xref: /openbmc/linux/fs/libfs.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	fs/libfs.c
4  *	Library for filesystems writers.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/unicode.h>
24 #include <linux/fscrypt.h>
25 
26 #include <linux/uaccess.h>
27 
28 #include "internal.h"
29 
30 int simple_getattr(const struct path *path, struct kstat *stat,
31 		   u32 request_mask, unsigned int query_flags)
32 {
33 	struct inode *inode = d_inode(path->dentry);
34 	generic_fillattr(inode, stat);
35 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
36 	return 0;
37 }
38 EXPORT_SYMBOL(simple_getattr);
39 
40 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
41 {
42 	buf->f_type = dentry->d_sb->s_magic;
43 	buf->f_bsize = PAGE_SIZE;
44 	buf->f_namelen = NAME_MAX;
45 	return 0;
46 }
47 EXPORT_SYMBOL(simple_statfs);
48 
49 /*
50  * Retaining negative dentries for an in-memory filesystem just wastes
51  * memory and lookup time: arrange for them to be deleted immediately.
52  */
53 int always_delete_dentry(const struct dentry *dentry)
54 {
55 	return 1;
56 }
57 EXPORT_SYMBOL(always_delete_dentry);
58 
59 const struct dentry_operations simple_dentry_operations = {
60 	.d_delete = always_delete_dentry,
61 };
62 EXPORT_SYMBOL(simple_dentry_operations);
63 
64 /*
65  * Lookup the data. This is trivial - if the dentry didn't already
66  * exist, we know it is negative.  Set d_op to delete negative dentries.
67  */
68 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
69 {
70 	if (dentry->d_name.len > NAME_MAX)
71 		return ERR_PTR(-ENAMETOOLONG);
72 	if (!dentry->d_sb->s_d_op)
73 		d_set_d_op(dentry, &simple_dentry_operations);
74 	d_add(dentry, NULL);
75 	return NULL;
76 }
77 EXPORT_SYMBOL(simple_lookup);
78 
79 int dcache_dir_open(struct inode *inode, struct file *file)
80 {
81 	file->private_data = d_alloc_cursor(file->f_path.dentry);
82 
83 	return file->private_data ? 0 : -ENOMEM;
84 }
85 EXPORT_SYMBOL(dcache_dir_open);
86 
87 int dcache_dir_close(struct inode *inode, struct file *file)
88 {
89 	dput(file->private_data);
90 	return 0;
91 }
92 EXPORT_SYMBOL(dcache_dir_close);
93 
94 /* parent is locked at least shared */
95 /*
96  * Returns an element of siblings' list.
97  * We are looking for <count>th positive after <p>; if
98  * found, dentry is grabbed and returned to caller.
99  * If no such element exists, NULL is returned.
100  */
101 static struct dentry *scan_positives(struct dentry *cursor,
102 					struct list_head *p,
103 					loff_t count,
104 					struct dentry *last)
105 {
106 	struct dentry *dentry = cursor->d_parent, *found = NULL;
107 
108 	spin_lock(&dentry->d_lock);
109 	while ((p = p->next) != &dentry->d_subdirs) {
110 		struct dentry *d = list_entry(p, struct dentry, d_child);
111 		// we must at least skip cursors, to avoid livelocks
112 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
113 			continue;
114 		if (simple_positive(d) && !--count) {
115 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
116 			if (simple_positive(d))
117 				found = dget_dlock(d);
118 			spin_unlock(&d->d_lock);
119 			if (likely(found))
120 				break;
121 			count = 1;
122 		}
123 		if (need_resched()) {
124 			list_move(&cursor->d_child, p);
125 			p = &cursor->d_child;
126 			spin_unlock(&dentry->d_lock);
127 			cond_resched();
128 			spin_lock(&dentry->d_lock);
129 		}
130 	}
131 	spin_unlock(&dentry->d_lock);
132 	dput(last);
133 	return found;
134 }
135 
136 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
137 {
138 	struct dentry *dentry = file->f_path.dentry;
139 	switch (whence) {
140 		case 1:
141 			offset += file->f_pos;
142 			fallthrough;
143 		case 0:
144 			if (offset >= 0)
145 				break;
146 			fallthrough;
147 		default:
148 			return -EINVAL;
149 	}
150 	if (offset != file->f_pos) {
151 		struct dentry *cursor = file->private_data;
152 		struct dentry *to = NULL;
153 
154 		inode_lock_shared(dentry->d_inode);
155 
156 		if (offset > 2)
157 			to = scan_positives(cursor, &dentry->d_subdirs,
158 					    offset - 2, NULL);
159 		spin_lock(&dentry->d_lock);
160 		if (to)
161 			list_move(&cursor->d_child, &to->d_child);
162 		else
163 			list_del_init(&cursor->d_child);
164 		spin_unlock(&dentry->d_lock);
165 		dput(to);
166 
167 		file->f_pos = offset;
168 
169 		inode_unlock_shared(dentry->d_inode);
170 	}
171 	return offset;
172 }
173 EXPORT_SYMBOL(dcache_dir_lseek);
174 
175 /* Relationship between i_mode and the DT_xxx types */
176 static inline unsigned char dt_type(struct inode *inode)
177 {
178 	return (inode->i_mode >> 12) & 15;
179 }
180 
181 /*
182  * Directory is locked and all positive dentries in it are safe, since
183  * for ramfs-type trees they can't go away without unlink() or rmdir(),
184  * both impossible due to the lock on directory.
