xref: /openbmc/linux/fs/libfs.c (revision 132db935)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/fsnotify.h>
23 
24 #include <linux/uaccess.h>
25 
26 #include "internal.h"
27 
28 int simple_getattr(const struct path *path, struct kstat *stat,
29 		   u32 request_mask, unsigned int query_flags)
30 {
31 	struct inode *inode = d_inode(path->dentry);
32 	generic_fillattr(inode, stat);
33 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
34 	return 0;
35 }
36 EXPORT_SYMBOL(simple_getattr);
37 
38 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
39 {
40 	buf->f_type = dentry->d_sb->s_magic;
41 	buf->f_bsize = PAGE_SIZE;
42 	buf->f_namelen = NAME_MAX;
43 	return 0;
44 }
45 EXPORT_SYMBOL(simple_statfs);
46 
47 /*
48  * Retaining negative dentries for an in-memory filesystem just wastes
49  * memory and lookup time: arrange for them to be deleted immediately.
50  */
51 int always_delete_dentry(const struct dentry *dentry)
52 {
53 	return 1;
54 }
55 EXPORT_SYMBOL(always_delete_dentry);
56 
57 const struct dentry_operations simple_dentry_operations = {
58 	.d_delete = always_delete_dentry,
59 };
60 EXPORT_SYMBOL(simple_dentry_operations);
61 
62 /*
63  * Lookup the data. This is trivial - if the dentry didn't already
64  * exist, we know it is negative.  Set d_op to delete negative dentries.
65  */
66 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
67 {
68 	if (dentry->d_name.len > NAME_MAX)
69 		return ERR_PTR(-ENAMETOOLONG);
70 	if (!dentry->d_sb->s_d_op)
71 		d_set_d_op(dentry, &simple_dentry_operations);
72 	d_add(dentry, NULL);
73 	return NULL;
74 }
75 EXPORT_SYMBOL(simple_lookup);
76 
77 int dcache_dir_open(struct inode *inode, struct file *file)
78 {
79 	file->private_data = d_alloc_cursor(file->f_path.dentry);
80 
81 	return file->private_data ? 0 : -ENOMEM;
82 }
83 EXPORT_SYMBOL(dcache_dir_open);
84 
85 int dcache_dir_close(struct inode *inode, struct file *file)
86 {
87 	dput(file->private_data);
88 	return 0;
89 }
90 EXPORT_SYMBOL(dcache_dir_close);
91 
92 /* parent is locked at least shared */
93 /*
94  * Returns an element of siblings' list.
95  * We are looking for <count>th positive after <p>; if
96  * found, dentry is grabbed and returned to caller.
97  * If no such element exists, NULL is returned.
98  */
99 static struct dentry *scan_positives(struct dentry *cursor,
100 					struct list_head *p,
101 					loff_t count,
102 					struct dentry *last)
103 {
104 	struct dentry *dentry = cursor->d_parent, *found = NULL;
105 
106 	spin_lock(&dentry->d_lock);
107 	while ((p = p->next) != &dentry->d_subdirs) {
108 		struct dentry *d = list_entry(p, struct dentry, d_child);
109 		// we must at least skip cursors, to avoid livelocks
110 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
111 			continue;
112 		if (simple_positive(d) && !--count) {
113 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
114 			if (simple_positive(d))
115 				found = dget_dlock(d);
116 			spin_unlock(&d->d_lock);
117 			if (likely(found))
118 				break;
119 			count = 1;
120 		}
121 		if (need_resched()) {
122 			list_move(&cursor->d_child, p);
123 			p = &cursor->d_child;
124 			spin_unlock(&dentry->d_lock);
125 			cond_resched();
126 			spin_lock(&dentry->d_lock);
127 		}
128 	}
129 	spin_unlock(&dentry->d_lock);
130 	dput(last);
131 	return found;
132 }
133 
134 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
135 {
136 	struct dentry *dentry = file->f_path.dentry;
137 	switch (whence) {
138 		case 1:
139 			offset += file->f_pos;
140 			/* fall through */
141 		case 0:
142 			if (offset >= 0)
143 				break;
144 			/* fall through */
145 		default:
146 			return -EINVAL;
147 	}
148 	if (offset != file->f_pos) {
149 		struct dentry *cursor = file->private_data;
150 		struct dentry *to = NULL;
151 
152 		inode_lock_shared(dentry->d_inode);
153 
154 		if (offset > 2)
155 			to = scan_positives(cursor, &dentry->d_subdirs,
156 					    offset - 2, NULL);
157 		spin_lock(&dentry->d_lock);
158 		if (to)
159 			list_move(&cursor->d_child, &to->d_child);
160 		else
161 			list_del_init(&cursor->d_child);
162 		spin_unlock(&dentry->d_lock);
163 		dput(to);
164 
165 		file->f_pos = offset;
166 
167 		inode_unlock_shared(dentry->d_inode);
168 	}
169 	return offset;
170 }
171 EXPORT_SYMBOL(dcache_dir_lseek);
172 
173 /* Relationship between i_mode and the DT_xxx types */
174 static inline unsigned char dt_type(struct inode *inode)
175 {
176 	return (inode->i_mode >> 12) & 15;
177 }
178 
179 /*
180  * Directory is locked and all positive dentries in it are safe, since
181  * for ramfs-type trees they can't go away without unlink() or rmdir(),
182  * both impossible due to the lock on directory.
