_lock);
532 
533 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
534 {
535 	struct vfsmount *mnt = NULL;
536 	spin_lock(&pin_fs_lock);
537 	if (unlikely(!*mount)) {
538 		spin_unlock(&pin_fs_lock);
539 		mnt = vfs_kern_mount(type, 0, type->name, NULL);
540 		if (IS_ERR(mnt))
541 			return PTR_ERR(mnt);
542 		spin_lock(&pin_fs_lock);
543 		if (!*mount)
544 			*mount = mnt;
545 	}
546 	mntget(*mount);
547 	++*count;
548 	spin_unlock(&pin_fs_lock);
549 	mntput(mnt);
550 	return 0;
551 }
552 
553 void simple_release_fs(struct vfsmount **mount, int *count)
554 {
555 	struct vfsmount *mnt;
556 	spin_lock(&pin_fs_lock);
557 	mnt = *mount;
558 	if (!--*count)
559 		*mount = NULL;
560 	spin_unlock(&pin_fs_lock);
561 	mntput(mnt);
562 }
563 
564 /**
565  * simple_read_from_buffer - copy data from the buffer to user space
566  * @to: the user space buffer to read to
567  * @count: the maximum number of bytes to read
568  * @ppos: the current position in the buffer
569  * @from: the buffer to read from
570  * @available: the size of the buffer
571  *
572  * The simple_read_from_buffer() function reads up to @count bytes from the
573  * buffer @from at offset @ppos into the user space address starting at @to.
574  *
575  * On success, the number of bytes read is returned and the offset @ppos is
576  * advanced by this number, or negative value is returned on error.
577  **/
578 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
579 				const void *from, size_t available)
580 {
581 	loff_t pos = *ppos;
582 	size_t ret;
583 
584 	if (pos < 0)
585 		return -EINVAL;
586 	if (pos >= available || !count)
587 		return 0;
588 	if (count > available - pos)
589 		count = available - pos;
590 	ret = copy_to_user(to, from + pos, count);
591 	if (ret == count)
592 		return -EFAULT;
593 	count -= ret;
594 	*ppos = pos + count;
595 	return count;
596 }
597 
598 /**
599  * simple_write_to_buffer - copy data from user space to the buffer
600  * @to: the buffer to write to
601  * @available: the size of the buffer
602  * @ppos: the current position in the buffer
603  * @from: the user space buffer to read from
604  * @count: the maximum number of bytes to read
605  *
606  * The simple_write_to_buffer() function reads up to @count bytes from the user
607  * space address starting at @from into the buffer @to at offset @ppos.
608  *
609  * On success, the number of bytes written is returned and the offset @ppos is
610  * advanced by this number, or negative value is returned on error.
611  **/
612 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
613 		const void __user *from, size_t count)
614 {
615 	loff_t pos = *ppos;
616 	size_t res;
617 
618 	if (pos < 0)
619 		return -EINVAL;
620 	if (pos >= available || !count)
621 		return 0;
622 	if (count > available - pos)
623 		count = available - pos;
624 	res = copy_from_user(to + pos, from, count);
625 	if (res == count)
626 		return -EFAULT;
627 	count -= res;
628 	*ppos = pos + count;
629 	return count;
630 }
631 
632 /**
633  * memory_read_from_buffer - copy data from the buffer
634  * @to: the kernel space buffer to read to
635  * @count: the maximum number of bytes to read
636  * @ppos: the current position in the buffer
637  * @from: the buffer to read from
638  * @available: the size of the buffer
639  *
640  * The memory_read_from_buffer() function reads up to @count bytes from the
641  * buffer @from at offset @ppos into the kernel space address starting at @to.
642  *
643  * On success, the number of bytes read is returned and the offset @ppos is
644  * advanced by this number, or negative value is returned on error.