185  */
186 
187 int dcache_readdir(struct file *file, struct dir_context *ctx)
188 {
189 	struct dentry *dentry = file->f_path.dentry;
190 	struct dentry *cursor = file->private_data;
191 	struct list_head *anchor = &dentry->d_subdirs;
192 	struct dentry *next = NULL;
193 	struct list_head *p;
194 
195 	if (!dir_emit_dots(file, ctx))
196 		return 0;
197 
198 	if (ctx->pos == 2)
199 		p = anchor;
200 	else if (!list_empty(&cursor->d_child))
201 		p = &cursor->d_child;
202 	else
203 		return 0;
204 
205 	while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
206 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
207 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
208 			break;
209 		ctx->pos++;
210 		p = &next->d_child;
211 	}
212 	spin_lock(&dentry->d_lock);
213 	if (next)
214 		list_move_tail(&cursor->d_child, &next->d_child);
215 	else
216 		list_del_init(&cursor->d_child);
217 	spin_unlock(&dentry->d_lock);
218 	dput(next);
219 
220 	return 0;
221 }
222 EXPORT_SYMBOL(dcache_readdir);
223 
224 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225 {
226 	return -EISDIR;
227 }
228 EXPORT_SYMBOL(generic_read_dir);
229 
230 const struct file_operations simple_dir_operations = {
231 	.open		= dcache_dir_open,
232 	.release	= dcache_dir_close,
233 	.llseek		= dcache_dir_lseek,
234 	.read		= generic_read_dir,
235 	.iterate_shared	= dcache_readdir,
236 	.fsync		= noop_fsync,
237 };
238 EXPORT_SYMBOL(simple_dir_operations);
239 
240 const struct inode_operations simple_dir_inode_operations = {
241 	.lookup		= simple_lookup,
242 };
243 EXPORT_SYMBOL(simple_dir_inode_operations);
244 
245 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
246 {
247 	struct dentry *child = NULL;
248 	struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
249 
250 	spin_lock(&parent->d_lock);
251 	while ((p = p->next) != &parent->d_subdirs) {
252 		struct dentry *d = container_of(p, struct dentry, d_child);
253 		if (simple_positive(d)) {
254 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
255 			if (simple_positive(d))
256 				child = dget_dlock(d);
257 			spin_unlock(&d->d_lock);
258 			if (likely(child))
259 				break;
260 		}
261 	}
262 	spin_unlock(&parent->d_lock);
263 	dput(prev);
264 	return child;
265 }
266 
267 void simple_recursive_removal(struct dentry *dentry,
268                               void (*callback)(struct dentry *))
269 {
270 	struct dentry *this = dget(dentry);
271 	while (true) {
272 		struct dentry *victim = NULL, *child;
273 		struct inode *inode = this->d_inode;
274 
275 		inode_lock(inode);
276 		if (d_is_dir(this))
277 			inode->i_flags |= S_DEAD;
278 		while ((child = find_next_child(this, victim)) == NULL) {
279 			// kill and ascend
280 			// update metadata while it's still locked
281 			inode->i_ctime = current_time(inode);
282 			clear_nlink(inode);
283 			inode_unlock(inode);
284 			victim = this;
285 			this = this->d_parent;
286 			inode = this->d_inode;
287 			inode_lock(inode);
288 			if (simple_positive(victim)) {
289 				d_invalidate(victim);	// avoid lost mounts
290 				if (d_is_dir(victim))
291 					fsnotify_rmdir(inode, victim);
292 				else
293 					fsnotify_unlink(inode, victim);
294 				if (callback)
295 					callback(victim);
296 				dput(victim);		// unpin it
297 			}
298 			if (victim == dentry) {
299 				inode->i_ctime = inode->i_mtime =
300 					current_time(inode);
301 				if (d_is_dir(dentry))
302 					drop_nlink(inode);
303 				inode_unlock(inode);
304 				dput(dentry);
305 				return;
306 			}
307 		}
308 		inode_unlock(inode);
309 		this = child;
310 	}
311 }
312 EXPORT_SYMBOL(simple_recursive_removal);
313 
314 static const struct super_operations simple_super_operations = {
315 	.statfs		= simple_statfs,
316 };
317 
318 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
319 {
320 	struct pseudo_fs_context *ctx = fc->fs_private;
321 	struct inode *root;
322 
323 	s->s_maxbytes = MAX_LFS_FILESIZE;
324 	s->s_blocksize = PAGE_SIZE;
325 	s->s_blocksize_bits = PAGE_SHIFT;
326 	s->s_magic = ctx->magic;
327 	s->s_op = ctx->ops ?: &simple_super_operations;
328 	s->s_xattr = ctx->xattr;
329 	s->s_time_gran = 1;
330 	root = new_inode(s);
331 	if (!root)
332 		return -ENOMEM;
333 
334 	/*
335 	 * since this is the first inode, make it number 1. New inodes created
336 	 * after this must take care not to collide with it (by passing
337 	 * max_reserved of 1 to iunique).