183  */
184 
185 int dcache_readdir(struct file *file, struct dir_context *ctx)
186 {
187 	struct dentry *dentry = file->f_path.dentry;
188 	struct dentry *cursor = file->private_data;
189 	struct list_head *anchor = &dentry->d_subdirs;
190 	struct dentry *next = NULL;
191 	struct list_head *p;
192 
193 	if (!dir_emit_dots(file, ctx))
194 		return 0;
195 
196 	if (ctx->pos == 2)
197 		p = anchor;
198 	else if (!list_empty(&cursor->d_child))
199 		p = &cursor->d_child;
200 	else
201 		return 0;
202 
203 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
204 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
205 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
206 			break;
207 		ctx->pos++;
208 		p = &next->d_child;
209 	}
210 	spin_lock(&dentry->d_lock);
211 	if (next)
212 		list_move_tail(&cursor->d_child, &next->d_child);
213 	else
214 		list_del_init(&cursor->d_child);
215 	spin_unlock(&dentry->d_lock);
216 	dput(next);
217 
218 	return 0;
219 }
220 EXPORT_SYMBOL(dcache_readdir);
221 
222 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
223 {
224 	return -EISDIR;
225 }
226 EXPORT_SYMBOL(generic_read_dir);
227 
228 const struct file_operations simple_dir_operations = {
229 	.open		= dcache_dir_open,
230 	.release	= dcache_dir_close,
231 	.llseek		= dcache_dir_lseek,
232 	.read		= generic_read_dir,
233 	.iterate_shared	= dcache_readdir,
234 	.fsync		= noop_fsync,
235 };
236 EXPORT_SYMBOL(simple_dir_operations);
237 
238 const struct inode_operations simple_dir_inode_operations = {
239 	.lookup		= simple_lookup,
240 };
241 EXPORT_SYMBOL(simple_dir_inode_operations);
242 
243 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
244 {
245 	struct dentry *child = NULL;
246 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
247 
248 	spin_lock(&parent->d_lock);
249 	while ((p = p->next) != &parent->d_subdirs) {
250 		struct dentry *d = container_of(p, struct dentry, d_child);
251 		if (simple_positive(d)) {
252 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
253 			if (simple_positive(d))
254 				child = dget_dlock(d);
255 			spin_unlock(&d->d_lock);
256 			if (likely(child))
257 				break;
258 		}
259 	}
260 	spin_unlock(&parent->d_lock);
261 	dput(prev);
262 	return child;
263 }
264 
265 void simple_recursive_removal(struct dentry *dentry,
266                               void (*callback)(struct dentry *))
267 {
268 	struct dentry *this = dget(dentry);
269 	while (true) {
270 		struct dentry *victim = NULL, *child;
271 		struct inode *inode = this->d_inode;
272 
273 		inode_lock(inode);
274 		if (d_is_dir(this))
275 			inode->i_flags |= S_DEAD;
276 		while ((child = find_next_child(this, victim)) == NULL) {
277 			// kill and ascend
278 			// update metadata while it's still locked
279 			inode->i_ctime = current_time(inode);
280 			clear_nlink(inode);
281 			inode_unlock(inode);
282 			victim = this;
283 			this = this->d_parent;
284 			inode = this->d_inode;
285 			inode_lock(inode);
286 			if (simple_positive(victim)) {
287 				d_invalidate(victim);	// avoid lost mounts
288 				if (d_is_dir(victim))
289 					fsnotify_rmdir(inode, victim);
290 				else
291 					fsnotify_unlink(inode, victim);
292 				if (callback)
293 					callback(victim);
294 				dput(victim);		// unpin it
295 			}
296 			if (victim == dentry) {
297 				inode->i_ctime = inode->i_mtime =
298 					current_time(inode);
299 				if (d_is_dir(dentry))
300 					drop_nlink(inode);
301 				inode_unlock(inode);
302 				dput(dentry);
303 				return;
304 			}
305 		}
306 		inode_unlock(inode);
307 		this = child;
308 	}
309 }
310 EXPORT_SYMBOL(simple_recursive_removal);
311 
312 static const struct super_operations simple_super_operations = {
313 	.statfs		= simple_statfs,
314 };
315 
316 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
317 {
318 	struct pseudo_fs_context *ctx = fc->fs_private;
319 	struct inode *root;
320 
321 	s->s_maxbytes = MAX_LFS_FILESIZE;
322 	s->s_blocksize = PAGE_SIZE;
323 	s->s_blocksize_bits = PAGE_SHIFT;
324 	s->s_magic = ctx->magic;
325 	s->s_op = ctx->ops ?: &simple_super_operations;
326 	s->s_xattr = ctx->xattr;
327 	s->s_time_gran = 1;
328 	root = new_inode(s);
329 	if (!root)
330 		return -ENOMEM;
331 
332 	/*
333 	 * since this is the first inode, make it number 1. New inodes created
334 	 * after this must take care not to collide with it (by passing
335 	 * max_reserved of 1 to iunique).