645  **/
646 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
647 				const void *from, size_t available)
648 {
649 	loff_t pos = *ppos;
650 
651 	if (pos < 0)
652 		return -EINVAL;
653 	if (pos >= available)
654 		return 0;
655 	if (count > available - pos)
656 		count = available - pos;
657 	memcpy(to, from + pos, count);
658 	*ppos = pos + count;
659 
660 	return count;
661 }
662 
663 /*
664  * Transaction based IO.
665  * The file expects a single write which triggers the transaction, and then
666  * possibly a read which collects the result - which is stored in a
667  * file-local buffer.
668  */
669 
670 void simple_transaction_set(struct file *file, size_t n)
671 {
672 	struct simple_transaction_argresp *ar = file->private_data;
673 
674 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
675 
676 	/*
677 	 * The barrier ensures that ar->size will really remain zero until
678 	 * ar->data is ready for reading.
679 	 */
680 	smp_mb();
681 	ar->size = n;
682 }
683 
684 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
685 {
686 	struct simple_transaction_argresp *ar;
687 	static DEFINE_SPINLOCK(simple_transaction_lock);
688 
689 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
690 		return ERR_PTR(-EFBIG);
691 
692 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
693 	if (!ar)
694 		return ERR_PTR(-ENOMEM);
695 
696 	spin_lock(&simple_transaction_lock);
697 
698 	/* only one write allowed per open */
699 	if (file->private_data) {
700 		spin_unlock(&simple_transaction_lock);
701 		free_page((unsigned long)ar);
702 		return ERR_PTR(-EBUSY);
703 	}
704 
705 	file->private_data = ar;
706 
707 	spin_unlock(&simple_transaction_lock);
708 
709 	if (copy_from_user(ar->data, buf, size))
710 		return ERR_PTR(-EFAULT);
711 
712 	return ar->data;
713 }
714 
715 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
716 {
717 	struct simple_transaction_argresp *ar = file->private_data;
718 
719 	if (!ar)
720 		return 0;
721 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
722 }
723 
724 int simple_transaction_release(struct inode *inode, struct file *file)
725 {
726 	free_page((unsigned long)file->private_data);
727 	return 0;
728 }
729 
730 /* Simple attribute files */
731 
732 struct simple_attr {
733 	int (*get)(void *, u64 *);
734 	int (*set)(void *, u64);
735 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
736 	char set_buf[24];
737 	void *data;
738 	const char *fmt;	/* format for read operation */
739 	struct mutex mutex;	/* protects access to these buffers */
740 };
741 
742 /* simple_attr_open is called by an actual attribute open file operation
743  * to set the attribute specific access operations. */
744 int simple_attr_open(struct inode *inode, struct file *file,
745 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
746 		     const char *fmt)
747 {
748 	struct simple_attr *attr;
749 
750 	attr = kmalloc(sizeof(*attr), GFP_KERNEL);
751 	if (!attr)
752 		return -ENOMEM;
753 
754 	attr->get = get;
755 	attr->set = set;
756 	attr->data = inode->i_private;
757 	attr->fmt = fmt;
758 	mutex_init(&attr->mutex);
759 
760 	file->private_data = attr;
761 
762 	return nonseekable_open(inode, file);
763 }
764 
765 int simple_attr_release(struct inode *inode, struct file *file)
766 {
767 	kfree(file->private_data);
768 	return 0;
769 }
770 
771 /* read from the buffer that is filled with the get function */
772 ssize_t simple_attr_read(struct file *file, char __user *buf,
773 			 size_t len, loff_t *ppos)
774 {
775 	struct simple_attr *attr;
776 	size_t size;
777 	ssize_t ret;
778 
779 	attr = file->private_data;
780 
781 	if (!attr->get)
782 		return -EACCES;
783 
784 	ret = mutex_lock_interruptible(&attr->mutex);
785 	if (ret)
786 		return ret;
787 
788 	if (*ppos) {		/* continued read */
789 		size = strlen(attr->get_buf);