338 	 */
339 	root->i_ino = 1;
340 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
341 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
342 	s->s_root = d_make_root(root);
343 	if (!s->s_root)
344 		return -ENOMEM;
345 	s->s_d_op = ctx->dops;
346 	return 0;
347 }
348 
349 static int pseudo_fs_get_tree(struct fs_context *fc)
350 {
351 	return get_tree_nodev(fc, pseudo_fs_fill_super);
352 }
353 
354 static void pseudo_fs_free(struct fs_context *fc)
355 {
356 	kfree(fc->fs_private);
357 }
358 
359 static const struct fs_context_operations pseudo_fs_context_ops = {
360 	.free		= pseudo_fs_free,
361 	.get_tree	= pseudo_fs_get_tree,
362 };
363 
364 /*
365  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
366  * will never be mountable)
367  */
368 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
369 					unsigned long magic)
370 {
371 	struct pseudo_fs_context *ctx;
372 
373 	ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
374 	if (likely(ctx)) {
375 		ctx->magic = magic;
376 		fc->fs_private = ctx;
377 		fc->ops = &pseudo_fs_context_ops;
378 		fc->sb_flags |= SB_NOUSER;
379 		fc->global = true;
380 	}
381 	return ctx;
382 }
383 EXPORT_SYMBOL(init_pseudo);
384 
385 int simple_open(struct inode *inode, struct file *file)
386 {
387 	if (inode->i_private)
388 		file->private_data = inode->i_private;
389 	return 0;
390 }
391 EXPORT_SYMBOL(simple_open);
392 
393 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
394 {
395 	struct inode *inode = d_inode(old_dentry);
396 
397 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
398 	inc_nlink(inode);
399 	ihold(inode);
400 	dget(dentry);
401 	d_instantiate(dentry, inode);
402 	return 0;
403 }
404 EXPORT_SYMBOL(simple_link);
405 
406 int simple_empty(struct dentry *dentry)
407 {
408 	struct dentry *child;
409 	int ret = 0;
410 
411 	spin_lock(&dentry->d_lock);
412 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
413 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
414 		if (simple_positive(child)) {
415 			spin_unlock(&child->d_lock);
416 			goto out;
417 		}
418 		spin_unlock(&child->d_lock);
419 	}
420 	ret = 1;
421 out:
422 	spin_unlock(&dentry->d_lock);
423 	return ret;
424 }
425 EXPORT_SYMBOL(simple_empty);
426 
427 int simple_unlink(struct inode *dir, struct dentry *dentry)
428 {
429 	struct inode *inode = d_inode(dentry);
430 
431 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
432 	drop_nlink(inode);
433 	dput(dentry);
434 	return 0;
435 }
436 EXPORT_SYMBOL(simple_unlink);
437 
438 int simple_rmdir(struct inode *dir, struct dentry *dentry)
439 {
440 	if (!simple_empty(dentry))
441 		return -ENOTEMPTY;
442 
443 	drop_nlink(d_inode(dentry));
444 	simple_unlink(dir, dentry);
445 	drop_nlink(dir);
446 	return 0;
447 }
448 EXPORT_SYMBOL(simple_rmdir);
449 
450 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
451 		  struct inode *new_dir, struct dentry *new_dentry,
452 		  unsigned int flags)
453 {
454 	struct inode *inode = d_inode(old_dentry);
455 	int they_are_dirs = d_is_dir(old_dentry);
456 
457 	if (flags & ~RENAME_NOREPLACE)
458 		return -EINVAL;
459 
460 	if (!simple_empty(new_dentry))
461 		return -ENOTEMPTY;
462 
463 	if (d_really_is_positive(new_dentry)) {
464 		simple_unlink(new_dir, new_dentry);
465 		if (they_are_dirs) {
466 			drop_nlink(d_inode(new_dentry));
467 			drop_nlink(old_dir);
468 		}
469 	} else if (they_are_dirs) {
470 		drop_nlink(old_dir);
471 		inc_nlink(new_dir);
472 	}
473 
474 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
475 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
476 
477 	return 0;
478 }
479 EXPORT_SYMBOL(simple_rename);
480 
481 /**
482  * simple_setattr - setattr for simple filesystem
483  * @dentry: dentry
484  * @iattr: iattr structure
485  *
486  * Returns 0 on success, -error on failure.
487  *
488  * simple_setattr is a simple ->setattr implementation without a proper
489  * implementation of size changes.
490  *
491  * It can either be used for in-memory filesystems or special files
492  * on simple regular filesystems.  Anything that needs to change on-disk
493  * or wire state on size changes needs its own setattr method.
494  */
495 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
496 {
497 	struct inode *inode = d_inode(dentry);
498 	int error;
499 
500 	error = setattr_prepare(dentry, iattr);
501 	if (error)
502 		return error;
503 
504 	if (iattr->ia_valid & ATTR_SIZE)
505 		truncate_setsize(inode, iattr->ia_size);
506 	setattr_copy(inode, iattr);
507 	mark_inode_dirty(inode);
508 	return 0;
509 }
510 EXPORT_SYMBOL(simple_setattr);
511 
512 int simple_readpage(struct file *file, struct page *page)
513 {
514 	clear_highpage(page);
515 	flush_dcache_page(page);
516 	SetPageUptodate(page);
517 	unlock_page(page);
518 	return 0;
519 }
520 EXPORT_SYMBOL(simple_readpage);
521 
522 int simple_write_begin(struct file *file, struct address_space *mapping,
523 			loff_t pos, unsigned len, unsigned flags,
524 			struct page **pagep, void **fsdata)
525 {
526 	struct page *page;
527 	pgoff_t index;
528 
529 	index = pos >> PAGE_SHIFT;
530 
531 	page = grab_cache_page_write_begin(mapping, index, flags);
532 	if (!page)
533 		return -ENOMEM;
534 
535 	*pagep = page;
536 
537 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
538 		unsigned from = pos & (PAGE_SIZE - 1);
539 
540 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
541 	}
542 	return 0;
543 }
544 EXPORT_SYMBOL(simple_write_begin);
545 
546 /**
547  * simple_write_end - .write_end helper for non-block-device FSes
548  * @file: See .write_end of address_space_operations
549  * @mapping: 		"
550  * @pos: 		"
551  * @len: 		"
552  * @copied: 		"
553  * @page: 		"
554  * @fsdata: 		"
555  *
556  * simple_write_end does the minimum needed for updating a page after writing is
557  * done. It has the same API signature as the .write_end of
558  * address_space_operations vector. So it can just be set onto .write_end for
559  * FSes that don't need any other processing. i_mutex is assumed to be held.
560  * Block based filesystems should use generic_write_end().
561  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
562  * is not called, so a filesystem that actually does store data in .write_inode
563  * should extend on what's done here with a call to mark_inode_dirty() in the
564  * case that i_size has changed.