336 	 */
337 	root->i_ino = 1;
338 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
339 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
340 	s->s_root = d_make_root(root);
341 	if (!s->s_root)
342 		return -ENOMEM;
343 	s->s_d_op = ctx->dops;
344 	return 0;
345 }
346 
347 static int pseudo_fs_get_tree(struct fs_context *fc)
348 {
349 	return get_tree_nodev(fc, pseudo_fs_fill_super);
350 }
351 
352 static void pseudo_fs_free(struct fs_context *fc)
353 {
354 	kfree(fc->fs_private);
355 }
356 
357 static const struct fs_context_operations pseudo_fs_context_ops = {
358 	.free		= pseudo_fs_free,
359 	.get_tree	= pseudo_fs_get_tree,
360 };
361 
362 /*
363  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
364  * will never be mountable)
365  */
366 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
367 					unsigned long magic)
368 {
369 	struct pseudo_fs_context *ctx;
370 
371 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
372 	if (likely(ctx)) {
373 		ctx->magic = magic;
374 		fc->fs_private = ctx;
375 		fc->ops = &pseudo_fs_context_ops;
376 		fc->sb_flags |= SB_NOUSER;
377 		fc->global = true;
378 	}
379 	return ctx;
380 }
381 EXPORT_SYMBOL(init_pseudo);
382 
383 int simple_open(struct inode *inode, struct file *file)
384 {
385 	if (inode->i_private)
386 		file->private_data = inode->i_private;
387 	return 0;
388 }
389 EXPORT_SYMBOL(simple_open);
390 
391 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
392 {
393 	struct inode *inode = d_inode(old_dentry);
394 
395 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
396 	inc_nlink(inode);
397 	ihold(inode);
398 	dget(dentry);
399 	d_instantiate(dentry, inode);
400 	return 0;
401 }
402 EXPORT_SYMBOL(simple_link);
403 
404 int simple_empty(struct dentry *dentry)
405 {
406 	struct dentry *child;
407 	int ret = 0;
408 
409 	spin_lock(&dentry->d_lock);
410 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
411 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
412 		if (simple_positive(child)) {
413 			spin_unlock(&child->d_lock);
414 			goto out;
415 		}
416 		spin_unlock(&child->d_lock);
417 	}
418 	ret = 1;
419 out:
420 	spin_unlock(&dentry->d_lock);
421 	return ret;
422 }
423 EXPORT_SYMBOL(simple_empty);
424 
425 int simple_unlink(struct inode *dir, struct dentry *dentry)
426 {
427 	struct inode *inode = d_inode(dentry);
428 
429 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
430 	drop_nlink(inode);
431 	dput(dentry);
432 	return 0;
433 }
434 EXPORT_SYMBOL(simple_unlink);
435 
436 int simple_rmdir(struct inode *dir, struct dentry *dentry)
437 {
438 	if (!simple_empty(dentry))
439 		return -ENOTEMPTY;
440 
441 	drop_nlink(d_inode(dentry));
442 	simple_unlink(dir, dentry);
443 	drop_nlink(dir);
444 	return 0;
445 }
446 EXPORT_SYMBOL(simple_rmdir);
447 
448 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
449 		  struct inode *new_dir, struct dentry *new_dentry,
450 		  unsigned int flags)
451 {
452 	struct inode *inode = d_inode(old_dentry);
453 	int they_are_dirs = d_is_dir(old_dentry);
454 
455 	if (flags & ~RENAME_NOREPLACE)
456 		return -EINVAL;
457 
458 	if (!simple_empty(new_dentry))
459 		return -ENOTEMPTY;
460 
461 	if (d_really_is_positive(new_dentry)) {
462 		simple_unlink(new_dir, new_dentry);
463 		if (they_are_dirs) {
464 			drop_nlink(d_inode(new_dentry));
465 			drop_nlink(old_dir);
466 		}
467 	} else if (they_are_dirs) {
468 		drop_nlink(old_dir);
469 		inc_nlink(new_dir);
470 	}
471 
472 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
473 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
474 
475 	return 0;
476 }
477 EXPORT_SYMBOL(simple_rename);
478 
479 /**
480  * simple_setattr - setattr for simple filesystem
481  * @dentry: dentry
482  * @iattr: iattr structure
483  *
484  * Returns 0 on success, -error on failure.
485  *
486  * simple_setattr is a simple ->setattr implementation without a proper
487  * implementation of size changes.
488  *
489  * It can either be used for in-memory filesystems or special files
490  * on simple regular filesystems.  Anything that needs to change on-disk
491  * or wire state on size changes needs its own setattr method.
492  */
493 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
494 {
495 	struct inode *inode = d_inode(dentry);
496 	int error;
497 
498 	error = setattr_prepare(dentry, iattr);
499 	if (error)
500 		return error;
501 
502 	if (iattr->ia_valid & ATTR_SIZE)
503 		truncate_setsize(inode, iattr->ia_size);
504 	setattr_copy(inode, iattr);
505 	mark_inode_dirty(inode);
506 	return 0;
507 }
508 EXPORT_SYMBOL(simple_setattr);
509 
510 int simple_readpage(struct file *file, struct page *page)
511 {
512 	clear_highpage(page);
513 	flush_dcache_page(page);
514 	SetPageUptodate(page);
515 	unlock_page(page);
516 	return 0;
517 }
518 EXPORT_SYMBOL(simple_readpage);
519 
520 int simple_write_begin(struct file *file, struct address_space *mapping,
521 			loff_t pos, unsigned len, unsigned flags,
522 			struct page **pagep, void **fsdata)
523 {
524 	struct page *page;
525 	pgoff_t index;
526 
527 	index = pos >> PAGE_SHIFT;
528 
529 	page = grab_cache_page_write_begin(mapping, index, flags);
530 	if (!page)
531 		return -ENOMEM;
532 
533 	*pagep = page;
534 
535 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
536 		unsigned from = pos & (PAGE_SIZE - 1);
537 
538 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
539 	}
540 	return 0;
541 }
542 EXPORT_SYMBOL(simple_write_begin);
543 
544 /**
545  * simple_write_end - .write_end helper for non-block-device FSes
546  * @file: See .write_end of address_space_operations
547  * @mapping: 		"
548  * @pos: 		"
549  * @len: 		"
550  * @copied: 		"
551  * @page: 		"
552  * @fsdata: 		"
553  *
554  * simple_write_end does the minimum needed for updating a page after writing is
555  * done. It has the same API signature as the .write_end of
556  * address_space_operations vector. So it can just be set onto .write_end for
557  * FSes that don't need any other processing. i_mutex is assumed to be held.