790 	} else {		/* first read */
791 		u64 val;
792 		ret = attr->get(attr->data, &val);
793 		if (ret)
794 			goto out;
795 
796 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
797 				 attr->fmt, (unsigned long long)val);
798 	}
799 
800 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
801 out:
802 	mutex_unlock(&attr->mutex);
803 	return ret;
804 }
805 
806 /* interpret the buffer as a number to call the set function with */
807 ssize_t simple_attr_write(struct file *file, const char __user *buf,
808 			  size_t len, loff_t *ppos)
809 {
810 	struct simple_attr *attr;
811 	u64 val;
812 	size_t size;
813 	ssize_t ret;
814 
815 	attr = file->private_data;
816 	if (!attr->set)
817 		return -EACCES;
818 
819 	ret = mutex_lock_interruptible(&attr->mutex);
820 	if (ret)
821 		return ret;
822 
823 	ret = -EFAULT;
824 	size = min(sizeof(attr->set_buf) - 1, len);
825 	if (copy_from_user(attr->set_buf, buf, size))
826 		goto out;
827 
828 	attr->set_buf[size] = '\0';
829 	val = simple_strtoll(attr->set_buf, NULL, 0);
830 	ret = attr->set(attr->data, val);
831 	if (ret == 0)
832 		ret = len; /* on success, claim we got the whole input */
833 out:
834 	mutex_unlock(&attr->mutex);
835 	return ret;
836 }
837 
838 /**
839  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
840  * @sb:		filesystem to do the file handle conversion on
841  * @fid:	file handle to convert
842  * @fh_len:	length of the file handle in bytes
843  * @fh_type:	type of file handle
844  * @get_inode:	filesystem callback to retrieve inode
845  *
846  * This function decodes @fid as long as it has one of the well-known
847  * Linux filehandle types and calls @get_inode on it to retrieve the
848  * inode for the object specified in the file handle.
849  */
850 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
851 		int fh_len, int fh_type, struct inode *(*get_inode)
852 			(struct super_block *sb, u64 ino, u32 gen))
853 {
854 	struct inode *inode = NULL;
855 
856 	if (fh_len < 2)
857 		return NULL;
858 
859 	switch (fh_type) {
860 	case FILEID_INO32_GEN:
861 	case FILEID_INO32_GEN_PARENT:
862 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
863 		break;
864 	}
865 
866 	return d_obtain_alias(inode);
867 }
868 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
869 
870 /**
871  * generic_fh_to_dentry - generic helper for the fh_to_parent export operation
872  * @sb:		filesystem to do the file handle conversion on
873  * @fid:	file handle to convert
874  * @fh_len:	length of the file handle in bytes
875  * @fh_type:	type of file handle
876  * @get_inode:	filesystem callback to retrieve inode
877  *
878  * This function decodes @fid as long as it has one of the well-known
879  * Linux filehandle types and calls @get_inode on it to retrieve the
880  * inode for the _parent_ object specified in the file handle if it
881  * is specified in the file handle, or NULL otherwise.
882  */
883 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
884 		int fh_len, int fh_type, struct inode *(*get_inode)
885 			(struct super_block *sb, u64 ino, u32 gen))
886 {
887 	struct inode *inode = NULL;
888 
889 	if (fh_len <= 2)
890 		return NULL;
891 
892 	switch (fh_type) {
893 	case FILEID_INO32_GEN_PARENT:
894 		inode = get_inode(sb, fid->i32.parent_ino,
895 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
896 		break;
897 	}
898 
899 	return d_obtain_alias(inode);
900 }
901 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
902 
903 /**
904  * generic_file_fsync - generic fsync implementation for simple filesystems
905  * @file:	file to synchronize
906  * @datasync:	only synchronize essential metadata if true
907  *
908  * This is a generic implementation of the fsync method for simple
909  * filesystems which track all non-inode metadata in the buffers list
910  * hanging off the address_space structure.