565  *
566  * Use *ONLY* with simple_readpage()
567  */
568 int simple_write_end(struct file *file, struct address_space *mapping,
569 			loff_t pos, unsigned len, unsigned copied,
570 			struct page *page, void *fsdata)
571 {
572 	struct inode *inode = page->mapping->host;
573 	loff_t last_pos = pos + copied;
574 
575 	/* zero the stale part of the page if we did a short copy */
576 	if (!PageUptodate(page)) {
577 		if (copied < len) {
578 			unsigned from = pos & (PAGE_SIZE - 1);
579 
580 			zero_user(page, from + copied, len - copied);
581 		}
582 		SetPageUptodate(page);
583 	}
584 	/*
585 	 * No need to use i_size_read() here, the i_size
586 	 * cannot change under us because we hold the i_mutex.
587 	 */
588 	if (last_pos > inode->i_size)
589 		i_size_write(inode, last_pos);
590 
591 	set_page_dirty(page);
592 	unlock_page(page);
593 	put_page(page);
594 
595 	return copied;
596 }
597 EXPORT_SYMBOL(simple_write_end);
598 
599 /*
600  * the inodes created here are not hashed. If you use iunique to generate
601  * unique inode values later for this filesystem, then you must take care
602  * to pass it an appropriate max_reserved value to avoid collisions.
603  */
604 int simple_fill_super(struct super_block *s, unsigned long magic,
605 		      const struct tree_descr *files)
606 {
607 	struct inode *inode;
608 	struct dentry *root;
609 	struct dentry *dentry;
610 	int i;
611 
612 	s->s_blocksize = PAGE_SIZE;
613 	s->s_blocksize_bits = PAGE_SHIFT;
614 	s->s_magic = magic;
615 	s->s_op = &simple_super_operations;
616 	s->s_time_gran = 1;
617 
618 	inode = new_inode(s);
619 	if (!inode)
620 		return -ENOMEM;
621 	/*
622 	 * because the root inode is 1, the files array must not contain an
623 	 * entry at index 1
624 	 */
625 	inode->i_ino = 1;
626 	inode->i_mode = S_IFDIR | 0755;
627 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
628 	inode->i_op = &simple_dir_inode_operations;
629 	inode->i_fop = &simple_dir_operations;
630 	set_nlink(inode, 2);
631 	root = d_make_root(inode);
632 	if (!root)
633 		return -ENOMEM;
634 	for (i = 0; !files->name || files->name[0]; i++, files++) {
635 		if (!files->name)
636 			continue;
637 
638 		/* warn if it tries to conflict with the root inode */
639 		if (unlikely(i == 1))
640 			printk(KERN_WARNING "%s: %s passed in a files array"
641 				"with an index of 1!\n", __func__,
642 				s->s_type->name);
643 
644 		dentry = d_alloc_name(root, files->name);
645 		if (!dentry)
646 			goto out;
647 		inode = new_inode(s);
648 		if (!inode) {
649 			dput(dentry);
650 			goto out;
651 		}
652 		inode->i_mode = S_IFREG | files->mode;
653 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
654 		inode->i_fop = files->ops;
655 		inode->i_ino = i;
656 		d_add(dentry, inode);
657 	}
658 	s->s_root = root;
659 	return 0;
660 out:
661 	d_genocide(root);
662 	shrink_dcache_parent(root);
663 	dput(root);
664 	return -ENOMEM;
665 }
666 EXPORT_SYMBOL(simple_fill_super);
667 
668 static DEFINE_SPINLOCK(pin_fs_lock);
669 
670 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
671 {
672 	struct vfsmount *mnt = NULL;
673 	spin_lock(&pin_fs_lock);
674 	if (unlikely(!*mount)) {
675 		spin_unlock(&pin_fs_lock);
676 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
677 		if (IS_ERR(mnt))
678 			return PTR_ERR(mnt);
679 		spin_lock(&pin_fs_lock);
680 		if (!*mount)
681 			*mount = mnt;
682 	}
683 	mntget(*mount);
684 	++*count;
685 	spin_unlock(&pin_fs_lock);
686 	mntput(mnt);
687 	return 0;
688 }
689 EXPORT_SYMBOL(simple_pin_fs);
690 
691 void simple_release_fs(struct vfsmount **mount, int *count)
692 {
693 	struct vfsmount *mnt;
694 	spin_lock(&pin_fs_lock);
695 	mnt = *mount;
696 	if (!--*count)
697 		*mount = NULL;
698 	spin_unlock(&pin_fs_lock);
699 	mntput(mnt);
700 }
701 EXPORT_SYMBOL(simple_release_fs);
702 
703 /**
704  * simple_read_from_buffer - copy data from the buffer to user space
705  * @to: the user space buffer to read to
706  * @count: the maximum number of bytes to read
707  * @ppos: the current position in the buffer
708  * @from: the buffer to read from
709  * @available: the size of the buffer
710  *
711  * The simple_read_from_buffer() function reads up to @count bytes from the
712  * buffer @from at offset @ppos into the user space address starting at @to.
713  *
714  * On success, the number of bytes read is returned and the offset @ppos is
715  * advanced by this number, or negative value is returned on error.
716  **/
717 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
718 				const void *from, size_t available)
719 {
720 	loff_t pos = *ppos;
721 	size_t ret;
722 
723 	if (pos < 0)
724 		return -EINVAL;
725 	if (pos >= available || !count)
726 		return 0;
727 	if (count > available - pos)
728 		count = available - pos;
729 	ret = copy_to_user(to, from + pos, count);
730 	if (ret == count)
731 		return -EFAULT;
732 	count -= ret;
733 	*ppos = pos + count;
734 	return count;
735 }
736 EXPORT_SYMBOL(simple_read_from_buffer);
737 
738 /**
739  * simple_write_to_buffer - copy data from user space to the buffer
740  * @to: the buffer to write to
741  * @available: the size of the buffer
742  * @ppos: the current position in the buffer
743  * @from: the user space buffer to read from
744  * @count: the maximum number of bytes to read
745  *
746  * The simple_write_to_buffer() function reads up to @count bytes from the user
747  * space address starting at @from into the buffer @to at offset @ppos.