558  * Block based filesystems should use generic_write_end().
559  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
560  * is not called, so a filesystem that actually does store data in .write_inode
561  * should extend on what's done here with a call to mark_inode_dirty() in the
562  * case that i_size has changed.
563  *
564  * Use *ONLY* with simple_readpage()
565  */
566 int simple_write_end(struct file *file, struct address_space *mapping,
567 			loff_t pos, unsigned len, unsigned copied,
568 			struct page *page, void *fsdata)
569 {
570 	struct inode *inode = page->mapping->host;
571 	loff_t last_pos = pos + copied;
572 
573 	/* zero the stale part of the page if we did a short copy */
574 	if (!PageUptodate(page)) {
575 		if (copied < len) {
576 			unsigned from = pos & (PAGE_SIZE - 1);
577 
578 			zero_user(page, from + copied, len - copied);
579 		}
580 		SetPageUptodate(page);
581 	}
582 	/*
583 	 * No need to use i_size_read() here, the i_size
584 	 * cannot change under us because we hold the i_mutex.
585 	 */
586 	if (last_pos > inode->i_size)
587 		i_size_write(inode, last_pos);
588 
589 	set_page_dirty(page);
590 	unlock_page(page);
591 	put_page(page);
592 
593 	return copied;
594 }
595 EXPORT_SYMBOL(simple_write_end);
596 
597 /*
598  * the inodes created here are not hashed. If you use iunique to generate
599  * unique inode values later for this filesystem, then you must take care
600  * to pass it an appropriate max_reserved value to avoid collisions.
601  */
602 int simple_fill_super(struct super_block *s, unsigned long magic,
603 		      const struct tree_descr *files)
604 {
605 	struct inode *inode;
606 	struct dentry *root;
607 	struct dentry *dentry;
608 	int i;
609 
610 	s->s_blocksize = PAGE_SIZE;
611 	s->s_blocksize_bits = PAGE_SHIFT;
612 	s->s_magic = magic;
613 	s->s_op = &simple_super_operations;
614 	s->s_time_gran = 1;
615 
616 	inode = new_inode(s);
617 	if (!inode)
618 		return -ENOMEM;
619 	/*
620 	 * because the root inode is 1, the files array must not contain an
621 	 * entry at index 1
622 	 */
623 	inode->i_ino = 1;
624 	inode->i_mode = S_IFDIR | 0755;
625 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
626 	inode->i_op = &simple_dir_inode_operations;
627 	inode->i_fop = &simple_dir_operations;
628 	set_nlink(inode, 2);
629 	root = d_make_root(inode);
630 	if (!root)
631 		return -ENOMEM;
632 	for (i = 0; !files->name || files->name[0]; i++, files++) {
633 		if (!files->name)
634 			continue;
635 
636 		/* warn if it tries to conflict with the root inode */
637 		if (unlikely(i == 1))
638 			printk(KERN_WARNING "%s: %s passed in a files array"
639 				"with an index of 1!\n", __func__,
640 				s->s_type->name);
641 
642 		dentry = d_alloc_name(root, files->name);
643 		if (!dentry)
644 			goto out;
645 		inode = new_inode(s);
646 		if (!inode) {
647 			dput(dentry);
648 			goto out;
649 		}
650 		inode->i_mode = S_IFREG | files->mode;
651 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
652 		inode->i_fop = files->ops;
653 		inode->i_ino = i;
654 		d_add(dentry, inode);
655 	}
656 	s->s_root = root;
657 	return 0;
658 out:
659 	d_genocide(root);
660 	shrink_dcache_parent(root);
661 	dput(root);
662 	return -ENOMEM;
663 }
664 EXPORT_SYMBOL(simple_fill_super);
665 
666 static DEFINE_SPINLOCK(pin_fs_lock);
667 
668 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
669 {
670 	struct vfsmount *mnt = NULL;
671 	spin_lock(&pin_fs_lock);
672 	if (unlikely(!*mount)) {
673 		spin_unlock(&pin_fs_lock);
674 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
675 		if (IS_ERR(mnt))
676 			return PTR_ERR(mnt);
677 		spin_lock(&pin_fs_lock);
678 		if (!*mount)
679 			*mount = mnt;
680 	}
681 	mntget(*mount);
682 	++*count;
683 	spin_unlock(&pin_fs_lock);
684 	mntput(mnt);
685 	return 0;
686 }
687 EXPORT_SYMBOL(simple_pin_fs);
688 
689 void simple_release_fs(struct vfsmount **mount, int *count)
690 {
691 	struct vfsmount *mnt;
692 	spin_lock(&pin_fs_lock);
693 	mnt = *mount;
694 	if (!--*count)
695 		*mount = NULL;
696 	spin_unlock(&pin_fs_lock);
697 	mntput(mnt);
698 }
699 EXPORT_SYMBOL(simple_release_fs);
700 
701 /**
702  * simple_read_from_buffer - copy data from the buffer to user space
703  * @to: the user space buffer to read to
704  * @count: the maximum number of bytes to read
705  * @ppos: the current position in the buffer
706  * @from: the buffer to read from
707  * @available: the size of the buffer
708  *
709  * The simple_read_from_buffer() function reads up to @count bytes from the
710  * buffer @from at offset @ppos into the user space address starting at @to.