911  */
912 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
913 		       int datasync)
914 {
915 	struct inode *inode = file->f_mapping->host;
916 	int err;
917 	int ret;
918 
919 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
920 	if (err)
921 		return err;
922 
923 	mutex_lock(&inode->i_mutex);
924 	ret = sync_mapping_buffers(inode->i_mapping);
925 	if (!(inode->i_state & I_DIRTY))
926 		goto out;
927 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
928 		goto out;
929 
930 	err = sync_inode_metadata(inode, 1);
931 	if (ret == 0)
932 		ret = err;
933 out:
934 	mutex_unlock(&inode->i_mutex);
935 	return ret;
936 }
937 EXPORT_SYMBOL(generic_file_fsync);
938 
939 /**
940  * generic_check_addressable - Check addressability of file system
941  * @blocksize_bits:	log of file system block size
942  * @num_blocks:		number of blocks in file system
943  *
944  * Determine whether a file system with @num_blocks blocks (and a
945  * block size of 2**@blocksize_bits) is addressable by the sector_t
946  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
947  */
948 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
949 {
950 	u64 last_fs_block = num_blocks - 1;
951 	u64 last_fs_page =
952 		last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
953 
954 	if (unlikely(num_blocks == 0))
955 		return 0;
956 
957 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
958 		return -EINVAL;
959 
960 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
961 	    (last_fs_page > (pgoff_t)(~0ULL))) {
962 		return -EFBIG;
963 	}
964 	return 0;
965 }
966 EXPORT_SYMBOL(generic_check_addressable);
967 
968 /*
969  * No-op implementation of ->fsync for in-memory filesystems.
970  */
971 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
972 {
973 	return 0;
974 }
975 
976 EXPORT_SYMBOL(dcache_dir_close);
977 EXPORT_SYMBOL(dcache_dir_lseek);
978 EXPORT_SYMBOL(dcache_dir_open);
979 EXPORT_SYMBOL(dcache_readdir);
980 EXPORT_SYMBOL(generic_read_dir);
981 EXPORT_SYMBOL(mount_pseudo);
982 EXPORT_SYMBOL(simple_write_begin);
983 EXPORT_SYMBOL(simple_write_end);
984 EXPORT_SYMBOL(simple_dir_inode_operations);
985 EXPORT_SYMBOL(simple_dir_operations);
986 EXPORT_SYMBOL(simple_empty);
987 EXPORT_SYMBOL(simple_fill_super);
988 EXPORT_SYMBOL(simple_getattr);
989 EXPORT_SYMBOL(simple_link);
990 EXPORT_SYMBOL(simple_lookup);
991 EXPORT_SYMBOL(simple_pin_fs);
992 EXPORT_SYMBOL(simple_readpage);
993 EXPORT_SYMBOL(simple_release_fs);
994 EXPORT_SYMBOL(simple_rename);
995 EXPORT_SYMBOL(simple_rmdir);
996 EXPORT_SYMBOL(simple_statfs);
997 EXPORT_SYMBOL(noop_fsync);
998 EXPORT_SYMBOL(simple_unlink);
999 EXPORT_SYMBOL(simple_read_from_buffer);
1000 EXPORT_SYMBOL(simple_write_to_buffer);
1001 EXPORT_SYMBOL(memory_read_from_buffer);
1002 EXPORT_SYMBOL(simple_transaction_set);
1003 EXPORT_SYMBOL(simple_transaction_get);
1004 EXPORT_SYMBOL(simple_transaction_read);
1005 EXPORT_SYMBOL(simple_transaction_release);
1006 EXPORT_SYMBOL_GPL(simple_attr_open);
1007 EXPORT_SYMBOL_GPL(simple_attr_release);
1008 EXPORT_SYMBOL_GPL(simple_attr_read);
1009 EXPORT_SYMBOL_GPL(simple_attr_write);
1010