748  *
749  * On success, the number of bytes written is returned and the offset @ppos is
750  * advanced by this number, or negative value is returned on error.
751  **/
752 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
753 		const void __user *from, size_t count)
754 {
755 	loff_t pos = *ppos;
756 	size_t res;
757 
758 	if (pos < 0)
759 		return -EINVAL;
760 	if (pos >= available || !count)
761 		return 0;
762 	if (count > available - pos)
763 		count = available - pos;
764 	res = copy_from_user(to + pos, from, count);
765 	if (res == count)
766 		return -EFAULT;
767 	count -= res;
768 	*ppos = pos + count;
769 	return count;
770 }
771 EXPORT_SYMBOL(simple_write_to_buffer);
772 
773 /**
774  * memory_read_from_buffer - copy data from the buffer
775  * @to: the kernel space buffer to read to
776  * @count: the maximum number of bytes to read
777  * @ppos: the current position in the buffer
778  * @from: the buffer to read from
779  * @available: the size of the buffer
780  *
781  * The memory_read_from_buffer() function reads up to @count bytes from the
782  * buffer @from at offset @ppos into the kernel space address starting at @to.
783  *
784  * On success, the number of bytes read is returned and the offset @ppos is
785  * advanced by this number, or negative value is returned on error.
786  **/
787 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
788 				const void *from, size_t available)
789 {
790 	loff_t pos = *ppos;
791 
792 	if (pos < 0)
793 		return -EINVAL;
794 	if (pos >= available)
795 		return 0;
796 	if (count > available - pos)
797 		count = available - pos;
798 	memcpy(to, from + pos, count);
799 	*ppos = pos + count;
800 
801 	return count;
802 }
803 EXPORT_SYMBOL(memory_read_from_buffer);
804 
805 /*
806  * Transaction based IO.
807  * The file expects a single write which triggers the transaction, and then
808  * possibly a read which collects the result - which is stored in a
809  * file-local buffer.
810  */
811 
812 void simple_transaction_set(struct file *file, size_t n)
813 {
814 	struct simple_transaction_argresp *ar = file->private_data;
815 
816 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
817 
818 	/*
819 	 * The barrier ensures that ar->size will really remain zero until
820 	 * ar->data is ready for reading.
821 	 */
822 	smp_mb();
823 	ar->size = n;
824 }
825 EXPORT_SYMBOL(simple_transaction_set);
826 
827 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
828 {
829 	struct simple_transaction_argresp *ar;
830 	static DEFINE_SPINLOCK(simple_transaction_lock);
831 
832 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
833 		return ERR_PTR(-EFBIG);
834 
835 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
836 	if (!ar)
837 		return ERR_PTR(-ENOMEM);
838 
839 	spin_lock(&simple_transaction_lock);
840 
841 	/* only one write allowed per open */
842 	if (file->private_data) {
843 		spin_unlock(&simple_transaction_lock);
844 		free_page((unsigned long)ar);
845 		return ERR_PTR(-EBUSY);
846 	}
847 
848 	file->private_data = ar;
849 
850 	spin_unlock(&simple_transaction_lock);
851 
852 	if (copy_from_user(ar->data, buf, size))
853 		return ERR_PTR(-EFAULT);
854 
855 	return ar->data;
856 }
857 EXPORT_SYMBOL(simple_transaction_get);
858 
859 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
860 {
861 	struct simple_transaction_argresp *ar = file->private_data;
862 
863 	if (!ar)
864 		return 0;
865 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
866 }
867 EXPORT_SYMBOL(simple_transaction_read);
868 
869 int simple_transaction_release(struct inode *inode, struct file *file)
870 {
871 	free_page((unsigned long)file->private_data);
872 	return 0;
873 }
874 EXPORT_SYMBOL(simple_transaction_release);
875 
876 /* Simple attribute files */
877 
878 struct simple_attr {
879 	int (*get)(void *, u64 *);
880 	int (*set)(void *, u64);
881 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
882 	char set_buf[24];
883 	void *data;
884 	const char *fmt;	/* format for read operation */
885 	struct mutex mutex;	/* protects access to these buffers */
886 };
887 
888 /* simple_attr_open is called by an actual attribute open file operation
889  * to set the attribute specific access operations. */
890 int simple_attr_open(struct inode *inode, struct file *file,
891 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
892 		     const char *fmt)
893 {
894 	struct simple_attr *attr;
895 
896 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
897 	if (!attr)
898 		return -ENOMEM;
899 
900 	attr->get = get;
901 	attr->set = set;
902 	attr->data = inode->i_private;
903 	attr->fmt = fmt;
904 	mutex_init(&attr->mutex);
905 
906 	file->private_data = attr;
907 
908 	return nonseekable_open(inode, file);
909 }
910 EXPORT_SYMBOL_GPL(simple_attr_open);
911 
912 int simple_attr_release(struct inode *inode, struct file *file)
913 {
914 	kfree(file->private_data);
915 	return 0;
916 }
917 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
918 
919 /* read from the buffer that is filled with the get function */
920 ssize_t simple_attr_read(struct file *file, char __user *buf,
921 			 size_t len, loff_t *ppos)
922 {
923 	struct simple_attr *attr;
924 	size_t size;
925 	ssize_t ret;
926 
927 	attr = file->private_data;
928 
929 	if (!attr->get)
930 		return -EACCES;
931 
932 	ret = mutex_lock_interruptible(&attr->mutex);
933 	if (ret)
934 		return ret;
935 
936 	if (*ppos && attr->get_buf[0]) {
937 		/* continued read */
938 		size = strlen(attr->get_buf);
939 	} else {
940 		/* first read */
941 		u64 val;
942 		ret = attr->get(attr->data, &val);
943 		if (ret)
944 			goto out;
945 
946 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
947 				 attr->fmt, (unsigned long long)val);
948 	}
949 
950 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
951 out:
952 	mutex_unlock(&attr->mutex);
953 	return ret;
954 }
955 EXPORT_SYMBOL_GPL(simple_attr_read);
956 
957 /* interpret the buffer as a number to call the set function with */
958 ssize_t simple_attr_write(struct file *file, const char __user *buf,
959 			  size_t len, loff_t *ppos)