711  *
712  * On success, the number of bytes read is returned and the offset @ppos is
713  * advanced by this number, or negative value is returned on error.
714  **/
715 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
716 				const void *from, size_t available)
717 {
718 	loff_t pos = *ppos;
719 	size_t ret;
720 
721 	if (pos < 0)
722 		return -EINVAL;
723 	if (pos >= available || !count)
724 		return 0;
725 	if (count > available - pos)
726 		count = available - pos;
727 	ret = copy_to_user(to, from + pos, count);
728 	if (ret == count)
729 		return -EFAULT;
730 	count -= ret;
731 	*ppos = pos + count;
732 	return count;
733 }
734 EXPORT_SYMBOL(simple_read_from_buffer);
735 
736 /**
737  * simple_write_to_buffer - copy data from user space to the buffer
738  * @to: the buffer to write to
739  * @available: the size of the buffer
740  * @ppos: the current position in the buffer
741  * @from: the user space buffer to read from
742  * @count: the maximum number of bytes to read
743  *
744  * The simple_write_to_buffer() function reads up to @count bytes from the user
745  * space address starting at @from into the buffer @to at offset @ppos.
746  *
747  * On success, the number of bytes written is returned and the offset @ppos is
748  * advanced by this number, or negative value is returned on error.
749  **/
750 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
751 		const void __user *from, size_t count)
752 {
753 	loff_t pos = *ppos;
754 	size_t res;
755 
756 	if (pos < 0)
757 		return -EINVAL;
758 	if (pos >= available || !count)
759 		return 0;
760 	if (count > available - pos)
761 		count = available - pos;
762 	res = copy_from_user(to + pos, from, count);
763 	if (res == count)
764 		return -EFAULT;
765 	count -= res;
766 	*ppos = pos + count;
767 	return count;
768 }
769 EXPORT_SYMBOL(simple_write_to_buffer);
770 
771 /**
772  * memory_read_from_buffer - copy data from the buffer
773  * @to: the kernel space buffer to read to
774  * @count: the maximum number of bytes to read
775  * @ppos: the current position in the buffer
776  * @from: the buffer to read from
777  * @available: the size of the buffer
778  *
779  * The memory_read_from_buffer() function reads up to @count bytes from the
780  * buffer @from at offset @ppos into the kernel space address starting at @to.
781  *
782  * On success, the number of bytes read is returned and the offset @ppos is
783  * advanced by this number, or negative value is returned on error.
784  **/
785 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
786 				const void *from, size_t available)
787 {
788 	loff_t pos = *ppos;
789 
790 	if (pos < 0)
791 		return -EINVAL;
792 	if (pos >= available)
793 		return 0;
794 	if (count > available - pos)
795 		count = available - pos;
796 	memcpy(to, from + pos, count);
797 	*ppos = pos + count;
798 
799 	return count;
800 }
801 EXPORT_SYMBOL(memory_read_from_buffer);
802 
803 /*
804  * Transaction based IO.
805  * The file expects a single write which triggers the transaction, and then
806  * possibly a read which collects the result - which is stored in a
807  * file-local buffer.
808  */
809 
810 void simple_transaction_set(struct file *file, size_t n)
811 {
812 	struct simple_transaction_argresp *ar = file->private_data;
813 
814 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
815 
816 	/*
817 	 * The barrier ensures that ar->size will really remain zero until
818 	 * ar->data is ready for reading.
819 	 */
820 	smp_mb();
821 	ar->size = n;
822 }
823 EXPORT_SYMBOL(simple_transaction_set);
824 
825 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
826 {
827 	struct simple_transaction_argresp *ar;
828 	static DEFINE_SPINLOCK(simple_transaction_lock);
829 
830 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
831 		return ERR_PTR(-EFBIG);
832 
833 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
834 	if (!ar)
835 		return ERR_PTR(-ENOMEM);
836 
837 	spin_lock(&simple_transaction_lock);
838 
839 	/* only one write allowed per open */
840 	if (file->private_data) {
841 		spin_unlock(&simple_transaction_lock);
842 		free_page((unsigned long)ar);
843 		return ERR_PTR(-EBUSY);
844 	}
845 
846 	file->private_data = ar;
847 
848 	spin_unlock(&simple_transaction_lock);
849 
850 	if (copy_from_user(ar->data, buf, size))
851 		return ERR_PTR(-EFAULT);
852 
853 	return ar->data;
854 }
855 EXPORT_SYMBOL(simple_transaction_get);
856 
857 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
858 {
859 	struct simple_transaction_argresp *ar = file->private_data;
860 
861 	if (!ar)
862 		return 0;
863 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
864 }
865 EXPORT_SYMBOL(simple_transaction_read);
866 
867 int simple_transaction_release(struct inode *inode, struct file *file)
868 {
869 	free_page((unsigned long)file->private_data);
870 	return 0;
871 }
872 EXPORT_SYMBOL(simple_transaction_release);
873 
874 /* Simple attribute files */
875 
876 struct simple_attr {
877 	int (*get)(void *, u64 *);
878 	int (*set)(void *, u64);
879 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
880 	char set_buf[24];
881 	void *data;
882 	const char *fmt;	/* format for read operation */
883 	struct mutex mutex;	/* protects access to these buffers */
884 };
885 
886 /* simple_attr_open is called by an actual attribute open file operation
887  * to set the attribute specific access operations. */
888 int simple_attr_open(struct inode *inode, struct file *file,
889 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
890 		     const char *fmt)
891 {
892 	struct simple_attr *attr;
893 
894 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
895 	if (!attr)
896 		return -ENOMEM;
897 
898 	attr->get = get;
899 	attr->set = set;
900 	attr->data = inode->i_private;
901 	attr->fmt = fmt;
902 	mutex_init(&attr->mutex);
903 
904 	file->private_data = attr;
905 
906 	return nonseekable_open(inode, file);
907 }
908 EXPORT_SYMBOL_GPL(simple_attr_open);
909 
910 int simple_attr_release(struct inode *inode, struct file *file)
911 {
912 	kfree(file->private_data);
913 	return 0;
914 }
915 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
916 
917 /* read from the buffer that is filled with the get function */
918 ssize_t simple_attr_read(struct file *file, char __user *buf,
919 			 size_t len, loff_t *ppos)
920 {
921 	struct simple_attr *attr;
922 	size_t size;
923 	ssize_t ret;
924 
925 	attr = file->private_data;
926 
927 	if (!attr->get)
928 		return -EACCES;
929 
930 	ret = mutex_lock_interruptible(&attr->mutex);
931 	if (ret)
932 		return ret;
933 
934 	if (*ppos && attr->get_buf[0]) {
935 		/* continued read */
936 		size = strlen(attr->get_buf);
937 	} else {
938 		/* first read */
939 		u64 val;
940 		ret = attr->get(attr->data, &val);
941 		if (ret)
942 			goto out;
943 
944 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
945 				 attr->fmt, (unsigned long long)val);
946 	}
947 
948 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
949 out:
950 	mutex_unlock(&attr->mutex);
951 	return ret;
952 }
953 EXPORT_SYMBOL_GPL(simple_attr_read);
954 
955 /* interpret the buffer as a number to call the set function with */
956 ssize_t simple_attr_write(struct file *file, const char __user *buf,
957 			  size_t len, loff_t *ppos)
958 {
959 	struct simple_attr *attr;
960 	u64 val;
961 	size_t size;
962 	ssize_t ret;
963 
964 	attr = file->private_data;
965 	if (!attr->set)
966 		return -EACCES;
967 
968 	ret = mutex_lock_interruptible(&attr->mutex);
969 	if (ret)
970 		return ret;
971 
972 	ret = -EFAULT;
973 	size = min(sizeof(attr->set_buf) - 1, len);
974 	if (copy_from_user(attr->set_buf, buf, size))
975 		goto out;
976 
977 	attr->set_buf[size] = '\0';
978 	val = simple_strtoll(attr->set_buf, NULL, 0);
979 	ret = attr->set(attr->data, val);
980 	if (ret == 0)
981 		ret = len; /* on success, claim we got the whole input */
982 out:
983 	mutex_unlock(&attr->mutex);
984 	return ret;
985 }
986 EXPORT_SYMBOL_GPL(simple_attr_write);
987 
988 /**
989  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
990  * @sb:		filesystem to do the file handle conversion on
991  * @fid:	file handle to convert
992  * @fh_len:	length of the file handle in bytes
993  * @fh_type:	type of file handle
994  * @get_inode:	filesystem callback to retrieve inode
995  *
996  * This function decodes @fid as long as it has one of the well-known
997  * Linux filehandle types and calls @get_inode on it to retrieve the
998  * inode for the object specified in the file handle.
999  */
1000 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1001 		int fh_len, int fh_type, struct inode *(*get_inode)
1002 			(struct super_block *sb, u64 ino, u32 gen))
1003 {
1004 	struct inode *inode = NULL;
1005 
1006 	if (fh_len < 2)
1007 		return NULL;
1008 
1009 	switch (fh_type) {
1010 	case FILEID_INO32_GEN:
1011 	case FILEID_INO32_GEN_PARENT:
1012 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1013 		break;
1014 	}
1015 
1016 	return d_obtain_alias(inode);
1017 }
1018 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1019 
1020 /**
1021  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1022  * @sb:		filesystem to do the file handle conversion on
1023  * @fid:	file handle to convert
1024  * @fh_len:	length of the file handle in bytes
1025  * @fh_type:	type of file handle
1026  * @get_inode:	filesystem callback to retrieve inode
1027  *
1028  * This function decodes @fid as long as it has one of the well-known
1029  * Linux filehandle types and calls @get_inode on it to retrieve the
1030  * inode for the _parent_ object specified in the file handle if it
1031  * is specified in the file handle, or NULL otherwise.