960 {
961 	struct simple_attr *attr;
962 	u64 val;
963 	size_t size;
964 	ssize_t ret;
965 
966 	attr = file->private_data;
967 	if (!attr->set)
968 		return -EACCES;
969 
970 	ret = mutex_lock_interruptible(&attr->mutex);
971 	if (ret)
972 		return ret;
973 
974 	ret = -EFAULT;
975 	size = min(sizeof(attr->set_buf) - 1, len);
976 	if (copy_from_user(attr->set_buf, buf, size))
977 		goto out;
978 
979 	attr->set_buf[size] = '\0';
980 	val = simple_strtoll(attr->set_buf, NULL, 0);
981 	ret = attr->set(attr->data, val);
982 	if (ret == 0)
983 		ret = len; /* on success, claim we got the whole input */
984 out:
985 	mutex_unlock(&attr->mutex);
986 	return ret;
987 }
988 EXPORT_SYMBOL_GPL(simple_attr_write);
989 
990 /**
991  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
992  * @sb:		filesystem to do the file handle conversion on
993  * @fid:	file handle to convert
994  * @fh_len:	length of the file handle in bytes
995  * @fh_type:	type of file handle
996  * @get_inode:	filesystem callback to retrieve inode
997  *
998  * This function decodes @fid as long as it has one of the well-known
999  * Linux filehandle types and calls @get_inode on it to retrieve the
1000  * inode for the object specified in the file handle.
1001  */
1002 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1003 		int fh_len, int fh_type, struct inode *(*get_inode)
1004 			(struct super_block *sb, u64 ino, u32 gen))
1005 {
1006 	struct inode *inode = NULL;
1007 
1008 	if (fh_len < 2)
1009 		return NULL;
1010 
1011 	switch (fh_type) {
1012 	case FILEID_INO32_GEN:
1013 	case FILEID_INO32_GEN_PARENT:
1014 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1015 		break;
1016 	}
1017 
1018 	return d_obtain_alias(inode);
1019 }
1020 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1021 
1022 /**
1023  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1024  * @sb:		filesystem to do the file handle conversion on
1025  * @fid:	file handle to convert
1026  * @fh_len:	length of the file handle in bytes
1027  * @fh_type:	type of file handle
1028  * @get_inode:	filesystem callback to retrieve inode
1029  *
1030  * This function decodes @fid as long as it has one of the well-known
1031  * Linux filehandle types and calls @get_inode on it to retrieve the
1032  * inode for the _parent_ object specified in the file handle if it
1033  * is specified in the file handle, or NULL otherwise.
1034  */
1035 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1036 		int fh_len, int fh_type, struct inode *(*get_inode)
1037 			(struct super_block *sb, u64 ino, u32 gen))
1038 {
1039 	struct inode *inode = NULL;
1040 
1041 	if (fh_len <= 2)
1042 		return NULL;
1043 
1044 	switch (fh_type) {
1045 	case FILEID_INO32_GEN_PARENT:
1046 		inode = get_inode(sb, fid->i32.parent_ino,
1047 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
1048 		break;
1049 	}
1050 
1051 	return d_obtain_alias(inode);
1052 }
1053 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1054 
1055 /**
1056  * __generic_file_fsync - generic fsync implementation for simple filesystems
1057  *
1058  * @file:	file to synchronize
1059  * @start:	start offset in bytes
1060  * @end:	end offset in bytes (inclusive)
1061  * @datasync:	only synchronize essential metadata if true
1062  *
1063  * This is a generic implementation of the fsync method for simple
1064  * filesystems which track all non-inode metadata in the buffers list
1065  * hanging off the address_space structure.
1066  */
1067 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1068 				 int datasync)
1069 {
1070 	struct inode *inode = file->f_mapping->host;
1071 	int err;
1072 	int ret;
1073 
1074 	err = file_write_and_wait_range(file, start, end);
1075 	if (err)
1076 		return err;
1077 
1078 	inode_lock(inode);
1079 	ret = sync_mapping_buffers(inode->i_mapping);
1080 	if (!(inode->i_state & I_DIRTY_ALL))
1081 		goto out;
1082 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1083 		goto out;
1084 
1085 	err = sync_inode_metadata(inode, 1);
1086 	if (ret == 0)
1087 		ret = err;
1088 
1089 out:
1090 	inode_unlock(inode);
1091 	/* check and advance again to catch errors after syncing out buffers */
1092 	err = file_check_and_advance_wb_err(file);
1093 	if (ret == 0)
1094 		ret = err;
1095 	return ret;
1096 }
1097 EXPORT_SYMBOL(__generic_file_fsync);
1098 
1099 /**
1100  * generic_file_fsync - generic fsync implementation for simple filesystems
1101  *			with flush
1102  * @file:	file to synchronize
1103  * @start:	start offset in bytes
1104  * @end:	end offset in bytes (inclusive)
1105  * @datasync:	only synchronize essential metadata if true
1106  *
1107  */
1108 
1109 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1110 		       int datasync)
1111 {
1112 	struct inode *inode = file->f_mapping->host;
1113 	int err;
1114 
1115 	err = __generic_file_fsync(file, start, end, datasync);
1116 	if (err)
1117 		return err;
1118 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
1119 }
1120 EXPORT_SYMBOL(generic_file_fsync);
1121 
1122 /**
1123  * generic_check_addressable - Check addressability of file system
1124  * @blocksize_bits:	log of file system block size
1125  * @num_blocks:		number of blocks in file system
1126  *
1127  * Determine whether a file system with @num_blocks blocks (and a
1128  * block size of 2**@blocksize_bits) is addressable by the sector_t
1129  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1130  */
1131 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1132 {
1133 	u64 last_fs_block = num_blocks - 1;
1134 	u64 last_fs_page =
1135 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1136 
1137 	if (unlikely(num_blocks == 0))
1138 		return 0;
1139 
1140 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1141 		return -EINVAL;
1142 
1143 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1144 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1145 		return -EFBIG;
1146 	}
1147 	return 0;
1148 }
1149 EXPORT_SYMBOL(generic_check_addressable);
1150 
1151 /*
1152  * No-op implementation of ->fsync for in-memory filesystems.