1032  */
1033 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1034 		int fh_len, int fh_type, struct inode *(*get_inode)
1035 			(struct super_block *sb, u64 ino, u32 gen))
1036 {
1037 	struct inode *inode = NULL;
1038 
1039 	if (fh_len <= 2)
1040 		return NULL;
1041 
1042 	switch (fh_type) {
1043 	case FILEID_INO32_GEN_PARENT:
1044 		inode = get_inode(sb, fid->i32.parent_ino,
1045 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1046 		break;
1047 	}
1048 
1049 	return d_obtain_alias(inode);
1050 }
1051 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1052 
1053 /**
1054  * __generic_file_fsync - generic fsync implementation for simple filesystems
1055  *
1056  * @file:	file to synchronize
1057  * @start:	start offset in bytes
1058  * @end:	end offset in bytes (inclusive)
1059  * @datasync:	only synchronize essential metadata if true
1060  *
1061  * This is a generic implementation of the fsync method for simple
1062  * filesystems which track all non-inode metadata in the buffers list
1063  * hanging off the address_space structure.
1064  */
1065 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1066 				 int datasync)
1067 {
1068 	struct inode *inode = file->f_mapping->host;
1069 	int err;
1070 	int ret;
1071 
1072 	err = file_write_and_wait_range(file, start, end);
1073 	if (err)
1074 		return err;
1075 
1076 	inode_lock(inode);
1077 	ret = sync_mapping_buffers(inode->i_mapping);
1078 	if (!(inode->i_state & I_DIRTY_ALL))
1079 		goto out;
1080 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1081 		goto out;
1082 
1083 	err = sync_inode_metadata(inode, 1);
1084 	if (ret == 0)
1085 		ret = err;
1086 
1087 out:
1088 	inode_unlock(inode);
1089 	/* check and advance again to catch errors after syncing out buffers */
1090 	err = file_check_and_advance_wb_err(file);
1091 	if (ret == 0)
1092 		ret = err;
1093 	return ret;
1094 }
1095 EXPORT_SYMBOL(__generic_file_fsync);
1096 
1097 /**
1098  * generic_file_fsync - generic fsync implementation for simple filesystems
1099  *			with flush
1100  * @file:	file to synchronize
1101  * @start:	start offset in bytes
1102  * @end:	end offset in bytes (inclusive)
1103  * @datasync:	only synchronize essential metadata if true
1104  *
1105  */
1106 
1107 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1108 		       int datasync)
1109 {
1110 	struct inode *inode = file->f_mapping->host;
1111 	int err;
1112 
1113 	err = __generic_file_fsync(file, start, end, datasync);
1114 	if (err)
1115 		return err;
1116 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
1117 }
1118 EXPORT_SYMBOL(generic_file_fsync);
1119 
1120 /**
1121  * generic_check_addressable - Check addressability of file system
1122  * @blocksize_bits:	log of file system block size
1123  * @num_blocks:		number of blocks in file system
1124  *
1125  * Determine whether a file system with @num_blocks blocks (and a
1126  * block size of 2**@blocksize_bits) is addressable by the sector_t
1127  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1128  */
1129 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1130 {
1131 	u64 last_fs_block = num_blocks - 1;
1132 	u64 last_fs_page =
1133 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1134 
1135 	if (unlikely(num_blocks == 0))
1136 		return 0;
1137 
1138 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1139 		return -EINVAL;
1140 
1141 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1142 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1143 		return -EFBIG;
1144 	}
1145 	return 0;
1146 }
1147 EXPORT_SYMBOL(generic_check_addressable);
1148 
1149 /*
1150  * No-op implementation of ->fsync for in-memory filesystems.
1151  */
1152 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1153 {
1154 	return 0;
1155 }
1156 EXPORT_SYMBOL(noop_fsync);
1157 
1158 int noop_set_page_dirty(struct page *page)
1159 {
1160 	/*
1161 	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1162 	 * tracking in the page object, dax does all dirty tracking in
1163 	 * the inode address_space in response to mkwrite faults. In the
1164 	 * dax case we only need to worry about potentially dirty CPU
1165 	 * caches, not dirty page cache pages to write back.
1166 	 *
1167 	 * This callback is defined to prevent fallback to
1168 	 * __set_page_dirty_buffers() in set_page_dirty().
1169 	 */
1170 	return 0;
1171 }
1172 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1173 
1174 void noop_invalidatepage(struct page *page, unsigned int offset,
1175 		unsigned int length)
1176 {
1177 	/*
1178 	 * There is no page cache to invalidate in the dax case, however
1179 	 * we need this callback defined to prevent falling back to
1180 	 * block_invalidatepage() in do_invalidatepage().
1181 	 */
1182 }
1183 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1184 
1185 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1186 {
1187 	/*
1188 	 * iomap based filesystems support direct I/O without need for
1189 	 * this callback. However, it still needs to be set in
1190 	 * inode->a_ops so that open/fcntl know that direct I/O is
1191 	 * generally supported.
1192 	 */
1193 	return -EINVAL;
1194 }
1195 EXPORT_SYMBOL_GPL(noop_direct_IO);
1196 
1197 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1198 void kfree_link(void *p)
1199 {
1200 	kfree(p);
1201 }
1202 EXPORT_SYMBOL(kfree_link);
1203 
1204 /*
1205  * nop .set_page_dirty method so that people can use .page_mkwrite on
1206  * anon inodes.