1153  */
1154 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1155 {
1156 	return 0;
1157 }
1158 EXPORT_SYMBOL(noop_fsync);
1159 
1160 int noop_set_page_dirty(struct page *page)
1161 {
1162 	/*
1163 	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1164 	 * tracking in the page object, dax does all dirty tracking in
1165 	 * the inode address_space in response to mkwrite faults. In the
1166 	 * dax case we only need to worry about potentially dirty CPU
1167 	 * caches, not dirty page cache pages to write back.
1168 	 *
1169 	 * This callback is defined to prevent fallback to
1170 	 * __set_page_dirty_buffers() in set_page_dirty().
1171 	 */
1172 	return 0;
1173 }
1174 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1175 
1176 void noop_invalidatepage(struct page *page, unsigned int offset,
1177 		unsigned int length)
1178 {
1179 	/*
1180 	 * There is no page cache to invalidate in the dax case, however
1181 	 * we need this callback defined to prevent falling back to
1182 	 * block_invalidatepage() in do_invalidatepage().
1183 	 */
1184 }
1185 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1186 
1187 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1188 {
1189 	/*
1190 	 * iomap based filesystems support direct I/O without need for
1191 	 * this callback. However, it still needs to be set in
1192 	 * inode->a_ops so that open/fcntl know that direct I/O is
1193 	 * generally supported.
1194 	 */
1195 	return -EINVAL;
1196 }
1197 EXPORT_SYMBOL_GPL(noop_direct_IO);
1198 
1199 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1200 void kfree_link(void *p)
1201 {
1202 	kfree(p);
1203 }
1204 EXPORT_SYMBOL(kfree_link);
1205 
1206 /*
1207  * nop .set_page_dirty method so that people can use .page_mkwrite on
1208  * anon inodes.
1209  */
1210 static int anon_set_page_dirty(struct page *page)
1211 {
1212 	return 0;
1213 };
1214 
1215 /*
1216  * A single inode exists for all anon_inode files. Contrary to pipes,
1217  * anon_inode inodes have no associated per-instance data, so we need
1218  * only allocate one of them.
1219  */
1220 struct inode *alloc_anon_inode(struct super_block *s)
1221 {
1222 	static const struct address_space_operations anon_aops = {
1223 		.set_page_dirty = anon_set_page_dirty,
1224 	};
1225 	struct inode *inode = new_inode_pseudo(s);
1226 
1227 	if (!inode)
1228 		return ERR_PTR(-ENOMEM);
1229 
1230 	inode->i_ino = get_next_ino();
1231 	inode->i_mapping->a_ops = &anon_aops;
1232 
1233 	/*
1234 	 * Mark the inode dirty from the very beginning,
1235 	 * that way it will never be moved to the dirty
1236 	 * list because mark_inode_dirty() will think
1237 	 * that it already _is_ on the dirty list.
1238 	 */
1239 	inode->i_state = I_DIRTY;
1240 	inode->i_mode = S_IRUSR | S_IWUSR;
1241 	inode->i_uid = current_fsuid();
1242 	inode->i_gid = current_fsgid();
1243 	inode->i_flags |= S_PRIVATE;
1244 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1245 	return inode;
1246 }
1247 EXPORT_SYMBOL(alloc_anon_inode);
1248 
1249 /**
1250  * simple_nosetlease - generic helper for prohibiting leases
1251  * @filp: file pointer
1252  * @arg: type of lease to obtain
1253  * @flp: new lease supplied for insertion
1254  * @priv: private data for lm_setup operation
1255  *
1256  * Generic helper for filesystems that do not wish to allow leases to be set.
1257  * All arguments are ignored and it just returns -EINVAL.
1258  */
1259 int
1260 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1261 		  void **priv)
1262 {
1263 	return -EINVAL;
1264 }
1265 EXPORT_SYMBOL(simple_nosetlease);
1266 
1267 /**
1268  * simple_get_link - generic helper to get the target of "fast" symlinks
1269  * @dentry: not used here
1270  * @inode: the symlink inode
1271  * @done: not used here
1272  *
1273  * Generic helper for filesystems to use for symlink inodes where a pointer to
1274  * the symlink target is stored in ->i_link.  NOTE: this isn't normally called,
1275  * since as an optimization the path lookup code uses any non-NULL ->i_link
1276  * directly, without calling ->get_link().  But ->get_link() still must be set,
1277  * to mark the inode_operations as being for a symlink.