1207  */
1208 static int anon_set_page_dirty(struct page *page)
1209 {
1210 	return 0;
1211 };
1212 
1213 /*
1214  * A single inode exists for all anon_inode files. Contrary to pipes,
1215  * anon_inode inodes have no associated per-instance data, so we need
1216  * only allocate one of them.
1217  */
1218 struct inode *alloc_anon_inode(struct super_block *s)
1219 {
1220 	static const struct address_space_operations anon_aops = {
1221 		.set_page_dirty = anon_set_page_dirty,
1222 	};
1223 	struct inode *inode = new_inode_pseudo(s);
1224 
1225 	if (!inode)
1226 		return ERR_PTR(-ENOMEM);
1227 
1228 	inode->i_ino = get_next_ino();
1229 	inode->i_mapping->a_ops = &anon_aops;
1230 
1231 	/*
1232 	 * Mark the inode dirty from the very beginning,
1233 	 * that way it will never be moved to the dirty
1234 	 * list because mark_inode_dirty() will think
1235 	 * that it already _is_ on the dirty list.
1236 	 */
1237 	inode->i_state = I_DIRTY;
1238 	inode->i_mode = S_IRUSR | S_IWUSR;
1239 	inode->i_uid = current_fsuid();
1240 	inode->i_gid = current_fsgid();
1241 	inode->i_flags |= S_PRIVATE;
1242 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1243 	return inode;
1244 }
1245 EXPORT_SYMBOL(alloc_anon_inode);
1246 
1247 /**
1248  * simple_nosetlease - generic helper for prohibiting leases
1249  * @filp: file pointer
1250  * @arg: type of lease to obtain
1251  * @flp: new lease supplied for insertion
1252  * @priv: private data for lm_setup operation
1253  *
1254  * Generic helper for filesystems that do not wish to allow leases to be set.
1255  * All arguments are ignored and it just returns -EINVAL.
1256  */
1257 int
1258 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1259 		  void **priv)
1260 {
1261 	return -EINVAL;
1262 }
1263 EXPORT_SYMBOL(simple_nosetlease);
1264 
1265 /**
1266  * simple_get_link - generic helper to get the target of "fast" symlinks
1267  * @dentry: not used here
1268  * @inode: the symlink inode
1269  * @done: not used here
1270  *
1271  * Generic helper for filesystems to use for symlink inodes where a pointer to
1272  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1273  * since as an optimization the path lookup code uses any non-NULL ->i_link
1274  * directly, without calling ->get_link().  But ->get_link() still must be set,
1275  * to mark the inode_operations as being for a symlink.
1276  *
1277  * Return: the symlink target
1278  */
1279 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1280 			    struct delayed_call *done)
1281 {
1282 	return inode->i_link;
1283 }
1284 EXPORT_SYMBOL(simple_get_link);
1285 
1286 const struct inode_operations simple_symlink_inode_operations = {
1287 	.get_link = simple_get_link,
1288 };
1289 EXPORT_SYMBOL(simple_symlink_inode_operations);
1290 
1291 /*
1292  * Operations for a permanently empty directory.
1293  */
1294 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1295 {
1296 	return ERR_PTR(-ENOENT);
1297 }
1298 
1299 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1300 			     u32 request_mask, unsigned int query_flags)
1301 {
1302 	struct inode *inode = d_inode(path->dentry);
1303 	generic_fillattr(inode, stat);
1304 	return 0;
1305 }
1306 
1307 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1308 {
1309 	return -EPERM;
1310 }
1311 
1312 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1313 {
1314 	return -EOPNOTSUPP;
1315 }
1316 
1317 static const struct inode_operations empty_dir_inode_operations = {
1318 	.lookup		= empty_dir_lookup,
1319 	.permission	= generic_permission,
1320 	.setattr	= empty_dir_setattr,
1321 	.getattr	= empty_dir_getattr,
1322 	.listxattr	= empty_dir_listxattr,
1323 };
1324 
1325 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1326 {
1327 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1328 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1329 }
1330 
1331 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1332 {
1333 	dir_emit_dots(file, ctx);
1334 	return 0;
1335 }
1336 
1337 static const struct file_operations empty_dir_operations = {
1338 	.llseek		= empty_dir_llseek,
1339 	.read		= generic_read_dir,
1340 	.iterate_shared	= empty_dir_readdir,
1341 	.fsync		= noop_fsync,
1342 };
1343 
1344 
1345 void make_empty_dir_inode(struct inode *inode)
1346 {
1347 	set_nlink(inode, 2);
1348 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1349 	inode->i_uid = GLOBAL_ROOT_UID;
1350 	inode->i_gid = GLOBAL_ROOT_GID;
1351 	inode->i_rdev = 0;
1352 	inode->i_size = 0;
1353 	inode->i_blkbits = PAGE_SHIFT;
1354 	inode->i_blocks = 0;
1355 
1356 	inode->i_op = &empty_dir_inode_operations;
1357 	inode->i_opflags &= ~IOP_XATTR;
1358 	inode->i_fop = &empty_dir_operations;
1359 }
1360 
1361 bool is_empty_dir_inode(struct inode *inode)
1362 {
1363 	return (inode->i_fop == &empty_dir_operations) &&
1364 		(inode->i_op == &empty_dir_inode_operations);
1365 }
1366