1278  *
1279  * Return: the symlink target
1280  */
1281 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1282 			    struct delayed_call *done)
1283 {
1284 	return inode->i_link;
1285 }
1286 EXPORT_SYMBOL(simple_get_link);
1287 
1288 const struct inode_operations simple_symlink_inode_operations = {
1289 	.get_link = simple_get_link,
1290 };
1291 EXPORT_SYMBOL(simple_symlink_inode_operations);
1292 
1293 /*
1294  * Operations for a permanently empty directory.
1295  */
1296 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1297 {
1298 	return ERR_PTR(-ENOENT);
1299 }
1300 
1301 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1302 			     u32 request_mask, unsigned int query_flags)
1303 {
1304 	struct inode *inode = d_inode(path->dentry);
1305 	generic_fillattr(inode, stat);
1306 	return 0;
1307 }
1308 
1309 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1310 {
1311 	return -EPERM;
1312 }
1313 
1314 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1315 {
1316 	return -EOPNOTSUPP;
1317 }
1318 
1319 static const struct inode_operations empty_dir_inode_operations = {
1320 	.lookup		= empty_dir_lookup,
1321 	.permission	= generic_permission,
1322 	.setattr	= empty_dir_setattr,
1323 	.getattr	= empty_dir_getattr,
1324 	.listxattr	= empty_dir_listxattr,
1325 };
1326 
1327 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1328 {
1329 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1330 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1331 }
1332 
1333 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1334 {
1335 	dir_emit_dots(file, ctx);
1336 	return 0;
1337 }
1338 
1339 static const struct file_operations empty_dir_operations = {
1340 	.llseek		= empty_dir_llseek,
1341 	.read		= generic_read_dir,
1342 	.iterate_shared	= empty_dir_readdir,
1343 	.fsync		= noop_fsync,
1344 };
1345 
1346 
1347 void make_empty_dir_inode(struct inode *inode)
1348 {
1349 	set_nlink(inode, 2);
1350 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1351 	inode->i_uid = GLOBAL_ROOT_UID;
1352 	inode->i_gid = GLOBAL_ROOT_GID;
1353 	inode->i_rdev = 0;
1354 	inode->i_size = 0;
1355 	inode->i_blkbits = PAGE_SHIFT;
1356 	inode->i_blocks = 0;
1357 
1358 	inode->i_op = &empty_dir_inode_operations;
1359 	inode->i_opflags &= ~IOP_XATTR;
1360 	inode->i_fop = &empty_dir_operations;
1361 }
1362 
1363 bool is_empty_dir_inode(struct inode *inode)
1364 {
1365 	return (inode->i_fop == &empty_dir_operations) &&
1366 		(inode->i_op == &empty_dir_inode_operations);
1367 }
1368 
1369 #ifdef CONFIG_UNICODE
1370 /*
1371  * Determine if the name of a dentry should be casefolded.
1372  *
1373  * Return: if names will need casefolding
1374  */
1375 static bool needs_casefold(const struct inode *dir)
1376 {
1377 	return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1378 }
1379 
1380 /**
1381  * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1382  * @dentry:	dentry whose name we are checking against
1383  * @len:	len of name of dentry
1384  * @str:	str pointer to name of dentry
1385  * @name:	Name to compare against
1386  *
1387  * Return: 0 if names match, 1 if mismatch, or -ERRNO
1388  */
1389 int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1390 			  const char *str, const struct qstr *name)
1391 {
1392 	const struct dentry *parent = READ_ONCE(dentry->d_parent);
1393 	const struct inode *dir = READ_ONCE(parent->d_inode);
1394 	const struct super_block *sb = dentry->d_sb;
1395 	const struct unicode_map *um = sb->s_encoding;
1396 	struct qstr qstr = QSTR_INIT(str, len);
1397 	char strbuf[DNAME_INLINE_LEN];
1398 	int ret;
1399 
1400 	if (!dir || !needs_casefold(dir))
1401 		goto fallback;
1402 	/*
1403 	 * If the dentry name is stored in-line, then it may be concurrently
1404 	 * modified by a rename.  If this happens, the VFS will eventually retry
1405 	 * the lookup, so it doesn't matter what ->d_compare() returns.
1406 	 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1407 	 * string.  Therefore, we have to copy the name into a temporary buffer.
1408 	 */
1409 	if (len <= DNAME_INLINE_LEN - 1) {
1410 		memcpy(strbuf, str, len);
1411 		strbuf[len] = 0;
1412 		qstr.name = strbuf;
1413 		/* prevent compiler from optimizing out the temporary buffer */
1414 		barrier();
1415 	}
1416 	ret = utf8_strncasecmp(um, name, &qstr);
1417 	if (ret >= 0)
1418 		return ret;
1419 
1420 	if (sb_has_strict_encoding(sb))
1421 		return -EINVAL;
1422 fallback:
1423 	if (len != name->len)
1424 		return 1;
1425 	return !!memcmp(str, name->name, len);
1426 }
1427 EXPORT_SYMBOL(generic_ci_d_compare);
1428 
1429 /**
1430  * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1431  * @dentry:	dentry of the parent directory
1432  * @str:	qstr of name whose hash we should fill in
1433  *
1434  * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1435  */
1436 int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1437 {
1438 	const struct inode *dir = READ_ONCE(dentry->d_inode);
1439 	struct super_block *sb = dentry->d_sb;
1440 	const struct unicode_map *um = sb->s_encoding;
1441 	int ret = 0;
1442 
1443 	if (!dir || !needs_casefold(dir))
1444 		return 0;
1445 
1446 	ret = utf8_casefold_hash(um, dentry, str);
1447 	if (ret < 0 && sb_has_strict_encoding(sb))
1448 		return -EINVAL;
1449 	return 0;
1450 }
1451 EXPORT_SYMBOL(generic_ci_d_hash);
1452 #endif
1453